743 lines
18 KiB
C++
743 lines
18 KiB
C++
/* -------------------------------------------------------------------------------
|
|
|
|
Copyright (C) 1999-2007 id Software, Inc. and contributors.
|
|
For a list of contributors, see the accompanying CONTRIBUTORS file.
|
|
|
|
This file is part of GtkRadiant.
|
|
|
|
GtkRadiant is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
GtkRadiant is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GtkRadiant; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
|
|
----------------------------------------------------------------------------------
|
|
|
|
This code has been altered significantly from its original form, to support
|
|
several games based on the Quake III Arena engine, in the form of "Q3Map2."
|
|
|
|
------------------------------------------------------------------------------- */
|
|
|
|
|
|
|
|
/* dependencies */
|
|
#include "q3map2.h"
|
|
|
|
|
|
|
|
/* -------------------------------------------------------------------------------
|
|
|
|
functions
|
|
|
|
------------------------------------------------------------------------------- */
|
|
|
|
/*
|
|
AllocSideRef() - ydnar
|
|
allocates and assigns a brush side reference
|
|
*/
|
|
|
|
sideRef_t *AllocSideRef( const side_t *side, sideRef_t *next ){
|
|
/* dummy check */
|
|
if ( side == NULL ) {
|
|
return next;
|
|
}
|
|
|
|
/* allocate and return */
|
|
sideRef_t *sideRef = safe_malloc( sizeof( *sideRef ) );
|
|
sideRef->side = side;
|
|
sideRef->next = next;
|
|
return sideRef;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
BoundBrush()
|
|
sets the mins/maxs based on the windings
|
|
returns false if the brush doesn't enclose a valid volume
|
|
*/
|
|
|
|
static bool BoundBrush( brush_t& brush ){
|
|
brush.minmax.clear();
|
|
for ( const side_t& side : brush.sides )
|
|
{
|
|
WindingExtendBounds( side.winding, brush.minmax );
|
|
}
|
|
|
|
return brush.minmax.valid() && c_worldMinmax.surrounds( brush.minmax );
|
|
}
|
|
|
|
|
|
|
|
|
|
/*
|
|
SnapWeldVector() - ydnar
|
|
welds two Vector3's into a third, taking into account nearest-to-integer
|
|
instead of averaging
|
|
*/
|
|
|
|
#define SNAP_EPSILON 0.01
|
|
|
|
Vector3 SnapWeldVector( const Vector3& a, const Vector3& b ){
|
|
Vector3 out;
|
|
|
|
/* do each element */
|
|
for ( int i = 0; i < 3; i++ )
|
|
{
|
|
/* round to integer */
|
|
const float ai = std::rint( a[ i ] );
|
|
const float bi = std::rint( b[ i ] );
|
|
|
|
/* prefer exact integer */
|
|
if ( ai == a[ i ] ) {
|
|
out[ i ] = a[ i ];
|
|
}
|
|
else if ( bi == b[ i ] ) {
|
|
out[ i ] = b[ i ];
|
|
}
|
|
|
|
/* use nearest */
|
|
else if ( fabs( ai - a[ i ] ) < fabs( bi - b[ i ] ) ) {
|
|
out[ i ] = a[ i ];
|
|
}
|
|
else{
|
|
out[ i ] = b[ i ];
|
|
}
|
|
|
|
/* snap */
|
|
const float outi = std::rint( out[ i ] );
|
|
if ( fabs( outi - out[ i ] ) <= SNAP_EPSILON ) {
|
|
out[ i ] = outi;
|
|
}
|
|
}
|
|
|
|
return out;
|
|
}
|
|
|
|
/*
|
|
==================
|
|
SnapWeldVectorAccu
|
|
|
|
Welds two vectors into a third, taking into account nearest-to-integer
|
|
instead of averaging.
|
|
==================
|
|
*/
|
|
static DoubleVector3 SnapWeldVectorAccu( const DoubleVector3& a, const DoubleVector3& b ){
|
|
// I'm just preserving what I think was the intended logic of the original
|
|
// SnapWeldVector(). I'm not actually sure where this function should even
|
|
// be used. I'd like to know which kinds of problems this function addresses.
|
|
|
|
// TODO: I thought we're snapping all coordinates to nearest 1/8 unit?
|
|
// So what is natural about snapping to the nearest integer? Maybe we should
|
|
// be snapping to the nearest 1/8 unit instead?
|
|
|
|
DoubleVector3 out;
|
|
|
|
for ( int i = 0; i < 3; i++ )
|
|
{
|
|
const double ai = std::rint( a[i] );
|
|
const double bi = std::rint( b[i] );
|
|
const double ad = fabs( ai - a[i] );
|
|
const double bd = fabs( bi - b[i] );
|
|
|
|
if ( ad < bd ) {
|
|
if ( ad < SNAP_EPSILON ) {
|
|
out[i] = ai;
|
|
}
|
|
else{
|
|
out[i] = a[i];
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if ( bd < SNAP_EPSILON ) {
|
|
out[i] = bi;
|
|
}
|
|
else{
|
|
out[i] = b[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
return out;
|
|
}
|
|
|
|
/*
|
|
FixWinding() - ydnar
|
|
removes degenerate edges from a winding
|
|
returns true if the winding is valid
|
|
*/
|
|
|
|
#define DEGENERATE_EPSILON 0.1
|
|
|
|
static bool FixWinding( winding_t& w ){
|
|
bool valid = true;
|
|
|
|
/* dummy check */
|
|
if ( w.empty() ) {
|
|
return false;
|
|
}
|
|
|
|
/* check all verts */
|
|
for ( winding_t::iterator i = w.begin(); i != w.end(); )
|
|
{
|
|
winding_t::iterator j = winding_next( w, i );
|
|
/* don't remove points if winding is a triangle */
|
|
if ( w.size() == 3 ) {
|
|
return valid;
|
|
}
|
|
|
|
/* degenerate edge? */
|
|
if ( vector3_length( *i - *j ) < DEGENERATE_EPSILON ) {
|
|
valid = false;
|
|
//Sys_FPrintf( SYS_WRN | SYS_VRBflag, "WARNING: Degenerate winding edge found, fixing...\n" );
|
|
|
|
/* create an average point (ydnar 2002-01-26: using nearest-integer weld preference) */
|
|
*j = SnapWeldVector( *i, *j );
|
|
//VectorAdd( w[ i ], w[ j ], vec );
|
|
//VectorScale( vec, 0.5, w[ i ] );
|
|
|
|
/* move the remaining verts */
|
|
i = w.erase( i );
|
|
}
|
|
else{
|
|
++i;
|
|
}
|
|
}
|
|
|
|
/* one last check and return */
|
|
if ( w.size() < 3 ) {
|
|
valid = false;
|
|
}
|
|
return valid;
|
|
}
|
|
|
|
/*
|
|
==================
|
|
FixWindingAccu
|
|
|
|
Removes degenerate edges (edges that are too short) from a winding.
|
|
Returns true if the winding has been altered by this function.
|
|
Returns false if the winding is untouched by this function.
|
|
|
|
It's advised that you check the winding after this function exits to make
|
|
sure it still has at least 3 points. If that is not the case, the winding
|
|
cannot be considered valid. The winding may degenerate to one or two points
|
|
if the some of the winding's points are close together.
|
|
==================
|
|
*/
|
|
static bool FixWindingAccu( winding_accu_t& w ){
|
|
bool altered = false;
|
|
|
|
while ( true )
|
|
{
|
|
if ( w.size() < 2 ) {
|
|
break; // Don't remove the only remaining point.
|
|
}
|
|
bool done = true;
|
|
for ( winding_accu_t::iterator i = w.end() - 1, j = w.begin(); j != w.end(); i = j, ++j )
|
|
{
|
|
if ( vector3_length( *i - *j ) < DEGENERATE_EPSILON ) {
|
|
// TODO: I think the "snap weld vector" was written before
|
|
// some of the math precision fixes, and its purpose was
|
|
// probably to address math accuracy issues. We can think
|
|
// about changing the logic here. Maybe once plane distance
|
|
// gets 64 bits, we can look at it then.
|
|
*i = SnapWeldVectorAccu( *i, *j );
|
|
w.erase( j );
|
|
altered = true;
|
|
// The only way to finish off fixing the winding consistently and
|
|
// accurately is by fixing the winding all over again. For example,
|
|
// the point at index i and the point at index i-1 could now be
|
|
// less than the epsilon distance apart. There are too many special
|
|
// case problems we'd need to handle if we didn't start from the
|
|
// beginning.
|
|
done = false;
|
|
break; // This will cause us to return to the "while" loop.
|
|
}
|
|
}
|
|
if ( done ) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
return altered;
|
|
}
|
|
|
|
|
|
/*
|
|
CreateBrushWindings()
|
|
makes basewindigs for sides and mins/maxs for the brush
|
|
returns false if the brush doesn't enclose a valid volume
|
|
*/
|
|
|
|
bool CreateBrushWindings( brush_t& brush ){
|
|
/* walk the list of brush sides */
|
|
for ( size_t i = 0; i < brush.sides.size(); ++i )
|
|
{
|
|
/* get side and plane */
|
|
side_t& side = brush.sides[ i ];
|
|
const plane_t& plane = mapplanes[ side.planenum ];
|
|
|
|
/* make huge winding */
|
|
#if Q3MAP2_EXPERIMENTAL_HIGH_PRECISION_MATH_FIXES
|
|
winding_accu_t w = BaseWindingForPlaneAccu( ( side.plane.normal() != g_vector3_identity )? side.plane : Plane3( plane.plane ) );
|
|
#else
|
|
winding_t w = BaseWindingForPlane( plane.plane );
|
|
#endif
|
|
|
|
/* walk the list of brush sides */
|
|
for ( size_t j = 0; j < brush.sides.size() && !w.empty(); ++j )
|
|
{
|
|
const side_t& cside = brush.sides[ j ];
|
|
const plane_t& cplane = mapplanes[ cside.planenum ^ 1 ];
|
|
if ( i == j
|
|
|| cside.planenum == ( side.planenum ^ 1 ) /* back side clipaway */
|
|
|| cside.bevel ) {
|
|
continue;
|
|
}
|
|
#if Q3MAP2_EXPERIMENTAL_HIGH_PRECISION_MATH_FIXES
|
|
ChopWindingInPlaceAccu( w, ( cside.plane.normal() != g_vector3_identity )? plane3_flipped( cside.plane ) : Plane3( cplane.plane ), 0 );
|
|
#else
|
|
ChopWindingInPlace( w, cplane.plane, 0 ); // CLIP_EPSILON );
|
|
#endif
|
|
|
|
/* ydnar: fix broken windings that would generate trifans */
|
|
#if Q3MAP2_EXPERIMENTAL_HIGH_PRECISION_MATH_FIXES
|
|
// I think it's better to FixWindingAccu() once after we chop with all planes
|
|
// so that error isn't multiplied. There is nothing natural about welding
|
|
// the points unless they are the final endpoints. ChopWindingInPlaceAccu()
|
|
// is able to handle all kinds of degenerate windings.
|
|
#else
|
|
FixWinding( w );
|
|
#endif
|
|
}
|
|
|
|
/* set side winding */
|
|
#if Q3MAP2_EXPERIMENTAL_HIGH_PRECISION_MATH_FIXES
|
|
FixWindingAccu( w );
|
|
if( w.size() >= 3 )
|
|
side.winding = CopyWindingAccuToRegular( w );
|
|
else
|
|
side.winding.clear();
|
|
#else
|
|
side.winding.swap( w );
|
|
#endif
|
|
}
|
|
|
|
/* find brush bounds */
|
|
return BoundBrush( brush );
|
|
}
|
|
|
|
|
|
|
|
|
|
/*
|
|
==================
|
|
BrushFromBounds
|
|
|
|
Creates a new axial brush
|
|
==================
|
|
*/
|
|
static brush_t BrushFromBounds( const Vector3& mins, const Vector3& maxs ){
|
|
brush_t b;
|
|
b.sides.resize( 6 );
|
|
for ( int i = 0; i < 3; ++i )
|
|
{
|
|
float dist = maxs[i];
|
|
b.sides[i].planenum = FindFloatPlane( g_vector3_axes[i], dist, 1, &maxs );
|
|
|
|
dist = -mins[i];
|
|
b.sides[3 + i].planenum = FindFloatPlane( -g_vector3_axes[i], dist, 1, &mins );
|
|
}
|
|
|
|
CreateBrushWindings( b );
|
|
|
|
return b;
|
|
}
|
|
|
|
/*
|
|
==================
|
|
BrushVolume
|
|
|
|
==================
|
|
*/
|
|
static float BrushVolume( const brush_t& brush ){
|
|
float volume = 0;
|
|
|
|
for ( auto i = brush.sides.cbegin(); i != brush.sides.cend(); ++i ){
|
|
// grab the first valid point as the corner
|
|
if( !i->winding.empty() ){
|
|
const Vector3 corner = i->winding[0];
|
|
// make tetrahedrons to all other faces
|
|
for ( ++i; i != brush.sides.cend(); ++i )
|
|
{
|
|
if ( !i->winding.empty() ) {
|
|
volume += -plane3_distance_to_point( mapplanes[i->planenum].plane, corner ) * WindingArea( i->winding );
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
return volume / 3;
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
WriteBSPBrushMap()
|
|
writes a map with the split bsp brushes
|
|
*/
|
|
|
|
void WriteBSPBrushMap( const char *name, const brushlist_t& list ){
|
|
/* note it */
|
|
Sys_Printf( "Writing %s\n", name );
|
|
|
|
/* open the map file */
|
|
FILE *f = SafeOpenWrite( name );
|
|
|
|
fprintf( f, "{\n\"classname\" \"worldspawn\"\n" );
|
|
|
|
for ( const brush_t& brush : list )
|
|
{
|
|
fprintf( f, "{\n" );
|
|
for ( const side_t& side : brush.sides )
|
|
{
|
|
// TODO: See if we can use a smaller winding to prevent resolution loss.
|
|
// Is WriteBSPBrushMap() used only to decompile maps?
|
|
const winding_t w = BaseWindingForPlane( mapplanes[side.planenum].plane );
|
|
|
|
fprintf( f, "( %i %i %i ) ", (int)w[0][0], (int)w[0][1], (int)w[0][2] );
|
|
fprintf( f, "( %i %i %i ) ", (int)w[1][0], (int)w[1][1], (int)w[1][2] );
|
|
fprintf( f, "( %i %i %i ) ", (int)w[2][0], (int)w[2][1], (int)w[2][2] );
|
|
|
|
fprintf( f, "notexture 0 0 0 1 1\n" );
|
|
}
|
|
fprintf( f, "}\n" );
|
|
}
|
|
fprintf( f, "}\n" );
|
|
|
|
fclose( f );
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
FilterBrushIntoTree_r()
|
|
adds brush reference to any intersecting bsp leafnode
|
|
*/
|
|
static std::pair<brush_t, brush_t> SplitBrush( const brush_t& brush, int planenum );
|
|
|
|
static int FilterBrushIntoTree_r( brush_t&& b, node_t *node ){
|
|
/* dummy check */
|
|
if ( b.sides.empty() ) {
|
|
return 0;
|
|
}
|
|
|
|
/* add it to the leaf list */
|
|
if ( node->planenum == PLANENUM_LEAF ) {
|
|
/* something somewhere is hammering brushlist */
|
|
node->brushlist.push_front( std::move( b ) );
|
|
|
|
/* classify the leaf by the structural brush */
|
|
if ( !b.detail ) {
|
|
if ( b.opaque ) {
|
|
node->opaque = true;
|
|
node->areaportal = false;
|
|
}
|
|
else if ( b.compileFlags & C_AREAPORTAL ) {
|
|
if ( !node->opaque ) {
|
|
node->areaportal = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* split it by the node plane */
|
|
auto [front, back] = SplitBrush( b, node->planenum );
|
|
|
|
int c = 0;
|
|
c += FilterBrushIntoTree_r( std::move( front ), node->children[ 0 ] );
|
|
c += FilterBrushIntoTree_r( std::move( back ), node->children[ 1 ] );
|
|
|
|
return c;
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
FilterDetailBrushesIntoTree
|
|
fragment all the detail brushes into the structural leafs
|
|
*/
|
|
|
|
void FilterDetailBrushesIntoTree( const entity_t& e, tree_t& tree ){
|
|
int c_unique = 0, c_clusters = 0;
|
|
|
|
|
|
/* note it */
|
|
Sys_FPrintf( SYS_VRB, "--- FilterDetailBrushesIntoTree ---\n" );
|
|
|
|
/* walk the list of brushes */
|
|
c_unique = 0;
|
|
c_clusters = 0;
|
|
for ( const brush_t& b : e.brushes )
|
|
{
|
|
if ( !b.detail ) {
|
|
continue;
|
|
}
|
|
c_unique++;
|
|
c_clusters += FilterBrushIntoTree_r( brush_t( b ), tree.headnode );
|
|
}
|
|
|
|
/* emit some statistics */
|
|
Sys_FPrintf( SYS_VRB, "%9d detail brushes\n", c_unique );
|
|
Sys_FPrintf( SYS_VRB, "%9d cluster references\n", c_clusters );
|
|
}
|
|
|
|
/*
|
|
=====================
|
|
FilterStructuralBrushesIntoTree
|
|
|
|
Mark the leafs as opaque and areaportals
|
|
=====================
|
|
*/
|
|
void FilterStructuralBrushesIntoTree( const entity_t& e, tree_t& tree ) {
|
|
int c_unique = 0, c_clusters = 0;
|
|
|
|
Sys_FPrintf( SYS_VRB, "--- FilterStructuralBrushesIntoTree ---\n" );
|
|
|
|
for ( const brush_t& b : e.brushes ) {
|
|
if ( b.detail ) {
|
|
continue;
|
|
}
|
|
c_unique++;
|
|
c_clusters += FilterBrushIntoTree_r( brush_t( b ), tree.headnode );
|
|
}
|
|
|
|
/* emit some statistics */
|
|
Sys_FPrintf( SYS_VRB, "%9d structural brushes\n", c_unique );
|
|
Sys_FPrintf( SYS_VRB, "%9d cluster references\n", c_clusters );
|
|
}
|
|
|
|
|
|
/*
|
|
================
|
|
WindingIsTiny
|
|
|
|
Returns true if the winding would be crunched out of
|
|
existence by the vertex snapping.
|
|
================
|
|
*/
|
|
#define EDGE_LENGTH 0.2
|
|
bool WindingIsTiny( const winding_t& w ){
|
|
/*
|
|
return WindingArea( w ) < 1;
|
|
*/
|
|
int edges = 0;
|
|
|
|
for ( size_t i = w.size() - 1, j = 0; j < w.size(); i = j, ++j )
|
|
{
|
|
if ( vector3_length( w[j] - w[i] ) > EDGE_LENGTH ) {
|
|
if ( ++edges == 3 ) {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
================
|
|
WindingIsHuge
|
|
|
|
Returns true if the winding still has one of the points
|
|
from basewinding for plane
|
|
================
|
|
*/
|
|
static bool WindingIsHuge( const winding_t& w ){
|
|
for ( const Vector3& p : w )
|
|
if ( !c_worldMinmax.test( p ) )
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
//============================================================
|
|
|
|
/*
|
|
==================
|
|
BrushMostlyOnSide
|
|
|
|
==================
|
|
*/
|
|
static EPlaneSide BrushMostlyOnSide( const brush_t& brush, const Plane3f& plane ){
|
|
float max = 0;
|
|
EPlaneSide side = eSideFront;
|
|
for ( const side_t& s : brush.sides )
|
|
{
|
|
for ( const Vector3& p : s.winding )
|
|
{
|
|
const double d = plane3_distance_to_point( plane, p );
|
|
if ( d > max ) {
|
|
max = d;
|
|
side = eSideFront;
|
|
}
|
|
if ( -d > max ) {
|
|
max = -d;
|
|
side = eSideBack;
|
|
}
|
|
}
|
|
}
|
|
return side;
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
SplitBrush()
|
|
generates two new brushes, leaving the original unchanged
|
|
*/
|
|
|
|
static std::pair<brush_t, brush_t> SplitBrush( const brush_t& brush, int planenum ){
|
|
const Plane3f& plane = mapplanes[planenum].plane;
|
|
|
|
// check all points
|
|
float d_front = 0, d_back = 0;
|
|
for ( const side_t& side : brush.sides )
|
|
{
|
|
for ( const Vector3& p : side.winding )
|
|
{
|
|
const float d = plane3_distance_to_point( plane, p );
|
|
if ( d > 0 ) {
|
|
value_maximize( d_front, d );
|
|
}
|
|
if ( d < 0 ) {
|
|
value_minimize( d_back, d );
|
|
}
|
|
}
|
|
}
|
|
|
|
if ( d_front < 0.1 ) { // PLANESIDE_EPSILON)
|
|
// only on back
|
|
return { {}, brush };
|
|
}
|
|
|
|
if ( d_back > -0.1 ) { // PLANESIDE_EPSILON)
|
|
// only on front
|
|
return { brush, {} };
|
|
}
|
|
|
|
// create a new winding from the split plane
|
|
winding_t midwinding = BaseWindingForPlane( plane );
|
|
for ( const side_t& side : brush.sides )
|
|
{
|
|
ChopWindingInPlace( midwinding, mapplanes[side.planenum ^ 1].plane, 0 ); // PLANESIDE_EPSILON);
|
|
if( midwinding.empty() )
|
|
break;
|
|
}
|
|
|
|
if ( midwinding.empty() || WindingIsTiny( midwinding ) ) { // the brush isn't really split
|
|
if ( BrushMostlyOnSide( brush, plane ) == eSideBack ) {
|
|
return { {}, brush };
|
|
}
|
|
else { // side == eSideFront
|
|
return { brush, {} };
|
|
}
|
|
}
|
|
|
|
if ( WindingIsHuge( midwinding ) ) {
|
|
Sys_FPrintf( SYS_WRN | SYS_VRBflag, "WARNING: huge winding\n" );
|
|
}
|
|
|
|
// split it for real
|
|
brush_t b[2]{ brush, brush };
|
|
for ( int i = 0; i < 2; i++ )
|
|
{
|
|
b[i].sides.clear();
|
|
}
|
|
|
|
// split all the current windings
|
|
|
|
for ( const side_t& side : brush.sides )
|
|
{
|
|
if ( !side.winding.empty() ) {
|
|
winding_t cw[2];
|
|
std::tie( cw[0], cw[1] ) =
|
|
ClipWindingEpsilonStrict( side.winding, plane, 0 /*PLANESIDE_EPSILON*/ ); /* strict, in parallel case we get the face back because it also is the midwinding */
|
|
for ( int i = 0; i < 2; i++ )
|
|
{
|
|
if ( !cw[i].empty() ) {
|
|
side_t& cs = b[i].sides.emplace_back( side );
|
|
cs.winding.swap( cw[i] );
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// see if we have valid polygons on both sides
|
|
for ( int i = 0; i < 2; i++ )
|
|
{
|
|
if ( b[i].sides.size() < 3 || !BoundBrush( b[i] ) ) {
|
|
if ( b[i].sides.size() >= 3 ) {
|
|
Sys_FPrintf( SYS_WRN | SYS_VRBflag, "bogus brush after clip\n" );
|
|
}
|
|
b[i].sides.clear();
|
|
}
|
|
}
|
|
|
|
if ( b[0].sides.empty() || b[1].sides.empty() ) {
|
|
if ( b[0].sides.empty() && b[1].sides.empty() ) {
|
|
Sys_FPrintf( SYS_WRN | SYS_VRBflag, "split removed brush\n" );
|
|
}
|
|
else{
|
|
Sys_FPrintf( SYS_WRN | SYS_VRBflag, "split not on both sides\n" );
|
|
}
|
|
if ( !b[0].sides.empty() ) {
|
|
return { brush, {} };
|
|
}
|
|
else if ( !b[1].sides.empty() ) {
|
|
return { {}, brush };
|
|
}
|
|
return{};
|
|
}
|
|
|
|
// add the midwinding to both sides
|
|
for ( int i = 0; i < 2; i++ )
|
|
{
|
|
side_t& cs = b[i].sides.emplace_back();
|
|
|
|
cs.planenum = planenum ^ i ^ 1;
|
|
cs.shaderInfo = NULL;
|
|
if ( i == 0 ) {
|
|
cs.winding = midwinding; // copy
|
|
}
|
|
else{
|
|
cs.winding.swap( midwinding ); // move
|
|
}
|
|
}
|
|
|
|
for ( int i = 0; i < 2; i++ )
|
|
{
|
|
if ( BrushVolume( b[i] ) < 1.0 ) {
|
|
b[i].sides.clear();
|
|
// Sys_FPrintf( SYS_WRN | SYS_VRBflag, "tiny volume after clip\n" );
|
|
}
|
|
}
|
|
|
|
return{ std::move( b[0] ), std::move( b[1] ) };
|
|
}
|