netradiant-custom/tools/quake3/q3map2/model.cpp

1412 lines
48 KiB
C++

/* -------------------------------------------------------------------------------
Copyright (C) 1999-2007 id Software, Inc. and contributors.
For a list of contributors, see the accompanying CONTRIBUTORS file.
This file is part of GtkRadiant.
GtkRadiant is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
GtkRadiant is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GtkRadiant; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
----------------------------------------------------------------------------------
This code has been altered significantly from its original form, to support
several games based on the Quake III Arena engine, in the form of "Q3Map2."
------------------------------------------------------------------------------- */
/* dependencies */
#include "q3map2.h"
#include "model.h"
#include "assimp/Importer.hpp"
#include "assimp/importerdesc.h"
#include "assimp/Logger.hpp"
#include "assimp/DefaultLogger.hpp"
#include "assimp/IOSystem.hpp"
#include "assimp/MemoryIOWrapper.h"
#include "assimp/postprocess.h"
#include "assimp/scene.h"
#include "assimp/mesh.h"
#include <map>
class AssLogger : public Assimp::Logger
{
public:
void OnDebug( const char* message ) override {
#ifdef _DEBUG
Sys_Printf( "%s\n", message );
#endif
}
void OnVerboseDebug( const char *message ) override {
#ifdef _DEBUG
Sys_FPrintf( SYS_VRB, "%s\n", message );
#endif
}
void OnInfo( const char* message ) override {
#ifdef _DEBUG
Sys_Printf( "%s\n", message );
#endif
}
void OnWarn( const char* message ) override {
Sys_Warning( "%s\n", message );
}
void OnError( const char* message ) override {
Sys_FPrintf( SYS_WRN, "ERROR: %s\n", message ); /* let it be a warning, since radiant stops monitoring on error message flag */
}
bool attachStream( Assimp::LogStream *pStream, unsigned int severity ) override {
return false;
}
bool detachStream( Assimp::LogStream *pStream, unsigned int severity ) override {
return false;
}
};
class AssIOSystem : public Assimp::IOSystem
{
public:
// -------------------------------------------------------------------
/** @brief Tests for the existence of a file at the given path.
*
* @param pFile Path to the file
* @return true if there is a file with this path, else false.
*/
bool Exists( const char* pFile ) const override {
return vfsGetFileCount( pFile ) != 0;
}
// -------------------------------------------------------------------
/** @brief Returns the system specific directory separator
* @return System specific directory separator
*/
char getOsSeparator() const override {
return '/';
}
// -------------------------------------------------------------------
/** @brief Open a new file with a given path.
*
* When the access to the file is finished, call Close() to release
* all associated resources (or the virtual dtor of the IOStream).
*
* @param pFile Path to the file
* @param pMode Desired file I/O mode. Required are: "wb", "w", "wt",
* "rb", "r", "rt".
*
* @return New IOStream interface allowing the lib to access
* the underlying file.
* @note When implementing this class to provide custom IO handling,
* you probably have to supply an own implementation of IOStream as well.
*/
Assimp::IOStream* Open( const char* pFile, const char* pMode = "rb" ) override {
if ( MemBuffer boo = vfsLoadFile( pFile ) ) {
return new Assimp::MemoryIOStream( boo.release(), boo.size(), true );
}
return nullptr;
}
// -------------------------------------------------------------------
/** @brief Closes the given file and releases all resources
* associated with it.
* @param pFile The file instance previously created by Open().
*/
void Close( Assimp::IOStream* pFile ) override {
delete pFile;
}
// -------------------------------------------------------------------
/** @brief CReates an new directory at the given path.
* @param path [in] The path to create.
* @return True, when a directory was created. False if the directory
* cannot be created.
*/
bool CreateDirectory( const std::string &path ) override {
Error( "AssIOSystem::CreateDirectory" );
return false;
}
// -------------------------------------------------------------------
/** @brief Will change the current directory to the given path.
* @param path [in] The path to change to.
* @return True, when the directory has changed successfully.
*/
bool ChangeDirectory( const std::string &path ) override {
Error( "AssIOSystem::ChangeDirectory" );
return false;
}
bool DeleteFile( const std::string &file ) override {
Error( "AssIOSystem::DeleteFile" );
return false;
}
private:
};
static Assimp::Importer *s_assImporter = nullptr;
void assimp_init(){
s_assImporter = new Assimp::Importer();
s_assImporter->SetPropertyBool( AI_CONFIG_PP_PTV_ADD_ROOT_TRANSFORMATION, true );
s_assImporter->SetPropertyInteger( AI_CONFIG_PP_SBP_REMOVE, aiPrimitiveType_POINT | aiPrimitiveType_LINE );
s_assImporter->SetPropertyString( AI_CONFIG_IMPORT_MDL_COLORMAP, "gfx/palette.lmp" ); // Q1 palette, default is fine too
s_assImporter->SetPropertyBool( AI_CONFIG_IMPORT_MD3_LOAD_SHADERS, false );
s_assImporter->SetPropertyString( AI_CONFIG_IMPORT_MD3_SHADER_SRC, "scripts/" );
s_assImporter->SetPropertyBool( AI_CONFIG_IMPORT_MD3_HANDLE_MULTIPART, false );
s_assImporter->SetPropertyInteger( AI_CONFIG_PP_RVC_FLAGS, aiComponent_TANGENTS_AND_BITANGENTS ); // varying tangents prevent aiProcess_JoinIdenticalVertices
Assimp::DefaultLogger::set( new AssLogger );
s_assImporter->SetIOHandler( new AssIOSystem );
}
struct ModelNameFrame
{
CopiedString m_name;
int m_frame;
bool operator<( const ModelNameFrame& other ) const {
const int cmp = string_compare_nocase( m_name.c_str(), other.m_name.c_str() );
return cmp != 0? cmp < 0 : m_frame < other.m_frame;
}
};
struct AssModel
{
struct AssModelMesh : public AssMeshWalker
{
const aiMesh *m_mesh;
CopiedString m_shader;
AssModelMesh( const aiScene *scene, const aiMesh *mesh, const char *rootPath ) : m_mesh( mesh ){
aiMaterial *material = scene->mMaterials[mesh->mMaterialIndex];
aiString matname = material->GetName();
#ifdef _DEBUG
Sys_Printf( "matname: %s\n", matname.C_Str() );
#endif
if( aiString texname;
aiReturn_SUCCESS == material->Get( AI_MATKEY_TEXTURE_DIFFUSE(0), texname )
&& texname.length != 0
&& !string_equal_prefix_nocase( matname.C_Str(), "textures/" ) /* matname looks intentionally named as ingame shader */
&& !string_equal_prefix_nocase( matname.C_Str(), "textures\\" )
&& !string_equal_prefix_nocase( matname.C_Str(), "models/" )
&& !string_equal_prefix_nocase( matname.C_Str(), "models\\" ) ){
#ifdef _DEBUG
Sys_Printf( "texname: %s\n", texname.C_Str() );
#endif
m_shader = StringOutputStream()( PathCleaned( PathExtensionless( texname.C_Str() ) ) );
}
else{
m_shader = StringOutputStream()( PathCleaned( PathExtensionless( matname.C_Str() ) ) );
}
const CopiedString oldShader( m_shader );
if( strchr( m_shader.c_str(), '/' ) == nullptr ){ /* texture is likely in the folder, where model is */
m_shader = StringOutputStream()( rootPath, m_shader );
}
else{
const char *name = m_shader.c_str();
if( name[0] == '/' || ( name[0] != '\0' && name[1] == ':' ) || strstr( name, ".." ) ){ /* absolute path or with .. */
const char* p;
if( ( p = string_in_string_nocase( name, "/models/" ) )
|| ( p = string_in_string_nocase( name, "/textures/" ) ) ){
m_shader = p + 1;
}
else{
m_shader = StringOutputStream()( rootPath, path_get_filename_start( name ) );
}
}
}
if( oldShader != m_shader )
Sys_FPrintf( SYS_VRB, "substituting: %s -> %s\n", oldShader.c_str(), m_shader.c_str() );
}
void forEachFace( std::function<void( const Vector3 ( &xyz )[3], const Vector2 ( &st )[3])> visitor ) const override {
for ( const aiFace& face : Span( m_mesh->mFaces, m_mesh->mNumFaces ) ){
// if( face.mNumIndices == 3 )
Vector3 xyz[3];
Vector2 st[3];
for( size_t n = 0; n < 3; ++n ){
const auto i = face.mIndices[n];
xyz[n] = { m_mesh->mVertices[i].x, m_mesh->mVertices[i].y, m_mesh->mVertices[i].z };
if( m_mesh->HasTextureCoords( 0 ) )
st[n] = { m_mesh->mTextureCoords[0][i].x, m_mesh->mTextureCoords[0][i].y };
else
st[n] = { 0, 0 };
}
visitor( xyz, st );
}
}
const char *getShaderName() const override {
return m_shader.c_str();
}
};
aiScene *m_scene;
std::vector<AssModelMesh> m_meshes;
AssModel( aiScene *scene, const char *modelname ) : m_scene( scene ){
m_meshes.reserve( scene->mNumMeshes );
const auto rootPath = StringOutputStream()( PathCleaned( PathFilenameless( modelname ) ) );
const auto traverse = [&]( const auto& self, const aiNode* node ) -> void {
for( size_t n = 0; n < node->mNumMeshes; ++n ){
const aiMesh *mesh = scene->mMeshes[node->mMeshes[n]];
if( mesh->mPrimitiveTypes & aiPrimitiveType_TRIANGLE ){
m_meshes.emplace_back( scene, mesh, rootPath );
}
}
// traverse all children
for ( size_t n = 0; n < node->mNumChildren; ++n ){
self( self, node->mChildren[n] );
}
};
traverse( traverse, scene->mRootNode );
}
};
static std::map<ModelNameFrame, AssModel> s_assModels;
/*
LoadModel() - ydnar
loads a picoModel and returns a pointer to the picoModel_t struct or NULL if not found
*/
static AssModel *LoadModel( const char *name, int frame ){
/* dummy check */
if ( strEmptyOrNull( name ) ) {
return nullptr;
}
/* try to find existing picoModel */
auto it = s_assModels.find( ModelNameFrame{ name, frame } );
if( it != s_assModels.end() ){
return &it->second;
}
unsigned flags = //aiProcessPreset_TargetRealtime_Fast
// | aiProcess_FixInfacingNormals
aiProcess_GenNormals
| aiProcess_JoinIdenticalVertices
| aiProcess_Triangulate
| aiProcess_GenUVCoords
| aiProcess_SortByPType
| aiProcess_FindDegenerates
| aiProcess_FindInvalidData
| aiProcess_ValidateDataStructure
| aiProcess_FlipUVs
| aiProcess_FlipWindingOrder
| aiProcess_PreTransformVertices
| aiProcess_RemoveComponent
| aiProcess_SplitLargeMeshes;
// rotate the whole scene 90 degrees around the x axis to convert assimp's Y = UP to Quakes's Z = UP
s_assImporter->SetPropertyMatrix( AI_CONFIG_PP_PTV_ROOT_TRANSFORMATION, aiMatrix4x4( 1, 0, 0, 0,
0, 0, -1, 0,
0, 1, 0, 0,
0, 0, 0, 1 ) ); // aiMatrix4x4::RotationX( c_half_pi )
s_assImporter->SetPropertyInteger( AI_CONFIG_PP_SLM_VERTEX_LIMIT, maxSurfaceVerts ); // TODO this optimal and with respect to lightmapped/not
s_assImporter->SetPropertyInteger( AI_CONFIG_IMPORT_GLOBAL_KEYFRAME, frame );
const aiScene *scene = s_assImporter->ReadFile( name, flags );
if( scene != nullptr ){
if( scene->mFlags & AI_SCENE_FLAGS_INCOMPLETE )
Sys_Warning( "AI_SCENE_FLAGS_INCOMPLETE\n" );
return &s_assModels.emplace( ModelNameFrame{ name, frame }, AssModel( s_assImporter->GetOrphanedScene(), name ) ).first->second;
}
else{
return nullptr; // TODO /* if loading failed, make a bogus model to silence the rest of the warnings */
}
}
std::vector<const AssMeshWalker*> LoadModelWalker( const char *name, int frame ){
AssModel *model = LoadModel( name, frame );
std::vector<const AssMeshWalker*> vector;
if( model != nullptr )
std::for_each( model->m_meshes.begin(), model->m_meshes.end(), [&vector]( const auto& val ){
vector.push_back( &val );
} );
return vector;
}
enum EModelFlags{
eRMG_BSP = 1 << 0,
eClipModel = 1 << 1,
eForceMeta = 1 << 2,
eExtrudeFaceNormals = 1 << 3,
eExtrudeTerrain = 1 << 4,
eColorToAlpha = 1 << 5,
eNoSmooth = 1 << 6,
eExtrudeVertexNormals = 1 << 7,
ePyramidaClip = 1 << 8,
eExtrudeDownwards = 1 << 9,
eExtrudeUpwards = 1 << 10,
eMaxExtrude = 1 << 11,
eAxialBackplane = 1 << 12,
eClipFlags = eClipModel | eExtrudeFaceNormals | eExtrudeTerrain | eExtrudeVertexNormals | ePyramidaClip | eExtrudeDownwards | eExtrudeUpwards | eMaxExtrude | eAxialBackplane,
};
inline void nonax_clip_dbg( const Plane3f (&p)[3] ){
#if 0
for ( int j = 0; j < 3; ++j ){
for ( int k = 0; k < 3; ++k ){
const Vector3& n = p[j].normal();
if ( fabs( n[k] ) < 0.00025 && n[k] != 0 ){
Sys_Printf( "nonax nrm %6.17f %6.17f %6.17f\n", n[0], n[1], n[2] );
}
}
}
#endif
}
inline size_t normal_make_axial( Vector3& normal ){
const size_t i = vector3_max_abs_component_index( normal );
normal = normal[i] >= 0? g_vector3_axes[i] : -g_vector3_axes[i];
return i;
}
template<size_t N> // N = 4 or 5
static void make_brush_sides( const Plane3f plane, const Plane3f (&p)[3], const Plane3f& reverse, Vector3 (&points)[4], shaderInfo_t *si ){
/* set up brush sides */
buildBrush.sides.clear(); // clear, so resize() will value-initialize elements
buildBrush.sides.resize( N );
if( debugClip ){
buildBrush.sides[ 0 ].shaderInfo = ShaderInfoForShader( "debugclip2" );
for ( size_t i = 1; i < N; ++i )
buildBrush.sides[i].shaderInfo = ShaderInfoForShader( "debugclip" );
}
else{
buildBrush.sides[0].shaderInfo = si;
buildBrush.sides[0].surfaceFlags = si->surfaceFlags;
for ( size_t i = 1; i < N; ++i )
buildBrush.sides[i].shaderInfo = NULL; // don't emit these faces as draw surfaces, should make smaller BSPs; hope this works
}
points[3] = points[0]; // for cyclic usage
buildBrush.sides[0].planenum = FindFloatPlane( plane, 3, points );
buildBrush.sides[1].planenum = FindFloatPlane( p[0], 2, &points[0] ); // p[0] contains points[0] and points[1]
buildBrush.sides[2].planenum = FindFloatPlane( p[1], 2, &points[1] ); // p[1] contains points[1] and points[2]
buildBrush.sides[3].planenum = FindFloatPlane( p[2], 2, &points[2] ); // p[2] contains points[2] and points[0] (copied to points[3])
if constexpr( N == 5 )
buildBrush.sides[4].planenum = FindFloatPlane( reverse, 0, NULL );
}
static void ClipModel( int spawnFlags, float clipDepth, shaderInfo_t *si, const mapDrawSurface_t *ds, const char *modelName, entity_t& entity ){
const int spf = ( spawnFlags & ( eClipFlags & ~eClipModel ) );
/* ydnar: giant hack land: generate clipping brushes for model triangles */
if ( ( si->clipModel && spf == 0 ) // default CLIPMODEL
|| ( spawnFlags & eClipFlags ) == eClipModel //default CLIPMODEL
|| spf == eExtrudeFaceNormals
|| spf == eExtrudeTerrain
|| spf == eExtrudeVertexNormals
|| spf == ePyramidaClip
|| spf == eExtrudeDownwards
|| spf == eExtrudeUpwards
|| spf == eAxialBackplane // default sides + axial backplane
|| spf == ( eExtrudeFaceNormals | ePyramidaClip ) // extrude 45
|| spf == ( eExtrudeTerrain | eMaxExtrude )
|| spf == ( eExtrudeTerrain | eAxialBackplane )
|| spf == ( eExtrudeVertexNormals | ePyramidaClip ) // vertex normals + don't check for sides, sticking outwards
|| spf == ( ePyramidaClip | eAxialBackplane ) // pyramid with 3 of 4 sides axial (->small bsp)
|| spf == ( eExtrudeDownwards | eExtrudeUpwards )
|| spf == ( eExtrudeDownwards | eMaxExtrude )
|| spf == ( eExtrudeDownwards | eAxialBackplane )
|| spf == ( eExtrudeDownwards | eExtrudeUpwards | eMaxExtrude )
|| spf == ( eExtrudeDownwards | eExtrudeUpwards | eAxialBackplane )
|| spf == ( eExtrudeUpwards | eMaxExtrude )
|| spf == ( eExtrudeUpwards | eAxialBackplane ) ){
int i, j, k;
//int ok=0, notok=0;
float limDepth = 0;
if ( clipDepth < 0 ){
limDepth = -clipDepth;
clipDepth = 2.0;
}
Vector3 points[ 4 ];
Plane3f plane, reverse, p[3];
MinMax minmax;
Vector3 avgDirection( 0 );
int axis;
/* temp hack */
if ( !si->clipModel && !( si->compileFlags & C_SOLID ) ) {
return;
}
//wont snap these in normal way, or will explode
// const double normalEpsilon_save = normalEpsilon;
//normalEpsilon = 0.000001;
if ( ( spf & eMaxExtrude ) || ( spf & eExtrudeTerrain ) ){
for ( i = 0; i < ds->numIndexes; i += 3 ){
for ( j = 0; j < 3; ++j ){
points[j] = ds->verts[ds->indexes[i + j]].xyz;
}
if ( PlaneFromPoints( plane, points ) ){
if ( spf & eExtrudeTerrain )
avgDirection += plane.normal(); //calculate average mesh facing direction
//get min/max
for ( j = 0; j < 3; ++j ){
minmax.extend( points[j] );
}
}
}
//unify avg direction
if ( spf & eExtrudeTerrain ){
if ( vector3_length( avgDirection ) == 0 )
avgDirection = g_vector3_axis_z;
axis = normal_make_axial( avgDirection );
}
}
/* prepare a brush */
buildBrush.sides.reserve( MAX_BUILD_SIDES );
buildBrush.entityNum = entity.mapEntityNum;
buildBrush.contentShader = si;
buildBrush.compileFlags = si->compileFlags;
buildBrush.contentFlags = si->contentFlags;
buildBrush.detail = true;
/* walk triangle list */
for ( i = 0; i < ds->numIndexes; i += 3 ){
/* make points */
for ( j = 0; j < 3; ++j ){
/* copy xyz */
points[j] = ds->verts[ds->indexes[i + j] ].xyz;
}
/* make plane for triangle */
if ( PlaneFromPoints( plane, points ) ) {
//snap points before using them for further calculations
//precision suffers a lot, when two of normal values are under .00025 (often no collision, knocking up effect in ioq3)
//also broken drawsurfs in case of normal brushes
bool snpd = false;
for ( j = 0; j < 3; ++j )
{
if ( fabs( plane.normal()[j] ) < 0.00025 && fabs( plane.normal()[( j + 1) % 3] ) < 0.00025
&& ( plane.normal()[j] != 0.0 || plane.normal()[( j + 1 ) % 3] != 0.0 ) ){
const Vector3 cnt = ( points[0] + points[1] + points[2] ) / 3.0;
points[0][( j + 2 ) % 3] = points[1][(j + 2 ) % 3] = points[2][( j + 2 ) % 3] = cnt[( j + 2 ) % 3];
snpd = true;
break;
}
}
//snap pairs of points to prevent bad side planes
for ( j = 0; j < 3; ++j )
{
const Vector3 nrm = VectorNormalized( points[j] - points[( j + 1 ) % 3] );
for ( k = 0; k < 3; ++k )
{
if ( nrm[k] != 0.0 && fabs( nrm[k] ) < 0.00025 ){
//Sys_Printf( "b4(%6.6f %6.6f %6.6f)(%6.6f %6.6f %6.6f)\n", points[j][0], points[j][1], points[j][2], points[(j+1)%3][0], points[(j+1)%3][1], points[(j+1)%3][2] );
points[j][k] = points[( j + 1 ) % 3][k] = ( points[j][k] + points[( j + 1 ) % 3][k] ) / 2.0;
//Sys_Printf( "sn(%6.6f %6.6f %6.6f)(%6.6f %6.6f %6.6f)\n", points[j][0], points[j][1], points[j][2], points[(j+1)%3][0], points[(j+1)%3][1], points[(j+1)%3][2] );
snpd = true;
}
}
}
if ( snpd ) {
PlaneFromPoints( plane, points );
snpd = false;
}
//vector-is-close-to-be-on-axis check again, happens after previous code sometimes
for ( j = 0; j < 3; ++j )
{
if ( fabs( plane.normal()[j] ) < 0.00025 && fabs( plane.normal()[( j + 1 ) % 3] ) < 0.00025
&& ( plane.normal()[j] != 0.0 || plane.normal()[( j + 1 ) % 3] != 0.0 ) ){
const Vector3 cnt = ( points[0] + points[1] + points[2] ) / 3.0;
points[0][( j + 2 ) % 3] = points[1][( j + 2 ) % 3] = points[2][( j + 2 ) % 3] = cnt[( j + 2 ) % 3];
PlaneFromPoints( plane, points );
break;
}
}
//snap single snappable normal components
for ( j = 0; j < 3; ++j )
{
if ( plane.normal()[j] != 0 && fabs( plane.normal()[j] ) < 0.00005 ){
plane.normal()[j] = 0;
snpd = true;
}
}
//adjust plane dist
if ( snpd ) {
const Vector3 cnt = ( points[0] + points[1] + points[2] ) / 3.0;
VectorNormalize( plane.normal() );
plane.dist() = vector3_dot( plane.normal(), cnt );
//project points to resulting plane to keep intersections precision
for ( j = 0; j < 3; ++j )
{
//Sys_Printf( "b4 %i (%6.7f %6.7f %6.7f)\n", j, points[j][0], points[j][1], points[j][2] );
points[j] = plane3_project_point( plane, points[j] );
//Sys_Printf( "sn %i (%6.7f %6.7f %6.7f)\n", j, points[j][0], points[j][1], points[j][2] );
}
//Sys_Printf( "sn pln (%6.7f %6.7f %6.7f %6.7f)\n", plane.a, plane.b, plane.c, plane.d );
//PlaneFromPoints( plane, points );
//Sys_Printf( "pts pln (%6.7f %6.7f %6.7f %6.7f)\n", plane.a, plane.b, plane.c, plane.d );
}
/* sanity check */
{
const Vector3 d1 = points[1] - points[0];
const Vector3 d2 = points[2] - points[0];
const Vector3 normal = vector3_cross( d2, d1 );
/* https://en.wikipedia.org/wiki/Cross_product#Geometric_meaning
cross( a, b ).length = a.length b.length sin( angle ) */
const double lengthsSquared = vector3_length_squared( d1 ) * vector3_length_squared( d2 );
if ( lengthsSquared == 0 || ( vector3_length_squared( normal ) / lengthsSquared ) < 1e-8 ) {
Sys_Warning( "triangle (%6.0f %6.0f %6.0f) (%6.0f %6.0f %6.0f) (%6.0f %6.0f %6.0f) of %s was not autoclipped: points on line\n",
points[0][0], points[0][1], points[0][2], points[1][0], points[1][1], points[1][2], points[2][0], points[2][1], points[2][2], modelName );
continue;
}
}
if ( spf == ( ePyramidaClip | eAxialBackplane ) ){ // pyramid with 3 of 4 sides axial (->small bsp)
for ( j = 0; j < 3; ++j )
if ( fabs( plane.normal()[j] ) < 0.05 && fabs( plane.normal()[( j + 1 ) % 3] ) < 0.05 ) //no way, close to lay on two axes
goto default_CLIPMODEL;
// best axial normal
Vector3 bestNormal = plane.normal();
axis = normal_make_axial( bestNormal );
float mindist = 999999;
for ( j = 0; j < 3; ++j ){ // planes
float bestdist = 999999, bestangle = 1;
for ( k = 0; k < 3; ++k ){ // axes
Vector3 nrm = points[( j + 1 ) % 3] - points[j];
if ( k == axis ){
reverse.normal() = vector3_cross( bestNormal, nrm );
}
else{
Vector3 vnrm( 0 );
if ( ( k + 1 ) % 3 == axis ){
if ( nrm[( k + 2 ) % 3] == 0 )
continue;
vnrm[( k + 2 ) % 3] = nrm[( k + 2 ) % 3];
}
else{
if ( nrm[( k + 1 ) % 3] == 0 )
continue;
vnrm[( k + 1 ) % 3] = nrm[( k + 1 ) % 3];
}
const Vector3 enrm = vector3_cross( bestNormal, vnrm );
reverse.normal() = vector3_cross( enrm, nrm );
}
VectorNormalize( reverse.normal() );
reverse.dist() = vector3_dot( points[ j ], reverse.normal() );
//check facing, thickness
const float currdist = reverse.dist() - vector3_dot( reverse.normal(), points[( j + 2 ) % 3] );
const float currangle = vector3_dot( reverse.normal(), plane.normal() );
if ( ( ( currdist > 0.1 ) && ( currdist < bestdist ) && ( currangle < 0 ) ) ||
( ( currangle >= 0 ) && ( currangle <= bestangle ) ) ){
bestangle = currangle;
if ( currangle < 0 )
bestdist = currdist;
p[j] = reverse;
}
}
if ( bestdist == 999999 && bestangle == 1 ){
// Sys_Printf( "default_CLIPMODEL\n" );
goto default_CLIPMODEL;
}
value_minimize( mindist, bestdist );
}
if ( (limDepth != 0.0) && (mindist > limDepth) )
goto default_CLIPMODEL;
nonax_clip_dbg( p );
make_brush_sides<4>( plane, p, reverse, points, si );
}
else if ( spf == eExtrudeTerrain
|| spf == eExtrudeDownwards
|| spf == eExtrudeUpwards
|| spf == eAxialBackplane
|| spf == ( eExtrudeTerrain | eMaxExtrude )
|| spf == ( eExtrudeTerrain | eAxialBackplane )
|| spf == ( eExtrudeDownwards | eExtrudeUpwards )
|| spf == ( eExtrudeDownwards | eMaxExtrude )
|| spf == ( eExtrudeDownwards | eAxialBackplane )
|| spf == ( eExtrudeDownwards | eExtrudeUpwards | eMaxExtrude )
|| spf == ( eExtrudeDownwards | eExtrudeUpwards | eAxialBackplane )
|| spf == ( eExtrudeUpwards | eMaxExtrude )
|| spf == ( eExtrudeUpwards | eAxialBackplane ) ){
Vector3 bestNormal;
if ( spf & eExtrudeTerrain ){ //autodirection
bestNormal = avgDirection;
}
else{
axis = 2;
if ( ( spf & eExtrudeDownwards ) && ( spf & eExtrudeUpwards ) ){
bestNormal = plane.normal()[2] >= 0? g_vector3_axis_z : -g_vector3_axis_z;
}
else if ( spf & eExtrudeDownwards ){
bestNormal = g_vector3_axis_z;
}
else if ( spf & eExtrudeUpwards ){
bestNormal = -g_vector3_axis_z;
}
else{ // best axial normal
bestNormal = plane.normal();
axis = normal_make_axial( bestNormal );
}
}
if ( vector3_dot( plane.normal(), bestNormal ) < 0.05 ){
goto default_CLIPMODEL;
}
/* make side planes */
for ( j = 0; j < 3; ++j )
{
p[j].normal() = VectorNormalized( vector3_cross( bestNormal, points[( j + 1 ) % 3] - points[j] ) );
p[j].dist() = vector3_dot( points[j], p[j].normal() );
}
/* make back plane */
if ( spf & eMaxExtrude ){ //max extrude
reverse.normal() = -bestNormal;
if ( bestNormal[axis] > 0 ){
reverse.dist() = -minmax.mins[axis] + clipDepth;
}
else{
reverse.dist() = minmax.maxs[axis] + clipDepth;
}
}
else if ( spf & eAxialBackplane ){ //axial backplane
reverse.normal() = -bestNormal;
reverse.dist() = points[0][axis];
if ( bestNormal[axis] > 0 ){
for ( j = 1; j < 3; ++j ){
value_minimize( reverse.dist(), points[j][axis] );
}
reverse.dist() = -reverse.dist() + clipDepth;
}
else{
for ( j = 1; j < 3; ++j ){
value_maximize( reverse.dist(), points[j][axis] );
}
reverse.dist() += clipDepth;
}
if ( limDepth != 0.0 ){
Vector3 cnt = points[0];
if ( bestNormal[axis] > 0 ){
for ( j = 1; j < 3; ++j ){
if ( points[j][axis] > cnt[axis] ){
cnt = points[j];
}
}
}
else {
for ( j = 1; j < 3; ++j ){
if ( points[j][axis] < cnt[axis] ){
cnt = points[j];
}
}
}
cnt = plane3_project_point( reverse, cnt );
if ( -plane3_distance_to_point( plane, cnt ) > limDepth ){
reverse = plane3_flipped( plane );
reverse.dist() += clipDepth;
}
}
}
else{ //normal backplane
reverse = plane3_flipped( plane );
reverse.dist() += clipDepth;
}
nonax_clip_dbg( p );
make_brush_sides<5>( plane, p, reverse, points, si );
}
else if ( spf == ( eExtrudeFaceNormals | ePyramidaClip ) ){ // extrude 45
//45 degrees normals for side planes
for ( j = 0; j < 3; ++j )
{
const Vector3 nrm = points[( j + 1 ) % 3] - points[ j ];
Vector3 enrm = VectorNormalized( vector3_cross( plane.normal(), nrm ) );
enrm += plane.normal();
VectorNormalize( enrm );
/* make side planes */
p[j].normal() = VectorNormalized( vector3_cross( enrm, nrm ) );
p[j].dist() = vector3_dot( points[j], p[j].normal() );
//snap nearly axial side planes
snpd = false;
for ( k = 0; k < 3; ++k )
{
if ( fabs( p[j].normal()[k] ) < 0.00025 && p[j].normal()[k] != 0.0 ){
p[j].normal()[k] = 0.0;
snpd = true;
}
}
if ( snpd ){
VectorNormalize( p[j].normal() );
p[j].dist() = vector3_dot( ( points[j] + points[( j + 1 ) % 3] ) / 2.0, p[j].normal() );
}
}
/* make back plane */
reverse = plane3_flipped( plane );
reverse.dist() += clipDepth;
make_brush_sides<5>( plane, p, reverse, points, si );
}
else if ( spf == eExtrudeVertexNormals
|| spf == ( eExtrudeVertexNormals | ePyramidaClip ) ){ // vertex normals + don't check for sides, sticking outwards
Vector3 Vnorm[3], Enorm[3];
/* get vertex normals */
for ( j = 0; j < 3; ++j ){
/* copy normal */
Vnorm[j] = ds->verts[ds->indexes[i + j]].normal;
}
//avg normals for side planes
for ( j = 0; j < 3; ++j )
{
Enorm[ j ] = VectorNormalized( Vnorm[ j ] + Vnorm[( j + 1 ) % 3] );
//check fuer bad ones
const Vector3 nrm = VectorNormalized( vector3_cross( plane.normal(), points[( j + 1 ) % 3] - points[ j ] ) );
//check for negative or outside direction
if ( vector3_dot( Enorm[j], plane.normal() ) > 0.1 ){
if ( ( vector3_dot( Enorm[j], nrm ) > -0.2 ) || ( spf & ePyramidaClip ) ){
//ok++;
continue;
}
}
//notok++;
//Sys_Printf( "faulty Enormal %i/%i\n", notok, ok );
//use 45 normal
Enorm[ j ] = plane.normal() + nrm;
VectorNormalize( Enorm[ j ] );
}
/* make side planes */
for ( j = 0; j < 3; ++j )
{
p[j].normal() = VectorNormalized( vector3_cross( Enorm[j], points[( j + 1 ) % 3] - points[j] ) );
p[j].dist() = vector3_dot( points[j], p[j].normal() );
//snap nearly axial side planes
snpd = false;
for ( k = 0; k < 3; ++k )
{
if ( fabs( p[j].normal()[k] ) < 0.00025 && p[j].normal()[k] != 0.0 ){
//Sys_Printf( "init plane %6.8f %6.8f %6.8f %6.8f\n", p[j].a, p[j].b, p[j].c, p[j].d );
p[j].normal()[k] = 0.0;
snpd = true;
}
}
if ( snpd ){
VectorNormalize( p[j].normal() );
//Sys_Printf( "nrm plane %6.8f %6.8f %6.8f %6.8f\n", p[j].a, p[j].b, p[j].c, p[j].d );
p[j].dist() = vector3_dot( ( points[j] + points[( j + 1 ) % 3] ) / 2.0, p[j].normal() );
//Sys_Printf( "dst plane %6.8f %6.8f %6.8f %6.8f\n", p[j].a, p[j].b, p[j].c, p[j].d );
}
}
/* make back plane */
reverse = plane3_flipped( plane );
reverse.dist() += clipDepth;
make_brush_sides<5>( plane, p, reverse, points, si );
}
else if ( spf == eExtrudeFaceNormals ){
/* make side planes */
for ( j = 0; j < 3; ++j )
{
p[j].normal() = VectorNormalized( vector3_cross( plane.normal(), points[( j + 1 ) % 3] - points[j] ) );
p[j].dist() = vector3_dot( points[j], p[j].normal() );
//snap nearly axial side planes
snpd = false;
for ( k = 0; k < 3; ++k )
{
if ( fabs( p[j].normal()[k] ) < 0.00025 && p[j].normal()[k] != 0.0 ){
//Sys_Printf( "init plane %6.8f %6.8f %6.8f %6.8f\n", p[j].a, p[j].b, p[j].c, p[j].d );
p[j].normal()[k] = 0.0;
snpd = true;
}
}
if ( snpd ){
VectorNormalize( p[j].normal() );
//Sys_Printf( "nrm plane %6.8f %6.8f %6.8f %6.8f\n", p[j].a, p[j].b, p[j].c, p[j].d );
const Vector3 cnt = ( points[j] + points[( j + 1 ) % 3] ) / 2.0;
p[j].dist() = vector3_dot( cnt, p[j].normal() );
//Sys_Printf( "dst plane %6.8f %6.8f %6.8f %6.8f\n", p[j].a, p[j].b, p[j].c, p[j].d );
}
}
/* make back plane */
reverse = plane3_flipped( plane );
reverse.dist() += clipDepth;
nonax_clip_dbg( p );
make_brush_sides<5>( plane, p, reverse, points, si );
}
else if ( spf == ePyramidaClip ){
/* calculate center */
Vector3 cnt = ( points[0] + points[1] + points[2] ) / 3.0;
/* make back pyramid point */
cnt -= plane.normal() * clipDepth;
/* make 3 more planes */
if( PlaneFromPoints( p[0], points[1], points[0], cnt ) &&
PlaneFromPoints( p[1], points[2], points[1], cnt ) &&
PlaneFromPoints( p[2], points[0], points[2], cnt ) ) {
//check for dangerous planes
while( (( p[0].a != 0.0 || p[0].b != 0.0 ) && fabs( p[0].a ) < 0.00025 && fabs( p[0].b ) < 0.00025) ||
(( p[0].a != 0.0 || p[0].c != 0.0 ) && fabs( p[0].a ) < 0.00025 && fabs( p[0].c ) < 0.00025) ||
(( p[0].c != 0.0 || p[0].b != 0.0 ) && fabs( p[0].c ) < 0.00025 && fabs( p[0].b ) < 0.00025) ||
(( p[1].a != 0.0 || p[1].b != 0.0 ) && fabs( p[1].a ) < 0.00025 && fabs( p[1].b ) < 0.00025) ||
(( p[1].a != 0.0 || p[1].c != 0.0 ) && fabs( p[1].a ) < 0.00025 && fabs( p[1].c ) < 0.00025) ||
(( p[1].c != 0.0 || p[1].b != 0.0 ) && fabs( p[1].c ) < 0.00025 && fabs( p[1].b ) < 0.00025) ||
(( p[2].a != 0.0 || p[2].b != 0.0 ) && fabs( p[2].a ) < 0.00025 && fabs( p[2].b ) < 0.00025) ||
(( p[2].a != 0.0 || p[2].c != 0.0 ) && fabs( p[2].a ) < 0.00025 && fabs( p[2].c ) < 0.00025) ||
(( p[2].c != 0.0 || p[2].b != 0.0 ) && fabs( p[2].c ) < 0.00025 && fabs( p[2].b ) < 0.00025) ) {
cnt -= plane.normal() * 0.1f;
// Sys_Printf( "shifting pyramid point\n" );
PlaneFromPoints( p[0], points[1], points[0], cnt );
PlaneFromPoints( p[1], points[2], points[1], cnt );
PlaneFromPoints( p[2], points[0], points[2], cnt );
}
nonax_clip_dbg( p );
make_brush_sides<4>( plane, p, reverse, points, si );
}
else
{
Sys_Warning( "triangle (%6.0f %6.0f %6.0f) (%6.0f %6.0f %6.0f) (%6.0f %6.0f %6.0f) of %s was not autoclipped\n",
points[0][0], points[0][1], points[0][2], points[1][0], points[1][1], points[1][2], points[2][0], points[2][1], points[2][2], modelName );
continue;
}
}
else if ( ( si->clipModel && spf == 0 ) || ( spawnFlags & eClipFlags ) == eClipModel ){ //default CLIPMODEL
default_CLIPMODEL:
// axial normal
Vector3 bestNormal = plane.normal();
normal_make_axial( bestNormal );
/* make side planes */
for ( j = 0; j < 3; ++j )
{
p[j].normal() = VectorNormalized( vector3_cross( bestNormal, points[( j + 1 ) % 3] - points[j] ) );
p[j].dist() = vector3_dot( points[j], p[j].normal() );
}
/* make back plane */
reverse = plane3_flipped( plane );
reverse.dist() += vector3_dot( bestNormal, plane.normal() ) * clipDepth;
nonax_clip_dbg( p );
make_brush_sides<5>( plane, p, reverse, points, si );
}
/* add to entity */
if ( CreateBrushWindings( buildBrush ) ) {
AddBrushBevels();
//% EmitBrushes( buildBrush, NULL, NULL );
brush_t& newBrush = entity.brushes.emplace_front( buildBrush );
newBrush.original = &newBrush;
entity.numBrushes++;
}
else{
Sys_Warning( "triangle (%6.0f %6.0f %6.0f) (%6.0f %6.0f %6.0f) (%6.0f %6.0f %6.0f) of %s was not autoclipped\n",
points[0][0], points[0][1], points[0][2], points[1][0], points[1][1], points[1][2], points[2][0], points[2][1], points[2][2], modelName );
}
}
}
// normalEpsilon = normalEpsilon_save;
}
else if ( spawnFlags & eClipFlags ){
Sys_Warning( "nonexistent clipping mode selected\n" );
}
}
/*
InsertModel() - ydnar
adds a picomodel into the bsp
*/
void InsertModel( const char *name, const char *skin, int frame, const Matrix4& transform, const std::list<remap_t> *remaps, shaderInfo_t *celShader, entity_t& entity, int castShadows, int recvShadows, int spawnFlags, float lightmapScale, int lightmapSampleSize, float shadeAngle, float clipDepth ){
int i, j;
const Matrix4 nTransform( matrix4_for_normal_transform( transform ) );
const bool transform_lefthanded = MATRIX4_LEFTHANDED == matrix4_handedness( transform );
AssModel *model;
shaderInfo_t *si;
mapDrawSurface_t *ds;
const char *picoShaderName;
/* get model */
model = LoadModel( name, frame );
if ( model == NULL ) {
return;
}
/* load skin file */
std::list<remap_t> skins;
if( !strEmptyOrNull( skin ) ){
const bool isnumber = std::all_of( skin, skin + strlen( skin ), ::isdigit );
StringOutputStream skinfilename( 99 );
if( isnumber )
skinfilename( name, '_', skin, ".skin" ); // DarkPlaces naming: models/relics/relic.md3_14.skin for models/relics/relic.md3
else
skinfilename( PathExtensionless( name ), '_', skin, ".skin" ); // Q3 naming: models/players/sarge/head_roderic.skin for models/players/sarge/head.md3
if ( MemBuffer skinfile = vfsLoadFile( skinfilename ) ) {
Sys_Printf( "Using skin %s of %s\n", skin, name );
for ( char *skinfilenextptr, *skinfileptr = skinfile.data(); !strEmpty( skinfileptr ); skinfileptr = skinfilenextptr )
{
// for sscanf
char format[64];
skinfilenextptr = strchr( skinfileptr, '\r' );
if ( skinfilenextptr != NULL ) {
strClear( skinfilenextptr++ );
if( *skinfilenextptr == '\n' ) // handle \r\n
++skinfilenextptr;
}
else
{
skinfilenextptr = strchr( skinfileptr, '\n' );
if ( skinfilenextptr != NULL ) {
strClear( skinfilenextptr++ );
}
else{
skinfilenextptr = skinfileptr + strlen( skinfileptr );
}
}
/* create new item */
remap_t skin;
sprintf( format, "replace %%%ds %%%ds", (int)sizeof( skin.from ) - 1, (int)sizeof( skin.to ) - 1 );
if ( sscanf( skinfileptr, format, skin.from, skin.to ) == 2 ) {
skins.push_back( skin );
continue;
}
sprintf( format, " %%%d[^, ] ,%%%ds", (int)sizeof( skin.from ) - 1, (int)sizeof( skin.to ) - 1 );
if ( sscanf( skinfileptr, format, skin.from, skin.to ) == 2 ) {
skins.push_back( skin );
continue;
}
/* invalid input line -> discard skin struct */
Sys_Printf( "Discarding skin directive in %s: %s\n", skinfilename.c_str(), skinfileptr );
}
}
}
/* hack: Stable-1_2 and trunk have differing row/column major matrix order
this transpose is necessary with Stable-1_2
uncomment the following line with old m4x4_t (non 1.3/spog_branch) code */
//% m4x4_transpose( transform );
/* fix bogus lightmap scale */
if ( lightmapScale <= 0.0f ) {
lightmapScale = 1.0f;
}
/* fix bogus shade angle */
if ( shadeAngle <= 0.0f ) {
shadeAngle = 0.0f;
}
/* each surface on the model will become a new map drawsurface */
//% Sys_FPrintf( SYS_VRB, "Model %s has %d surfaces\n", name, numSurfaces );
for ( const auto& surface : model->m_meshes )
{
const aiMesh *mesh = surface.m_mesh;
/* only handle triangle surfaces initially (fixme: support patches) */
/* get shader name */
picoShaderName = surface.m_shader.c_str();
/* handle .skin file */
if ( !skins.empty() ) {
picoShaderName = NULL;
for( const auto& skin : skins )
{
if ( striEqual( surface.m_shader.c_str(), skin.from ) ) {
Sys_FPrintf( SYS_VRB, "Skin file: mapping %s to %s\n", surface.m_shader.c_str(), skin.to );
picoShaderName = skin.to;
break;
}
}
if ( picoShaderName == NULL ) {
Sys_FPrintf( SYS_VRB, "Skin file: not mapping %s\n", surface.m_shader.c_str() );
continue;
}
}
/* handle shader remapping */
if( remaps != NULL ){
const char* to = NULL;
size_t fromlen = 0;
for( const auto& rm : *remaps )
{
if ( strEqual( rm.from, "*" ) && fromlen == 0 ) { // only globbing, if no respective match
to = rm.to;
}
else if( striEqualSuffix( picoShaderName, rm.from ) && strlen( rm.from ) > fromlen ){ // longer match has priority
to = rm.to;
fromlen = strlen( rm.from );
}
}
if( to != NULL ){
Sys_FPrintf( SYS_VRB, ( fromlen == 0? "Globbing '%s' to '%s'\n" : "Remapping '%s' to '%s'\n" ), picoShaderName, to );
picoShaderName = to;
}
}
/* shader renaming for sof2 */
if ( renameModelShaders ) {
si = ShaderInfoForShader( String64( PathExtensionless( picoShaderName ), ( spawnFlags & eRMG_BSP )? "_RMG_BSP" : "_BSP" ) );
}
else{
si = ShaderInfoForShader( picoShaderName );
}
/* allocate a surface (ydnar: gs mods) */
ds = AllocDrawSurface( ESurfaceType::Triangles );
ds->entityNum = entity.mapEntityNum;
ds->castShadows = castShadows;
ds->recvShadows = recvShadows;
/* set shader */
ds->shaderInfo = si;
/* force to meta? */
if ( ( si != NULL && si->forceMeta ) || ( spawnFlags & eForceMeta ) ) { /* 3rd bit */
ds->type = ESurfaceType::ForcedMeta;
}
/* fix the surface's normals (jal: conditioned by shader info) */
if ( !( spawnFlags & eNoSmooth ) && ( shadeAngle == 0.0f || ds->type != ESurfaceType::ForcedMeta ) ) {
// PicoFixSurfaceNormals( surface );
}
/* set sample size */
if ( lightmapSampleSize > 0.0f ) {
ds->sampleSize = lightmapSampleSize;
}
/* set lightmap scale */
if ( lightmapScale > 0.0f ) {
ds->lightmapScale = lightmapScale;
}
/* set shading angle */
if ( shadeAngle > 0.0f ) {
ds->shadeAngleDegrees = shadeAngle;
}
/* set particulars */
ds->numVerts = mesh->mNumVertices;
ds->verts = safe_calloc( ds->numVerts * sizeof( ds->verts[ 0 ] ) );
ds->numIndexes = mesh->mNumFaces * 3;
ds->indexes = safe_calloc( ds->numIndexes * sizeof( ds->indexes[ 0 ] ) );
// Sys_Printf( "verts %i idx %i\n", ds->numVerts, ds->numIndexes );
/* copy vertexes */
for ( i = 0; i < ds->numVerts; i++ )
{
/* get vertex */
bspDrawVert_t& dv = ds->verts[ i ];
/* xyz and normal */
dv.xyz = { mesh->mVertices[i].x, mesh->mVertices[i].y, mesh->mVertices[i].z };
matrix4_transform_point( transform, dv.xyz );
if( mesh->HasNormals() ){
dv.normal = { mesh->mNormals[i].x, mesh->mNormals[i].y, mesh->mNormals[i].z };
matrix4_transform_direction( nTransform, dv.normal );
VectorNormalize( dv.normal );
}
/* ydnar: tek-fu celshading support for flat shaded shit */
if ( flat ) {
dv.st = si->stFlat;
}
/* ydnar: gs mods: added support for explicit shader texcoord generation */
else if ( si->tcGen ) {
/* project the texture */
dv.st[ 0 ] = vector3_dot( si->vecs[ 0 ], dv.xyz );
dv.st[ 1 ] = vector3_dot( si->vecs[ 1 ], dv.xyz );
}
/* normal texture coordinates */
else
{
if( mesh->HasTextureCoords( 0 ) )
dv.st = { mesh->mTextureCoords[0][i].x, mesh->mTextureCoords[0][i].y };
}
/* set lightmap/color bits */
{
const aiColor4D color = mesh->HasVertexColors( 0 )? mesh->mColors[0][i] : aiColor4D( 1 );
for ( j = 0; j < MAX_LIGHTMAPS; j++ )
{
dv.lightmap[ j ] = { 0, 0 };
if ( spawnFlags & eColorToAlpha ) { // spawnflag 32: model color -> alpha hack
dv.color[ j ] = { 255, 255, 255, color_to_byte( RGBTOGRAY( color ) * 255 ) };
}
else
{
dv.color[ j ] = { color_to_byte( color[0] * 255 ),
color_to_byte( color[1] * 255 ),
color_to_byte( color[2] * 255 ),
color_to_byte( color[3] * 255 ) };
}
}
}
}
/* copy indexes */
{
size_t idCopied = 0;
for ( const aiFace& face : Span( mesh->mFaces, mesh->mNumFaces ) ){
// if( face.mNumIndices == 3 )
for ( size_t i = 0; i < 3; i++ ){
ds->indexes[idCopied++] = face.mIndices[i];
}
if( transform_lefthanded ){
std::swap( ds->indexes[idCopied - 1], ds->indexes[idCopied - 2] );
}
}
}
/* set cel shader */
ds->celShader = celShader;
ClipModel( spawnFlags, clipDepth, si, ds, name, entity );
}
}
/*
AddTriangleModels()
adds misc_model surfaces to the bsp
*/
void AddTriangleModels( entity_t& eparent ){
/* note it */
Sys_FPrintf( SYS_VRB, "--- AddTriangleModels ---\n" );
/* get current brush entity targetname */
const char *targetName;
if ( &eparent == &entities[0] ) {
targetName = "";
}
else{ /* misc_model entities target non-worldspawn brush model entities */
if ( !eparent.read_keyvalue( targetName, "_targetname", "targetname" ) ) {
return;
}
}
/* walk the entity list */
for ( std::size_t i = 1; i < entities.size(); ++i )
{
/* get entity */
const entity_t& e = entities[ i ];
/* convert misc_models into raw geometry */
if ( !e.classname_is( "misc_model" ) ) {
continue;
}
/* ydnar: added support for md3 models on non-worldspawn models */
if ( const char *target = ""; e.read_keyvalue( target, "_target", "target" ), !strEqual( target, targetName ) ) {
continue;
}
/* get model name */
const char *model;
if ( !e.read_keyvalue( model, "model" ) ) {
Sys_Warning( "entity#%d misc_model without a model key\n", e.mapEntityNum );
continue;
}
/* get model frame */
const int frame = e.intForKey( "_frame", "frame" );
int castShadows, recvShadows;
if ( &eparent == &entities[0] ) { /* worldspawn (and func_groups) default to cast/recv shadows in worldspawn group */
castShadows = WORLDSPAWN_CAST_SHADOWS;
recvShadows = WORLDSPAWN_RECV_SHADOWS;
}
else{ /* other entities don't cast any shadows, but recv worldspawn shadows */
castShadows = ENTITY_CAST_SHADOWS;
recvShadows = ENTITY_RECV_SHADOWS;
}
/* get explicit shadow flags */
GetEntityShadowFlags( &e, &eparent, &castShadows, &recvShadows );
/* get spawnflags */
const int spawnFlags = e.intForKey( "spawnflags" );
/* get origin */
const Vector3 origin = e.vectorForKey( "origin" ) - eparent.origin; /* offset by parent */
/* get scale */
Vector3 scale( 1 );
if( !e.read_keyvalue( scale, "modelscale_vec" ) )
if( e.read_keyvalue( scale[0], "modelscale" ) )
scale[1] = scale[2] = scale[0];
/* get "angle" (yaw) or "angles" (pitch yaw roll), store as (roll pitch yaw) */
Vector3 angles( 0 );
if ( e.read_keyvalue( angles, "angles" ) || e.read_keyvalue( angles.y(), "angle" ) )
angles = angles_pyr2rpy( angles );
/* set transform matrix (thanks spog) */
Matrix4 transform( g_matrix4_identity );
matrix4_transform_by_euler_xyz_degrees( transform, origin, angles, scale );
/* get shader remappings */
std::list<remap_t> remaps;
for ( const auto& ep : e.epairs )
{
/* look for keys prefixed with "_remap" */
if ( striEqualPrefix( ep.key.c_str(), "_remap" ) ) {
/* create new remapping */
remap_t remap;
strcpy( remap.from, ep.value.c_str() );
/* split the string */
char *split = strchr( remap.from, ';' );
if ( split == NULL ) {
Sys_Warning( "Shader _remap key found in misc_model without a ; character: '%s'\n", remap.from );
continue;
}
else if( split == remap.from ){
Sys_Warning( "_remap FROM is empty in '%s'\n", remap.from );
continue;
}
else if( strEmpty( split + 1 ) ){
Sys_Warning( "_remap TO is empty in '%s'\n", remap.from );
continue;
}
else if( strlen( split + 1 ) >= sizeof( remap.to ) ){
Sys_Warning( "_remap TO is too long in '%s'\n", remap.from );
continue;
}
/* store the split */
strClear( split );
strcpy( remap.to, ( split + 1 ) );
remaps.push_back( remap );
/* note it */
//% Sys_FPrintf( SYS_VRB, "Remapping %s to %s\n", remap->from, remap->to );
}
}
/* ydnar: cel shader support */
shaderInfo_t *celShader;
if( const char *value; e.read_keyvalue( value, "_celshader" ) ||
entities[ 0 ].read_keyvalue( value, "_celshader" ) ){
celShader = ShaderInfoForShader( String64( "textures/", value ) );
}
else{
celShader = globalCelShader.empty() ? NULL : ShaderInfoForShader( globalCelShader );
}
/* jal : entity based _samplesize */
const int lightmapSampleSize = std::max( 0, e.intForKey( "_lightmapsamplesize", "_samplesize", "_ss" ) );
if ( lightmapSampleSize != 0 )
Sys_Printf( "misc_model has lightmap sample size of %.d\n", lightmapSampleSize );
/* get lightmap scale */
const float lightmapScale = std::max( 0.f, e.floatForKey( "lightmapscale", "_lightmapscale", "_ls" ) );
if ( lightmapScale != 0 )
Sys_Printf( "misc_model has lightmap scale of %.4f\n", lightmapScale );
/* jal : entity based _shadeangle */
const float shadeAngle = std::max( 0.f, e.floatForKey( "_shadeangle",
"_smoothnormals", "_sn", "_sa", "_smooth" ) ); /* vortex' aliases */
if ( shadeAngle != 0 )
Sys_Printf( "misc_model has shading angle of %.4f\n", shadeAngle );
const char *skin = nullptr;
e.read_keyvalue( skin, "_skin", "skin" );
float clipDepth = clipDepthGlobal;
if ( e.read_keyvalue( clipDepth, "_clipdepth" ) )
Sys_Printf( "misc_model %s has autoclip depth of %.3f\n", model, clipDepth );
/* insert the model */
InsertModel( model, skin, frame, transform, &remaps, celShader, eparent, castShadows, recvShadows, spawnFlags, lightmapScale, lightmapSampleSize, shadeAngle, clipDepth );
}
}