netradiant-custom/tools/quake3/q3map2/light_ydnar.cpp
2021-03-02 22:01:09 +03:00

4193 lines
108 KiB
C++

/* -------------------------------------------------------------------------------
Copyright (C) 1999-2007 id Software, Inc. and contributors.
For a list of contributors, see the accompanying CONTRIBUTORS file.
This file is part of GtkRadiant.
GtkRadiant is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
GtkRadiant is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GtkRadiant; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
----------------------------------------------------------------------------------
This code has been altered significantly from its original form, to support
several games based on the Quake III Arena engine, in the form of "Q3Map2."
------------------------------------------------------------------------------- */
/* dependencies */
#include "q3map2.h"
/*
ColorToBytes()
ydnar: moved to here 2001-02-04
*/
void ColorToBytes( const Vector3& color, Vector3b& colorBytes, float scale ){
int i;
float max, gamma;
float inv, dif;
/* ydnar: scaling necessary for simulating r_overbrightBits on external lightmaps */
if ( scale <= 0.0f ) {
scale = 1.0f;
}
/* make a local copy */
Vector3 sample = color * scale;
/* muck with it */
gamma = 1.0f / lightmapGamma;
for ( i = 0; i < 3; i++ )
{
/* handle negative light */
if ( sample[ i ] < 0.0f ) {
sample[ i ] = 0.0f;
continue;
}
/* gamma */
sample[ i ] = pow( sample[ i ] / 255.0f, gamma ) * 255.0f;
}
if ( lightmapExposure == 0 ) {
/* clamp with color normalization */
max = VectorMax( sample );
if ( max > maxLight ) {
sample *= ( maxLight / max );
}
}
else
{
inv = 1.f / lightmapExposure;
//Exposure
max = VectorMax( sample );
dif = ( 1 - exp( -max * inv ) ) * 255;
if ( max > 0 ) {
dif = dif / max;
}
else
{
dif = 0;
}
sample *= dif;
}
/* compensate for ingame overbrighting/bitshifting */
sample *= ( 1.0f / lightmapCompensate );
/* contrast */
if ( lightmapContrast != 1.0f ){
for ( i = 0; i < 3; i++ ){
sample[i] = std::max( 0.f, lightmapContrast * ( sample[i] - 128 ) + 128 );
}
/* clamp with color normalization */
max = VectorMax( sample );
if ( max > 255.0f ) {
sample *= ( 255.0f / max );
}
}
/* sRGB lightmaps */
if ( lightmapsRGB ) {
sample[0] = floor( Image_sRGBFloatFromLinearFloat( sample[0] * ( 1.0 / 255.0 ) ) * 255.0 + 0.5 );
sample[1] = floor( Image_sRGBFloatFromLinearFloat( sample[1] * ( 1.0 / 255.0 ) ) * 255.0 + 0.5 );
sample[2] = floor( Image_sRGBFloatFromLinearFloat( sample[2] * ( 1.0 / 255.0 ) ) * 255.0 + 0.5 );
}
/* store it off */
colorBytes = sample;
}
/* -------------------------------------------------------------------------------
this section deals with phong shading (normal interpolation across brush faces)
------------------------------------------------------------------------------- */
/*
SmoothNormals()
smooths together coincident vertex normals across the bsp
*/
#define MAX_SAMPLES 256
#define THETA_EPSILON 0.000001
#define EQUAL_NORMAL_EPSILON 0.01f
void SmoothNormals( void ){
int i, j, k, f, numVerts, numVotes, fOld, start;
float shadeAngle, defaultShadeAngle, maxShadeAngle;
bspDrawSurface_t *ds;
shaderInfo_t *si;
float *shadeAngles;
byte *smoothed;
Vector3 average;
int indexes[ MAX_SAMPLES ];
Vector3 votes[ MAX_SAMPLES ];
/* allocate shade angle table */
shadeAngles = safe_calloc( numBSPDrawVerts * sizeof( float ) );
/* allocate smoothed table */
smoothed = safe_calloc( ( numBSPDrawVerts / 8 ) + 1 );
/* set default shade angle */
defaultShadeAngle = degrees_to_radians( shadeAngleDegrees );
maxShadeAngle = 0;
/* run through every surface and flag verts belonging to non-lightmapped surfaces
and set per-vertex smoothing angle */
for ( i = 0; i < numBSPDrawSurfaces; i++ )
{
/* get drawsurf */
ds = &bspDrawSurfaces[ i ];
/* get shader for shade angle */
si = surfaceInfos[ i ].si;
if ( si->shadeAngleDegrees ) {
shadeAngle = degrees_to_radians( si->shadeAngleDegrees );
}
else{
shadeAngle = defaultShadeAngle;
}
value_maximize( maxShadeAngle, shadeAngle );
/* flag its verts */
for ( j = 0; j < ds->numVerts; j++ )
{
f = ds->firstVert + j;
shadeAngles[ f ] = shadeAngle;
if ( ds->surfaceType == MST_TRIANGLE_SOUP ) {
smoothed[ f >> 3 ] |= ( 1 << ( f & 7 ) );
}
}
/* ydnar: optional force-to-trisoup */
if ( trisoup && ds->surfaceType == MST_PLANAR ) {
ds->surfaceType = MST_TRIANGLE_SOUP;
ds->lightmapNum[ 0 ] = -3;
}
}
/* bail if no surfaces have a shade angle */
if ( maxShadeAngle == 0 ) {
free( shadeAngles );
free( smoothed );
return;
}
/* init pacifier */
fOld = -1;
start = I_FloatTime();
/* go through the list of vertexes */
for ( i = 0; i < numBSPDrawVerts; i++ )
{
/* print pacifier */
f = 10 * i / numBSPDrawVerts;
if ( f != fOld ) {
fOld = f;
Sys_Printf( "%i...", f );
}
/* already smoothed? */
if ( smoothed[ i >> 3 ] & ( 1 << ( i & 7 ) ) ) {
continue;
}
/* clear */
average.set( 0 );
numVerts = 0;
numVotes = 0;
/* build a table of coincident vertexes */
for ( j = i; j < numBSPDrawVerts && numVerts < MAX_SAMPLES; j++ )
{
/* already smoothed? */
if ( smoothed[ j >> 3 ] & ( 1 << ( j & 7 ) ) ) {
continue;
}
/* test vertexes */
if ( !VectorCompare( yDrawVerts[ i ].xyz, yDrawVerts[ j ].xyz ) ) {
continue;
}
/* use smallest shade angle */
shadeAngle = std::min( shadeAngles[ i ], shadeAngles[ j ] );
/* check shade angle */
const double dot = std::clamp( vector3_dot( bspDrawVerts[ i ].normal, bspDrawVerts[ j ].normal ), -1.0, 1.0 );
if ( acos( dot ) + THETA_EPSILON >= shadeAngle ) {
//Sys_Printf( "F(%3.3f >= %3.3f) ", RAD2DEG( testAngle ), RAD2DEG( shadeAngle ) );
continue;
}
//Sys_Printf( "P(%3.3f < %3.3f) ", RAD2DEG( testAngle ), RAD2DEG( shadeAngle ) );
/* add to the list */
indexes[ numVerts++ ] = j;
/* flag vertex */
smoothed[ j >> 3 ] |= ( 1 << ( j & 7 ) );
/* see if this normal has already been voted */
for ( k = 0; k < numVotes; k++ )
{
if ( vector3_equal_epsilon( bspDrawVerts[ j ].normal, votes[ k ], EQUAL_NORMAL_EPSILON ) ) {
break;
}
}
/* add a new vote? */
if ( k == numVotes && numVotes < MAX_SAMPLES ) {
average += bspDrawVerts[ j ].normal;
votes[ numVotes ] = bspDrawVerts[ j ].normal;
numVotes++;
}
}
/* don't average for less than 2 verts */
if ( numVerts < 2 ) {
continue;
}
/* average normal */
if ( VectorNormalize( average ) != 0 ) {
/* smooth */
for ( j = 0; j < numVerts; j++ )
yDrawVerts[ indexes[ j ] ].normal = average;
}
}
/* free the tables */
free( shadeAngles );
free( smoothed );
/* print time */
Sys_Printf( " (%i)\n", (int) ( I_FloatTime() - start ) );
}
/* -------------------------------------------------------------------------------
this section deals with phong shaded lightmap tracing
------------------------------------------------------------------------------- */
/* 9th rewrite (recursive subdivision of a lightmap triangle) */
/*
CalcTangentVectors()
calculates the st tangent vectors for normalmapping
*/
static bool CalcTangentVectors( int numVerts, bspDrawVert_t **dv, Vector3 *stv, Vector3 *ttv ){
int i;
float bb, s, t;
Vector3 bary;
/* calculate barycentric basis for the triangle */
bb = ( dv[ 1 ]->st[ 0 ] - dv[ 0 ]->st[ 0 ] ) * ( dv[ 2 ]->st[ 1 ] - dv[ 0 ]->st[ 1 ] ) - ( dv[ 2 ]->st[ 0 ] - dv[ 0 ]->st[ 0 ] ) * ( dv[ 1 ]->st[ 1 ] - dv[ 0 ]->st[ 1 ] );
if ( fabs( bb ) < 0.00000001f ) {
return false;
}
/* do each vertex */
for ( i = 0; i < numVerts; i++ )
{
/* calculate s tangent vector */
s = dv[ i ]->st[ 0 ] + 10.0f;
t = dv[ i ]->st[ 1 ];
bary[ 0 ] = ( ( dv[ 1 ]->st[ 0 ] - s ) * ( dv[ 2 ]->st[ 1 ] - t ) - ( dv[ 2 ]->st[ 0 ] - s ) * ( dv[ 1 ]->st[ 1 ] - t ) ) / bb;
bary[ 1 ] = ( ( dv[ 2 ]->st[ 0 ] - s ) * ( dv[ 0 ]->st[ 1 ] - t ) - ( dv[ 0 ]->st[ 0 ] - s ) * ( dv[ 2 ]->st[ 1 ] - t ) ) / bb;
bary[ 2 ] = ( ( dv[ 0 ]->st[ 0 ] - s ) * ( dv[ 1 ]->st[ 1 ] - t ) - ( dv[ 1 ]->st[ 0 ] - s ) * ( dv[ 0 ]->st[ 1 ] - t ) ) / bb;
stv[ i ][ 0 ] = bary[ 0 ] * dv[ 0 ]->xyz[ 0 ] + bary[ 1 ] * dv[ 1 ]->xyz[ 0 ] + bary[ 2 ] * dv[ 2 ]->xyz[ 0 ];
stv[ i ][ 1 ] = bary[ 0 ] * dv[ 0 ]->xyz[ 1 ] + bary[ 1 ] * dv[ 1 ]->xyz[ 1 ] + bary[ 2 ] * dv[ 2 ]->xyz[ 1 ];
stv[ i ][ 2 ] = bary[ 0 ] * dv[ 0 ]->xyz[ 2 ] + bary[ 1 ] * dv[ 1 ]->xyz[ 2 ] + bary[ 2 ] * dv[ 2 ]->xyz[ 2 ];
stv[ i ] -= dv[ i ]->xyz;
VectorNormalize( stv[ i ] );
/* calculate t tangent vector */
s = dv[ i ]->st[ 0 ];
t = dv[ i ]->st[ 1 ] + 10.0f;
bary[ 0 ] = ( ( dv[ 1 ]->st[ 0 ] - s ) * ( dv[ 2 ]->st[ 1 ] - t ) - ( dv[ 2 ]->st[ 0 ] - s ) * ( dv[ 1 ]->st[ 1 ] - t ) ) / bb;
bary[ 1 ] = ( ( dv[ 2 ]->st[ 0 ] - s ) * ( dv[ 0 ]->st[ 1 ] - t ) - ( dv[ 0 ]->st[ 0 ] - s ) * ( dv[ 2 ]->st[ 1 ] - t ) ) / bb;
bary[ 2 ] = ( ( dv[ 0 ]->st[ 0 ] - s ) * ( dv[ 1 ]->st[ 1 ] - t ) - ( dv[ 1 ]->st[ 0 ] - s ) * ( dv[ 0 ]->st[ 1 ] - t ) ) / bb;
ttv[ i ][ 0 ] = bary[ 0 ] * dv[ 0 ]->xyz[ 0 ] + bary[ 1 ] * dv[ 1 ]->xyz[ 0 ] + bary[ 2 ] * dv[ 2 ]->xyz[ 0 ];
ttv[ i ][ 1 ] = bary[ 0 ] * dv[ 0 ]->xyz[ 1 ] + bary[ 1 ] * dv[ 1 ]->xyz[ 1 ] + bary[ 2 ] * dv[ 2 ]->xyz[ 1 ];
ttv[ i ][ 2 ] = bary[ 0 ] * dv[ 0 ]->xyz[ 2 ] + bary[ 1 ] * dv[ 1 ]->xyz[ 2 ] + bary[ 2 ] * dv[ 2 ]->xyz[ 2 ];
ttv[ i ] -= dv[ i ]->xyz;
VectorNormalize( ttv[ i ] );
/* debug code */
//% Sys_FPrintf( SYS_VRB, "%d S: (%f %f %f) T: (%f %f %f)\n", i,
//% stv[ i ][ 0 ], stv[ i ][ 1 ], stv[ i ][ 2 ], ttv[ i ][ 0 ], ttv[ i ][ 1 ], ttv[ i ][ 2 ] );
}
/* return to caller */
return true;
}
/*
PerturbNormal()
perterbs the normal by the shader's normalmap in tangent space
*/
static void PerturbNormal( bspDrawVert_t *dv, shaderInfo_t *si, Vector3& pNormal, const Vector3 stv[ 3 ], const Vector3 ttv[ 3 ] ){
/* passthrough */
pNormal = dv->normal;
/* sample normalmap */
Color4f bump;
if ( !RadSampleImage( si->normalImage->pixels, si->normalImage->width, si->normalImage->height, dv->st, bump ) ) {
return;
}
/* remap sampled normal from [0,255] to [-1,-1] */
bump.rgb() = ( bump.rgb() - Vector3().set( 127.0f ) ) * ( 1.0f / 127.5f );
/* scale tangent vectors and add to original normal */
pNormal = dv->normal + stv[ 0 ] * bump[ 0 ] + ttv[ 0 ] * bump[ 1 ] + dv->normal * bump[ 2 ];
/* renormalize and return */
VectorNormalize( pNormal );
}
/*
MapSingleLuxel()
maps a luxel for triangle bv at
*/
#define NUDGE 0.5f
#define BOGUS_NUDGE -99999.0f
static int MapSingleLuxel( rawLightmap_t *lm, surfaceInfo_t *info, bspDrawVert_t *dv, const Plane3f* plane, float pass, const Vector3 stv[ 3 ], const Vector3 ttv[ 3 ], const Vector3 worldverts[ 3 ] ){
int i, numClusters, *clusters, pointCluster;
float lightmapSampleOffset;
shaderInfo_t *si;
Vector3 pNormal;
Vector3 vecs[ 3 ];
Vector3 nudged;
Vector3 origintwo;
int j;
float *nudge;
static float nudges[][ 2 ] =
{
//%{ 0, 0 }, /* try center first */
{ -NUDGE, 0 }, /* left */
{ NUDGE, 0 }, /* right */
{ 0, NUDGE }, /* up */
{ 0, -NUDGE }, /* down */
{ -NUDGE, NUDGE }, /* left/up */
{ NUDGE, -NUDGE }, /* right/down */
{ NUDGE, NUDGE }, /* right/up */
{ -NUDGE, -NUDGE }, /* left/down */
{ BOGUS_NUDGE, BOGUS_NUDGE }
};
/* find luxel xy coords (fixme: subtract 0.5?) */
const int x = std::clamp( int( dv->lightmap[ 0 ][ 0 ] ), 0, lm->sw - 1 );
const int y = std::clamp( int( dv->lightmap[ 0 ][ 1 ] ), 0, lm->sh - 1 );
/* set shader and cluster list */
if ( info != NULL ) {
si = info->si;
numClusters = info->numSurfaceClusters;
clusters = &surfaceClusters[ info->firstSurfaceCluster ];
}
else
{
si = NULL;
numClusters = 0;
clusters = NULL;
}
/* get luxel, origin, cluster, and normal */
SuperLuxel& luxel = lm->getSuperLuxel( 0, x, y );
Vector3& origin = lm->getSuperOrigin( x, y );
Vector3& normal = lm->getSuperNormal( x, y );
int& cluster = lm->getSuperCluster( x, y );
/* don't attempt to remap occluded luxels for planar surfaces */
if ( cluster == CLUSTER_OCCLUDED && lm->plane != NULL ) {
return cluster;
}
/* only average the normal for premapped luxels */
else if ( cluster >= 0 ) {
/* do bumpmap calculations */
if ( stv != NULL ) {
PerturbNormal( dv, si, pNormal, stv, ttv );
}
else{
pNormal = dv->normal;
}
/* add the additional normal data */
normal += pNormal;
luxel.count += 1.0f;
return cluster;
}
/* otherwise, unmapped luxels (*cluster == CLUSTER_UNMAPPED) will have their full attributes calculated */
/* get origin */
/* axial lightmap projection */
if ( lm->vecs != NULL ) {
/* calculate an origin for the sample from the lightmap vectors */
origin = lm->origin;
for ( i = 0; i < 3; i++ )
{
/* add unless it's the axis, which is taken care of later */
if ( i == lm->axisNum ) {
continue;
}
origin[ i ] += ( x * lm->vecs[ 0 ][ i ] ) + ( y * lm->vecs[ 1 ][ i ] );
}
/* project the origin onto the plane */
origin[ lm->axisNum ] -= plane3_distance_to_point( *plane, origin ) / plane->normal()[ lm->axisNum ];
}
/* non axial lightmap projection (explicit xyz) */
else{
origin = dv->xyz;
}
//////////////////////
//27's test to make sure samples stay within the triangle boundaries
//1) Test the sample origin to see if it lays on the wrong side of any edge (x/y)
//2) if it does, nudge it onto the correct side.
if ( worldverts != NULL && lightmapTriangleCheck ) {
Plane3f hostplane;
PlaneFromPoints( hostplane, worldverts[0], worldverts[1], worldverts[2] );
for ( j = 0; j < 3; j++ )
{
for ( i = 0; i < 3; i++ )
{
Plane3f sideplane;
//build plane using 2 edges and a normal
const int next = ( i + 1 ) % 3;
PlaneFromPoints( sideplane, worldverts[i], worldverts[ next ], worldverts[ next ] + hostplane.normal() );
//planetest sample point
const float e = plane3_distance_to_point( sideplane, origin );
if ( e > -LUXEL_EPSILON ) {
//we're bad.
//Move the sample point back inside triangle bounds
origin -= sideplane.normal() * ( e + 1 );
#ifdef DEBUG_27_1
origin.set( 0 );
#endif
}
}
}
}
////////////////////////
/* planar surfaces have precalculated lightmap vectors for nudging */
if ( lm->plane != NULL ) {
vecs[ 0 ] = lm->vecs[ 0 ];
vecs[ 1 ] = lm->vecs[ 1 ];
vecs[ 2 ] = lm->plane->normal();
}
/* non-planar surfaces must calculate them */
else
{
if ( plane != NULL ) {
vecs[ 2 ] = plane->normal();
}
else{
vecs[ 2 ] = dv->normal;
}
MakeNormalVectors( vecs[ 2 ], vecs[ 0 ], vecs[ 1 ] );
}
/* push the origin off the surface a bit */
if ( si != NULL ) {
lightmapSampleOffset = si->lightmapSampleOffset;
}
else{
lightmapSampleOffset = DEFAULT_LIGHTMAP_SAMPLE_OFFSET;
}
if ( lm->axisNum < 0 ) {
origin += vecs[ 2 ] * lightmapSampleOffset;
}
else if ( vecs[ 2 ][ lm->axisNum ] < 0.0f ) {
origin[ lm->axisNum ] -= lightmapSampleOffset;
}
else{
origin[ lm->axisNum ] += lightmapSampleOffset;
}
origintwo = origin;
if ( lightmapExtraVisClusterNudge ) {
origintwo += vecs[2];
}
/* get cluster */
pointCluster = ClusterForPointExtFilter( origintwo, LUXEL_EPSILON, numClusters, clusters );
/* another retarded hack, storing nudge count in luxel[ 1 ] */
luxel.value[ 1 ] = 0.0f;
/* point in solid? (except in dark mode) */
if ( pointCluster < 0 && !dark ) {
/* nudge the the location around */
nudge = nudges[ 0 ];
while ( nudge[ 0 ] > BOGUS_NUDGE && pointCluster < 0 )
{
/* nudge the vector around a bit */
/* set nudged point*/
nudged = origintwo + vecs[ 0 ] * nudge[ 0 ] + vecs[ 1 ] * nudge[ 1 ];
nudge += 2;
/* get pvs cluster */
pointCluster = ClusterForPointExtFilter( nudged, LUXEL_EPSILON, numClusters, clusters ); //% + 0.625 );
if ( pointCluster >= 0 ) {
origin = nudged;
}
luxel.value[ 1 ] += 1.0f;
}
}
/* as a last resort, if still in solid, try drawvert origin offset by normal (except in dark mode) */
if ( pointCluster < 0 && si != NULL && !dark ) {
nudged = dv->xyz + dv->normal * lightmapSampleOffset;
pointCluster = ClusterForPointExtFilter( nudged, LUXEL_EPSILON, numClusters, clusters );
if ( pointCluster >= 0 ) {
origin = nudged;
}
luxel.value[ 1 ] += 1.0f;
}
/* valid? */
if ( pointCluster < 0 ) {
cluster = CLUSTER_OCCLUDED;
origin.set( 0 );
normal.set( 0 );
numLuxelsOccluded++;
return cluster;
}
/* debug code */
//% Sys_Printf( "%f %f %f\n", origin[ 0 ], origin[ 1 ], origin[ 2 ] );
/* do bumpmap calculations */
if ( stv ) {
PerturbNormal( dv, si, pNormal, stv, ttv );
}
else{
pNormal = dv->normal;
}
/* store the cluster and normal */
cluster = pointCluster;
normal = pNormal;
/* store explicit mapping pass and implicit mapping pass */
luxel.value[ 0 ] = pass;
luxel.count = 1.0f;
/* add to count */
numLuxelsMapped++;
/* return ok */
return cluster;
}
/*
MapTriangle_r()
recursively subdivides a triangle until its edges are shorter
than the distance between two luxels (thanks jc :)
*/
static void MapTriangle_r( rawLightmap_t *lm, surfaceInfo_t *info, bspDrawVert_t *dv[ 3 ], Plane3f *plane, const Vector3 stv[ 3 ], const Vector3 ttv[ 3 ], const Vector3 worldverts[ 3 ] ){
bspDrawVert_t mid, *dv2[ 3 ];
int max;
/* map the vertexes */
#if 0
MapSingleLuxel( lm, info, dv[ 0 ], plane, 1, stv, ttv );
MapSingleLuxel( lm, info, dv[ 1 ], plane, 1, stv, ttv );
MapSingleLuxel( lm, info, dv[ 2 ], plane, 1, stv, ttv );
#endif
/* subdivide calc */
{
/* find the longest edge and split it */
max = -1;
float maxDist = 0;
for ( int i = 0; i < 3; i++ )
{
/* get dist */
const float dist = vector2_length_squared( dv[ i ]->lightmap[ 0 ] - dv[ ( i + 1 ) % 3 ]->lightmap[ 0 ] );
/* longer? */
if ( dist > maxDist ) {
maxDist = dist;
max = i;
}
}
/* try to early out */
if ( max < 0 || maxDist <= subdivideThreshold ) { /* ydnar: was i < 0 instead of max < 0 (?) */
return;
}
}
/* split the longest edge and map it */
LerpDrawVert( dv[ max ], dv[ ( max + 1 ) % 3 ], &mid );
MapSingleLuxel( lm, info, &mid, plane, 1, stv, ttv, worldverts );
/* push the point up a little bit to account for fp creep (fixme: revisit this) */
//% VectorMA( mid.xyz, 2.0f, mid.normal, mid.xyz );
/* recurse to first triangle */
VectorCopy( dv, dv2 );
dv2[ max ] = &mid;
MapTriangle_r( lm, info, dv2, plane, stv, ttv, worldverts );
/* recurse to second triangle */
VectorCopy( dv, dv2 );
dv2[ ( max + 1 ) % 3 ] = &mid;
MapTriangle_r( lm, info, dv2, plane, stv, ttv, worldverts );
}
/*
MapTriangle()
seed function for MapTriangle_r()
requires a cw ordered triangle
*/
static bool MapTriangle( rawLightmap_t *lm, surfaceInfo_t *info, bspDrawVert_t *dv[ 3 ], bool mapNonAxial ){
Plane3f plane;
/* get plane if possible */
if ( lm->plane != NULL ) {
plane = *lm->plane;
}
/* otherwise make one from the points */
else if ( !PlaneFromPoints( plane, dv[ 0 ]->xyz, dv[ 1 ]->xyz, dv[ 2 ]->xyz ) ) {
return false;
}
/* this must not happen in the first place, but it does and spreads result of division by zero in MapSingleLuxel all over the map during -bounce */
if( lm->vecs != NULL && plane.normal()[lm->axisNum] == 0 ){
Sys_Warning( "plane[lm->axisNum] == 0\n" );
return false;
}
Vector3 *stv, *ttv, stvStatic[ 3 ], ttvStatic[ 3 ];
/* check to see if we need to calculate texture->world tangent vectors */
if ( info->si->normalImage != NULL && CalcTangentVectors( 3, dv, stvStatic, ttvStatic ) ) {
stv = stvStatic;
ttv = ttvStatic;
}
else
{
stv = NULL;
ttv = NULL;
}
const Vector3 worldverts[ 3 ] = { dv[ 0 ]->xyz, dv[ 1 ]->xyz, dv[ 2 ]->xyz };
/* map the vertexes */
MapSingleLuxel( lm, info, dv[ 0 ], &plane, 1, stv, ttv, worldverts );
MapSingleLuxel( lm, info, dv[ 1 ], &plane, 1, stv, ttv, worldverts );
MapSingleLuxel( lm, info, dv[ 2 ], &plane, 1, stv, ttv, worldverts );
/* 2002-11-20: prefer axial triangle edges */
if ( mapNonAxial ) {
/* subdivide the triangle */
MapTriangle_r( lm, info, dv, &plane, stv, ttv, worldverts );
return true;
}
for ( int i = 0; i < 3; i++ )
{
bspDrawVert_t *dv2[ 3 ];
/* get verts */
const Vector2& a = dv[ i ]->lightmap[ 0 ];
const Vector2& b = dv[ ( i + 1 ) % 3 ]->lightmap[ 0 ];
/* make degenerate triangles for mapping edges */
if ( fabs( a[ 0 ] - b[ 0 ] ) < 0.01f || fabs( a[ 1 ] - b[ 1 ] ) < 0.01f ) {
dv2[ 0 ] = dv[ i ];
dv2[ 1 ] = dv[ ( i + 1 ) % 3 ];
dv2[ 2 ] = dv[ ( i + 1 ) % 3 ];
/* map the degenerate triangle */
MapTriangle_r( lm, info, dv2, &plane, stv, ttv, worldverts );
}
}
return true;
}
/*
MapQuad_r()
recursively subdivides a quad until its edges are shorter
than the distance between two luxels
*/
static void MapQuad_r( rawLightmap_t *lm, surfaceInfo_t *info, bspDrawVert_t *dv[ 4 ], Plane3f *plane, const Vector3 stv[ 4 ], const Vector3 ttv[ 4 ] ){
bspDrawVert_t mid[ 2 ], *dv2[ 4 ];
int max;
/* subdivide calc */
{
/* find the longest edge and split it */
max = -1;
float maxDist = 0;
for ( int i = 0; i < 4; i++ )
{
/* get dist */
const float dist = vector2_length_squared( dv[ i ]->lightmap[ 0 ] - dv[ ( i + 1 ) % 4 ]->lightmap[ 0 ] );
/* longer? */
if ( dist > maxDist ) {
maxDist = dist;
max = i;
}
}
/* try to early out */
if ( max < 0 || maxDist <= subdivideThreshold ) {
return;
}
}
/* we only care about even/odd edges */
max &= 1;
/* split the longest edges */
LerpDrawVert( dv[ max ], dv[ ( max + 1 ) % 4 ], &mid[ 0 ] );
LerpDrawVert( dv[ max + 2 ], dv[ ( max + 3 ) % 4 ], &mid[ 1 ] );
/* map the vertexes */
MapSingleLuxel( lm, info, &mid[ 0 ], plane, 1, stv, ttv, NULL );
MapSingleLuxel( lm, info, &mid[ 1 ], plane, 1, stv, ttv, NULL );
/* 0 and 2 */
if ( max == 0 ) {
/* recurse to first quad */
dv2[ 0 ] = dv[ 0 ];
dv2[ 1 ] = &mid[ 0 ];
dv2[ 2 ] = &mid[ 1 ];
dv2[ 3 ] = dv[ 3 ];
MapQuad_r( lm, info, dv2, plane, stv, ttv );
/* recurse to second quad */
dv2[ 0 ] = &mid[ 0 ];
dv2[ 1 ] = dv[ 1 ];
dv2[ 2 ] = dv[ 2 ];
dv2[ 3 ] = &mid[ 1 ];
MapQuad_r( lm, info, dv2, plane, stv, ttv );
}
/* 1 and 3 */
else
{
/* recurse to first quad */
dv2[ 0 ] = dv[ 0 ];
dv2[ 1 ] = dv[ 1 ];
dv2[ 2 ] = &mid[ 0 ];
dv2[ 3 ] = &mid[ 1 ];
MapQuad_r( lm, info, dv2, plane, stv, ttv );
/* recurse to second quad */
dv2[ 0 ] = &mid[ 1 ];
dv2[ 1 ] = &mid[ 0 ];
dv2[ 2 ] = dv[ 2 ];
dv2[ 3 ] = dv[ 3 ];
MapQuad_r( lm, info, dv2, plane, stv, ttv );
}
}
/*
MapQuad()
seed function for MapQuad_r()
requires a cw ordered triangle quad
*/
#define QUAD_PLANAR_EPSILON 0.5f
static bool MapQuad( rawLightmap_t *lm, surfaceInfo_t *info, bspDrawVert_t *dv[ 4 ] ){
Plane3f plane;
/* get plane if possible */
if ( lm->plane != NULL ) {
plane = *lm->plane;
}
/* otherwise make one from the points */
else if ( !PlaneFromPoints( plane, dv[ 0 ]->xyz, dv[ 1 ]->xyz, dv[ 2 ]->xyz ) ) {
return false;
}
/* 4th point must fall on the plane */
if ( fabs( plane3_distance_to_point( plane, dv[ 3 ]->xyz ) ) > QUAD_PLANAR_EPSILON ) {
return false;
}
Vector3 *stv, *ttv, stvStatic[ 4 ], ttvStatic[ 4 ];
/* check to see if we need to calculate texture->world tangent vectors */
if ( info->si->normalImage != NULL && CalcTangentVectors( 4, dv, stvStatic, ttvStatic ) ) {
stv = stvStatic;
ttv = ttvStatic;
}
else
{
stv = NULL;
ttv = NULL;
}
/* map the vertexes */
MapSingleLuxel( lm, info, dv[ 0 ], &plane, 1, stv, ttv, NULL );
MapSingleLuxel( lm, info, dv[ 1 ], &plane, 1, stv, ttv, NULL );
MapSingleLuxel( lm, info, dv[ 2 ], &plane, 1, stv, ttv, NULL );
MapSingleLuxel( lm, info, dv[ 3 ], &plane, 1, stv, ttv, NULL );
/* subdivide the quad */
MapQuad_r( lm, info, dv, &plane, stv, ttv );
return true;
}
/*
MapRawLightmap()
maps the locations, normals, and pvs clusters for a raw lightmap
*/
void MapRawLightmap( int rawLightmapNum ){
int n, num, i, x, y, sx, sy, pw[ 5 ], r, mapNonAxial;
float samples, radius, pass;
rawLightmap_t *lm;
bspDrawSurface_t *ds;
surfaceInfo_t *info;
mesh_t src, *subdivided, *mesh;
bspDrawVert_t *verts, *dv[ 4 ], fake;
/* bail if this number exceeds the number of raw lightmaps */
if ( rawLightmapNum >= numRawLightmaps ) {
return;
}
/* get lightmap */
lm = &rawLightmaps[ rawLightmapNum ];
/* -----------------------------------------------------------------
map referenced surfaces onto the raw lightmap
----------------------------------------------------------------- */
/* walk the list of surfaces on this raw lightmap */
for ( n = 0; n < lm->numLightSurfaces; n++ )
{
/* with > 1 surface per raw lightmap, clear occluded */
if ( n > 0 ) {
for ( y = 0; y < lm->sh; y++ )
{
for ( x = 0; x < lm->sw; x++ )
{
/* get cluster */
int& cluster = lm->getSuperCluster( x, y );
if ( cluster < 0 ) {
cluster = CLUSTER_UNMAPPED;
}
}
}
}
/* get surface */
num = lightSurfaces[ lm->firstLightSurface + n ];
ds = &bspDrawSurfaces[ num ];
info = &surfaceInfos[ num ];
/* bail if no lightmap to calculate */
if ( info->lm != lm ) {
Sys_Printf( "!" );
continue;
}
/* map the surface onto the lightmap origin/cluster/normal buffers */
switch ( ds->surfaceType )
{
case MST_PLANAR:
/* get verts */
verts = yDrawVerts + ds->firstVert;
/* map the triangles */
for ( mapNonAxial = 0; mapNonAxial < 2; mapNonAxial++ )
{
for ( i = 0; i < ds->numIndexes; i += 3 )
{
dv[ 0 ] = &verts[ bspDrawIndexes[ ds->firstIndex + i ] ];
dv[ 1 ] = &verts[ bspDrawIndexes[ ds->firstIndex + i + 1 ] ];
dv[ 2 ] = &verts[ bspDrawIndexes[ ds->firstIndex + i + 2 ] ];
MapTriangle( lm, info, dv, mapNonAxial );
}
}
break;
case MST_PATCH:
/* make a mesh from the drawsurf */
src.width = ds->patchWidth;
src.height = ds->patchHeight;
src.verts = &yDrawVerts[ ds->firstVert ];
//% subdivided = SubdivideMesh( src, 8, 512 );
subdivided = SubdivideMesh2( src, info->patchIterations );
/* fit it to the curve and remove colinear verts on rows/columns */
PutMeshOnCurve( *subdivided );
mesh = RemoveLinearMeshColumnsRows( subdivided );
FreeMesh( subdivided );
/* get verts */
verts = mesh->verts;
/* debug code */
#if 0
if ( lm->plane ) {
Sys_Printf( "Planar patch: [%1.3f %1.3f %1.3f] [%1.3f %1.3f %1.3f] [%1.3f %1.3f %1.3f]\n",
lm->plane[ 0 ], lm->plane[ 1 ], lm->plane[ 2 ],
lm->vecs[ 0 ][ 0 ], lm->vecs[ 0 ][ 1 ], lm->vecs[ 0 ][ 2 ],
lm->vecs[ 1 ][ 0 ], lm->vecs[ 1 ][ 1 ], lm->vecs[ 1 ][ 2 ] );
}
#endif
/* map the mesh quads */
#if 0
for ( mapNonAxial = 0; mapNonAxial < 2; mapNonAxial++ )
{
for ( y = 0; y < ( mesh->height - 1 ); y++ )
{
for ( x = 0; x < ( mesh->width - 1 ); x++ )
{
/* set indexes */
pw[ 0 ] = x + ( y * mesh->width );
pw[ 1 ] = x + ( ( y + 1 ) * mesh->width );
pw[ 2 ] = x + 1 + ( ( y + 1 ) * mesh->width );
pw[ 3 ] = x + 1 + ( y * mesh->width );
pw[ 4 ] = x + ( y * mesh->width ); /* same as pw[ 0 ] */
/* set radix */
r = ( x + y ) & 1;
/* get drawverts and map first triangle */
dv[ 0 ] = &verts[ pw[ r + 0 ] ];
dv[ 1 ] = &verts[ pw[ r + 1 ] ];
dv[ 2 ] = &verts[ pw[ r + 2 ] ];
MapTriangle( lm, info, dv, mapNonAxial );
/* get drawverts and map second triangle */
dv[ 0 ] = &verts[ pw[ r + 0 ] ];
dv[ 1 ] = &verts[ pw[ r + 2 ] ];
dv[ 2 ] = &verts[ pw[ r + 3 ] ];
MapTriangle( lm, info, dv, mapNonAxial );
}
}
}
#else
for ( y = 0; y < ( mesh->height - 1 ); y++ )
{
for ( x = 0; x < ( mesh->width - 1 ); x++ )
{
/* set indexes */
pw[ 0 ] = x + ( y * mesh->width );
pw[ 1 ] = x + ( ( y + 1 ) * mesh->width );
pw[ 2 ] = x + 1 + ( ( y + 1 ) * mesh->width );
pw[ 3 ] = x + 1 + ( y * mesh->width );
pw[ 4 ] = pw[ 0 ];
/* set radix */
r = ( x + y ) & 1;
/* attempt to map quad first */
dv[ 0 ] = &verts[ pw[ r + 0 ] ];
dv[ 1 ] = &verts[ pw[ r + 1 ] ];
dv[ 2 ] = &verts[ pw[ r + 2 ] ];
dv[ 3 ] = &verts[ pw[ r + 3 ] ];
if ( MapQuad( lm, info, dv ) ) {
continue;
}
for ( mapNonAxial = 0; mapNonAxial < 2; mapNonAxial++ )
{
/* get drawverts and map first triangle */
dv[ 1 ] = &verts[ pw[ r + 1 ] ];
dv[ 2 ] = &verts[ pw[ r + 2 ] ];
MapTriangle( lm, info, dv, mapNonAxial );
/* get drawverts and map second triangle */
dv[ 1 ] = &verts[ pw[ r + 2 ] ];
dv[ 2 ] = &verts[ pw[ r + 3 ] ];
MapTriangle( lm, info, dv, mapNonAxial );
}
}
}
#endif
/* free the mesh */
FreeMesh( mesh );
break;
default:
break;
}
}
/* -----------------------------------------------------------------
average and clean up luxel normals
----------------------------------------------------------------- */
/* walk the luxels */
for ( y = 0; y < lm->sh; y++ )
{
for ( x = 0; x < lm->sw; x++ )
{
/* get luxel */
SuperLuxel& luxel = lm->getSuperLuxel( 0, x, y );
/* only look at mapped luxels */
if ( lm->getSuperCluster( x, y ) < 0 ) {
continue;
}
/* the normal data could be the sum of multiple samples */
if ( luxel.count > 1.0f ) {
VectorNormalize( lm->getSuperNormal( x, y ) );
}
/* mark this luxel as having only one normal */
luxel.count = 1.0f;
}
}
/* non-planar surfaces stop here */
if ( lm->plane == NULL ) {
return;
}
/* -----------------------------------------------------------------
map occluded or unuxed luxels
----------------------------------------------------------------- */
/* walk the luxels */
radius = std::max( 1, superSample / 2 ) + 1;
for ( pass = 2.0f; pass <= radius; pass += 1.0f )
{
for ( y = 0; y < lm->sh; y++ )
{
for ( x = 0; x < lm->sw; x++ )
{
/* only look at unmapped luxels */
if ( lm->getSuperCluster( x, y ) != CLUSTER_UNMAPPED ) {
continue;
}
/* divine a normal and origin from neighboring luxels */
fake.xyz.set( 0 );
fake.normal.set( 0 );
fake.lightmap[ 0 ] = { x, y }; //% 0.0001 + x; //% 0.0001 + y;
samples = 0.0f;
for ( sy = ( y - 1 ); sy <= ( y + 1 ); sy++ )
{
if ( sy < 0 || sy >= lm->sh ) {
continue;
}
for ( sx = ( x - 1 ); sx <= ( x + 1 ); sx++ )
{
if ( sx < 0 || sx >= lm->sw || ( sx == x && sy == y ) ) {
continue;
}
/* get neighboring luxel */
const SuperLuxel& luxel = lm->getSuperLuxel( 0, sx, sy );
/* only consider luxels mapped in previous passes */
if ( lm->getSuperCluster( sx, sy ) < 0 || luxel.value[ 0 ] >= pass ) {
continue;
}
/* add its distinctiveness to our own */
fake.xyz += lm->getSuperOrigin( sx, sy );
fake.normal += lm->getSuperNormal( sx, sy );
samples += luxel.count;
}
}
/* any samples? */
if ( samples == 0.0f ) {
continue;
}
/* average */
fake.xyz *= ( 1.f / samples );
//% fake.normal *= ( 1.f / samples );
if ( VectorNormalize( fake.normal ) == 0.0f ) {
continue;
}
/* map the fake vert */
MapSingleLuxel( lm, NULL, &fake, lm->plane, pass, NULL, NULL, NULL );
}
}
}
/* -----------------------------------------------------------------
average and clean up luxel normals
----------------------------------------------------------------- */
/* walk the luxels */
for ( y = 0; y < lm->sh; y++ )
{
for ( x = 0; x < lm->sw; x++ )
{
/* get luxel */
SuperLuxel& luxel = lm->getSuperLuxel( 0, x, y );
/* only look at mapped luxels */
if ( lm->getSuperCluster( x, y ) < 0 ) {
continue;
}
/* the normal data could be the sum of multiple samples */
if ( luxel.count > 1.0f ) {
VectorNormalize( lm->getSuperNormal( x, y ) );
}
/* mark this luxel as having only one normal */
luxel.count = 1.0f;
}
}
/* debug code */
#if 0
Sys_Printf( "\n" );
for ( y = 0; y < lm->sh; y++ )
{
for ( x = 0; x < lm->sw; x++ )
{
const int cluster = lm->getSuperCluster( x, y );
const Vector3& origin = lm->getSuperOrigin( x, y );
const SuperLuxel& luxel = lm->getSuperLuxel( 0, x, y );
if ( cluster < 0 ) {
continue;
}
/* check if within the bounding boxes of all surfaces referenced */
MinMax minmax;
for ( n = 0; n < lm->numLightSurfaces; n++ )
{
info = &surfaceInfos[ lightSurfaces[ lm->firstLightSurface + n ] ];
minmax.extend( info->minmax );
MinMax minmax2 = info->minmax;
const float TOL = info->sampleSize + 2;
minmax2.mins -= Vector3( TOL, TOL, TOL );
minmax2.maxs += Vector3( TOL, TOL, TOL );
if( minmax2.test( origin ) ){
break;
}
}
/* inside? */
if ( n < lm->numLightSurfaces ) {
continue;
}
/* report bogus origin */
Sys_Printf( "%6d [%2d,%2d] (%4d): XYZ(%+4.1f %+4.1f %+4.1f) LO(%+4.1f %+4.1f %+4.1f) HI(%+4.1f %+4.1f %+4.1f) <%3.0f>\n",
rawLightmapNum, x, y, cluster,
origin[ 0 ], origin[ 1 ], origin[ 2 ],
minmax.mins[ 0 ], minmax.mins[ 1 ], minmax.mins[ 2 ],
minmax.maxs[ 0 ], minmax.maxs[ 1 ], minmax.maxs[ 2 ],
luxel.count );
}
}
#endif
}
/*
SetupDirt()
sets up dirtmap (ambient occlusion)
*/
#define DIRT_CONE_ANGLE 88 /* degrees */
#define DIRT_NUM_ANGLE_STEPS 16
#define DIRT_NUM_ELEVATION_STEPS 3
#define DIRT_NUM_VECTORS ( DIRT_NUM_ANGLE_STEPS * DIRT_NUM_ELEVATION_STEPS )
static Vector3 dirtVectors[ DIRT_NUM_VECTORS ];
static int numDirtVectors = 0;
void SetupDirt( void ){
int i, j;
float angle, elevation, angleStep, elevationStep;
/* note it */
Sys_FPrintf( SYS_VRB, "--- SetupDirt ---\n" );
/* calculate angular steps */
angleStep = degrees_to_radians( 360.0f / DIRT_NUM_ANGLE_STEPS );
elevationStep = degrees_to_radians( DIRT_CONE_ANGLE / DIRT_NUM_ELEVATION_STEPS );
/* iterate angle */
angle = 0.0f;
for ( i = 0, angle = 0.0f; i < DIRT_NUM_ANGLE_STEPS; i++, angle += angleStep )
{
/* iterate elevation */
for ( j = 0, elevation = elevationStep * 0.5f; j < DIRT_NUM_ELEVATION_STEPS; j++, elevation += elevationStep )
{
dirtVectors[ numDirtVectors ][ 0 ] = sin( elevation ) * cos( angle );
dirtVectors[ numDirtVectors ][ 1 ] = sin( elevation ) * sin( angle );
dirtVectors[ numDirtVectors ][ 2 ] = cos( elevation );
numDirtVectors++;
}
}
/* emit some statistics */
Sys_FPrintf( SYS_VRB, "%9d dirtmap vectors\n", numDirtVectors );
}
/*
DirtForSample()
calculates dirt value for a given sample
*/
float DirtForSample( trace_t *trace ){
int i;
float gatherDirt, outDirt, angle, elevation, ooDepth;
Vector3 myUp, myRt;
/* dummy check */
if ( !dirty ) {
return 1.0f;
}
if ( trace == NULL || trace->cluster < 0 ) {
return 0.0f;
}
/* setup */
gatherDirt = 0.0f;
ooDepth = 1.0f / dirtDepth;
const Vector3 normal( trace->normal );
/* check if the normal is aligned to the world-up */
if ( normal[ 0 ] == 0.0f && normal[ 1 ] == 0.0f && ( normal[ 2 ] == 1.0f || normal[ 2 ] == -1.0f ) ) {
if ( normal[ 2 ] == 1.0f ) {
myRt = g_vector3_axis_x;
myUp = g_vector3_axis_y;
}
else if ( normal[ 2 ] == -1.0f ) {
myRt = -g_vector3_axis_x;
myUp = g_vector3_axis_y;
}
}
else
{
myRt = VectorNormalized( vector3_cross( normal, g_vector3_axis_z ) );
myUp = VectorNormalized( vector3_cross( myRt, normal ) );
}
/* 1 = random mode, 0 (well everything else) = non-random mode */
if ( dirtMode == 1 ) {
/* iterate */
for ( i = 0; i < numDirtVectors; i++ )
{
/* get random vector */
angle = Random() * degrees_to_radians( 360.0f );
elevation = Random() * degrees_to_radians( DIRT_CONE_ANGLE );
const Vector3 temp( cos( angle ) * sin( elevation ),
sin( angle ) * sin( elevation ),
cos( elevation ) );
/* transform into tangent space */
const Vector3 direction = myRt * temp[ 0 ] + myUp * temp[ 1 ] + normal * temp[ 2 ];
/* set endpoint */
trace->end = trace->origin + direction * dirtDepth;
SetupTrace( trace );
trace->color.set( 1 );
/* trace */
TraceLine( trace );
if ( trace->opaque && !( trace->compileFlags & C_SKY ) ) {
gatherDirt += 1.0f - ooDepth * vector3_length( trace->hit - trace->origin );
}
}
}
else
{
/* iterate through ordered vectors */
for ( i = 0; i < numDirtVectors; i++ )
{
/* transform vector into tangent space */
const Vector3 direction = myRt * dirtVectors[ i ][ 0 ] + myUp * dirtVectors[ i ][ 1 ] + normal * dirtVectors[ i ][ 2 ];
/* set endpoint */
trace->end = trace->origin + direction * dirtDepth;
SetupTrace( trace );
trace->color.set( 1 );
/* trace */
TraceLine( trace );
if ( trace->opaque ) {
gatherDirt += 1.0f - ooDepth * vector3_length( trace->hit - trace->origin );
}
}
}
/* direct ray */
trace->end = trace->origin + normal * dirtDepth;
SetupTrace( trace );
trace->color.set( 1 );
/* trace */
TraceLine( trace );
if ( trace->opaque ) {
gatherDirt += 1.0f - ooDepth * vector3_length( trace->hit - trace->origin );
}
/* early out */
if ( gatherDirt <= 0.0f ) {
return 1.0f;
}
/* apply gain (does this even do much? heh) */
outDirt = std::min( 1.0, pow( gatherDirt / ( numDirtVectors + 1 ), dirtGain ) );
/* apply scale */
outDirt *= dirtScale;
value_minimize( outDirt, 1.0f );
/* return to sender */
return 1.0f - outDirt;
}
/*
DirtyRawLightmap()
calculates dirty fraction for each luxel
*/
void DirtyRawLightmap( int rawLightmapNum ){
int i, x, y, sx, sy;
float average, samples;
rawLightmap_t *lm;
surfaceInfo_t *info;
trace_t trace;
bool noDirty;
/* bail if this number exceeds the number of raw lightmaps */
if ( rawLightmapNum >= numRawLightmaps ) {
return;
}
/* get lightmap */
lm = &rawLightmaps[ rawLightmapNum ];
/* setup trace */
trace.testOcclusion = true;
trace.forceSunlight = false;
trace.recvShadows = lm->recvShadows;
trace.numSurfaces = lm->numLightSurfaces;
trace.surfaces = &lightSurfaces[ lm->firstLightSurface ];
trace.inhibitRadius = 0.0f;
trace.testAll = false;
/* twosided lighting (may or may not be a good idea for lightmapped stuff) */
trace.twoSided = false;
for ( i = 0; i < trace.numSurfaces; i++ )
{
/* get surface */
info = &surfaceInfos[ trace.surfaces[ i ] ];
/* check twosidedness */
if ( info->si->twoSided ) {
trace.twoSided = true;
break;
}
}
noDirty = false;
for ( i = 0; i < trace.numSurfaces; i++ )
{
/* get surface */
info = &surfaceInfos[ trace.surfaces[ i ] ];
/* check twosidedness */
if ( info->si->noDirty ) {
noDirty = true;
break;
}
}
/* gather dirt */
for ( y = 0; y < lm->sh; y++ )
{
for ( x = 0; x < lm->sw; x++ )
{
/* get luxel */
const int cluster = lm->getSuperCluster( x, y );
float& dirt = lm->getSuperDirt( x, y );
/* set default dirt */
dirt = 0.0f;
/* only look at mapped luxels */
if ( cluster < 0 ) {
continue;
}
/* don't apply dirty on this surface */
if ( noDirty ) {
dirt = 1.0f;
continue;
}
/* copy to trace */
trace.cluster = cluster;
trace.origin = lm->getSuperOrigin( x, y );
trace.normal = lm->getSuperNormal( x, y );
/* get dirt */
dirt = DirtForSample( &trace );
}
}
/* testing no filtering */
//% return;
/* filter dirt */
for ( y = 0; y < lm->sh; y++ )
{
for ( x = 0; x < lm->sw; x++ )
{
/* get luxel */
float& dirt = lm->getSuperDirt( x, y );
/* filter dirt by adjacency to unmapped luxels */
average = dirt;
samples = 1.0f;
for ( sy = ( y - 1 ); sy <= ( y + 1 ); sy++ )
{
if ( sy < 0 || sy >= lm->sh ) {
continue;
}
for ( sx = ( x - 1 ); sx <= ( x + 1 ); sx++ )
{
if ( sx < 0 || sx >= lm->sw || ( sx == x && sy == y ) ) {
continue;
}
/* get neighboring luxel */
const float dirt2 = lm->getSuperDirt( sx, sy );
if ( lm->getSuperCluster( sx, sy ) < 0 || dirt2 <= 0.0f ) {
continue;
}
/* add it */
average += dirt2;
samples += 1.0f;
}
/* bail */
if ( samples <= 0.0f ) {
break;
}
}
/* bail */
if ( samples <= 0.0f ) {
continue;
}
/* scale dirt */
dirt = average / samples;
}
}
}
/*
SubmapRawLuxel()
calculates the pvs cluster, origin, normal of a sub-luxel
*/
static bool SubmapRawLuxel( const rawLightmap_t *lm, int x, int y, float bx, float by, int& sampleCluster, Vector3& sampleOrigin, Vector3& sampleNormal ){
const Vector3 *origin, *origin2;
Vector3 originVecs[ 2 ];
/* calulate x vector */
if ( ( x < ( lm->sw - 1 ) && bx >= 0.0f ) || ( x == 0 && bx <= 0.0f ) ) {
origin = &lm->getSuperOrigin( x, y );
//% normal = SUPER_NORMAL( x, y );
origin2 = lm->getSuperCluster( x + 1, y ) < 0 ? &lm->getSuperOrigin( x, y ) : &lm->getSuperOrigin( x + 1, y );
//% normal2 = *cluster2 < 0 ? SUPER_NORMAL( x, y ) : SUPER_NORMAL( x + 1, y );
}
else if ( ( x > 0 && bx <= 0.0f ) || ( x == ( lm->sw - 1 ) && bx >= 0.0f ) ) {
origin = lm->getSuperCluster( x - 1, y ) < 0 ? &lm->getSuperOrigin( x, y ) : &lm->getSuperOrigin( x - 1, y );
//% normal = *cluster < 0 ? SUPER_NORMAL( x, y ) : SUPER_NORMAL( x - 1, y );
origin2 = &lm->getSuperOrigin( x, y );
//% normal2 = SUPER_NORMAL( x, y );
}
else
{
Error( "Spurious lightmap S vector\n" );
}
originVecs[ 0 ] = *origin2 - *origin;
//% VectorSubtract( normal2, normal, normalVecs[ 0 ] );
/* calulate y vector */
if ( ( y < ( lm->sh - 1 ) && bx >= 0.0f ) || ( y == 0 && bx <= 0.0f ) ) {
origin = &lm->getSuperOrigin( x, y );
//% normal = SUPER_NORMAL( x, y );
origin2 = lm->getSuperCluster( x, y + 1 ) < 0 ? &lm->getSuperOrigin( x, y ) : &lm->getSuperOrigin( x, y + 1 );
//% normal2 = *cluster2 < 0 ? SUPER_NORMAL( x, y ) : SUPER_NORMAL( x, y + 1 );
}
else if ( ( y > 0 && bx <= 0.0f ) || ( y == ( lm->sh - 1 ) && bx >= 0.0f ) ) {
origin = lm->getSuperCluster( x, y - 1 ) < 0 ? &lm->getSuperOrigin( x, y ) : &lm->getSuperOrigin( x, y - 1 );
//% normal = *cluster < 0 ? SUPER_NORMAL( x, y ) : SUPER_NORMAL( x, y - 1 );
origin2 = &lm->getSuperOrigin( x, y );
//% normal2 = SUPER_NORMAL( x, y );
}
else{
Sys_Warning( "Spurious lightmap T vector\n" );
}
originVecs[ 1 ] = *origin2 - *origin;
//% VectorSubtract( normal2, normal, normalVecs[ 1 ] );
/* calculate new origin */
//% VectorMA( origin, bx, originVecs[ 0 ], sampleOrigin );
//% VectorMA( sampleOrigin, by, originVecs[ 1 ], sampleOrigin );
sampleOrigin += ( originVecs[ 0 ] * bx ) + ( originVecs[ 1 ] * by );
/* get cluster */
sampleCluster = ClusterForPointExtFilter( sampleOrigin, ( LUXEL_EPSILON * 2 ), lm->numLightClusters, lm->lightClusters );
if ( sampleCluster < 0 ) {
return false;
}
/* calculate new normal */
//% VectorMA( normal, bx, normalVecs[ 0 ], sampleNormal );
//% VectorMA( sampleNormal, by, normalVecs[ 1 ], sampleNormal );
//% if( VectorNormalize( sampleNormal, sampleNormal ) <= 0.0f )
//% return false;
sampleNormal = lm->getSuperNormal( x, y );
/* return ok */
return true;
}
/*
SubsampleRawLuxel_r()
recursively subsamples a luxel until its color gradient is low enough or subsampling limit is reached
*/
static void SubsampleRawLuxel_r( rawLightmap_t *lm, trace_t *trace, const Vector3& sampleOrigin, int x, int y, float bias, SuperLuxel& lightLuxel, Vector3 *lightDeluxel ){
int b, samples, mapped, lighted;
int cluster[ 4 ];
SuperLuxel luxel[ 4 ];
Vector3 deluxel[ 4 ];
Vector3 origin[ 4 ], normal[ 4 ];
float biasDirs[ 4 ][ 2 ] = { { -1.0f, -1.0f }, { 1.0f, -1.0f }, { -1.0f, 1.0f }, { 1.0f, 1.0f } };
Vector3 color, direction( 0, 0, 0 ), total( 0, 0, 0 );
/* limit check */
if ( lightLuxel.count >= lightSamples ) {
return;
}
/* setup */
mapped = 0;
lighted = 0;
/* make 2x2 subsample stamp */
for ( b = 0; b < 4; b++ )
{
/* set origin */
origin[ b ] = sampleOrigin;
/* calculate position */
if ( !SubmapRawLuxel( lm, x, y, ( bias * biasDirs[ b ][ 0 ] ), ( bias * biasDirs[ b ][ 1 ] ), cluster[ b ], origin[ b ], normal[ b ] ) ) {
cluster[ b ] = -1;
continue;
}
mapped++;
/* increment sample count */
luxel[ b ].count = lightLuxel.count + 1.0f;
/* setup trace */
trace->cluster = *cluster;
trace->origin = origin[ b ];
trace->normal = normal[ b ];
/* sample light */
LightContributionToSample( trace );
if ( trace->forceSubsampling > 1.0f ) {
/* alphashadow: we subsample as deep as we can */
++lighted;
++mapped;
++mapped;
}
/* add to totals (fixme: make contrast function) */
luxel[ b ].value = trace->color;
if ( lightDeluxel ) {
deluxel[ b ] = trace->directionContribution;
}
total += trace->color;
if ( ( luxel[ b ].value[ 0 ] + luxel[ b ].value[ 1 ] + luxel[ b ].value[ 2 ] ) > 0.0f ) {
lighted++;
}
}
/* subsample further? */
if ( ( lightLuxel.count + 1.0f ) < lightSamples &&
( total[ 0 ] > 4.0f || total[ 1 ] > 4.0f || total[ 2 ] > 4.0f ) &&
lighted != 0 && lighted != mapped ) {
for ( b = 0; b < 4; b++ )
{
if ( cluster[ b ] < 0 ) {
continue;
}
SubsampleRawLuxel_r( lm, trace, origin[ b ], x, y, ( bias * 0.5f ), luxel[ b ], lightDeluxel ? &deluxel[ b ] : NULL );
}
}
/* average */
//% color.set( 0 );
//% samples = 0;
color = lightLuxel.value;
if ( lightDeluxel ) {
direction = *lightDeluxel;
}
samples = 1;
for ( b = 0; b < 4; b++ )
{
if ( cluster[ b ] < 0 ) {
continue;
}
color += luxel[ b ].value;
if ( lightDeluxel ) {
direction += deluxel[ b ];
}
samples++;
}
/* add to luxel */
if ( samples > 0 ) {
/* average */
color /= samples;
/* add to color */
lightLuxel.value = color;
lightLuxel.count += 1.0f;
if ( lightDeluxel ) {
direction /= samples;
*lightDeluxel = direction;
}
}
}
/* A mostly Gaussian-like bounded random distribution (sigma is expected standard deviation) */
static void GaussLikeRandom( float sigma, float *x, float *y ){
float r;
r = Random() * 2 * c_pi;
*x = sigma * 2.73861278752581783822 * cos( r );
*y = sigma * 2.73861278752581783822 * sin( r );
r = Random();
r = 1 - sqrt( r );
r = 1 - sqrt( r );
*x *= r;
*y *= r;
}
static void RandomSubsampleRawLuxel( rawLightmap_t *lm, trace_t *trace, const Vector3& sampleOrigin, int x, int y, float bias, SuperLuxel& lightLuxel, Vector3 *lightDeluxel ){
int b, mapped = 0;
int cluster;
Vector3 origin, normal;
Vector3 total( 0, 0, 0 ), totaldirection( 0, 0, 0 );
float dx, dy;
for ( b = 0; b < lightSamples; ++b )
{
/* set origin */
origin = sampleOrigin;
GaussLikeRandom( bias, &dx, &dy );
/* calculate position */
if ( !SubmapRawLuxel( lm, x, y, dx, dy, cluster, origin, normal ) ) {
cluster = -1;
continue;
}
mapped++;
trace->cluster = cluster;
trace->origin = origin;
trace->normal = normal;
LightContributionToSample( trace );
total += trace->color;
if ( lightDeluxel ) {
totaldirection += trace->directionContribution;
}
}
/* add to luxel */
if ( mapped > 0 ) {
/* average */
lightLuxel.value = total / mapped;
if ( lightDeluxel ) {
*lightDeluxel = totaldirection / mapped;
}
}
}
/*
IlluminateRawLightmap()
illuminates the luxels
*/
void IlluminateRawLightmap( int rawLightmapNum ){
int i, t, x, y, sx, sy, size, luxelFilterRadius, lightmapNum;
int mapped, lighted, totalLighted;
rawLightmap_t *lm;
surfaceInfo_t *info;
bool filterColor, filterDir;
float samples, filterRadius, weight;
Vector3 averageColor, averageDir;
float tests[ 4 ][ 2 ] = { { 0, 0 }, { 1, 0 }, { 0, 1 }, { 1, 1 } };
trace_t trace;
SuperLuxel stackLightLuxels[ 64 * 64 ];
/* bail if this number exceeds the number of raw lightmaps */
if ( rawLightmapNum >= numRawLightmaps ) {
return;
}
/* get lightmap */
lm = &rawLightmaps[ rawLightmapNum ];
/* setup trace */
trace.testOcclusion = !noTrace;
trace.forceSunlight = false;
trace.recvShadows = lm->recvShadows;
trace.numSurfaces = lm->numLightSurfaces;
trace.surfaces = &lightSurfaces[ lm->firstLightSurface ];
trace.inhibitRadius = DEFAULT_INHIBIT_RADIUS;
/* twosided lighting (may or may not be a good idea for lightmapped stuff) */
trace.twoSided = false;
for ( i = 0; i < trace.numSurfaces; i++ )
{
/* get surface */
info = &surfaceInfos[ trace.surfaces[ i ] ];
/* check twosidedness */
if ( info->si->twoSided ) {
trace.twoSided = true;
break;
}
}
/* create a culled light list for this raw lightmap */
CreateTraceLightsForBounds( lm->minmax, ( lm->plane == NULL? NULL : &lm->plane->normal() ), lm->numLightClusters, lm->lightClusters, LightFlags::Surfaces, &trace );
/* -----------------------------------------------------------------
fill pass
----------------------------------------------------------------- */
/* set counts */
numLuxelsIlluminated += ( lm->sw * lm->sh );
/* test debugging state */
if ( debugSurfaces || debugAxis || debugCluster || debugOrigin || dirtDebug || normalmap ) {
/* debug fill the luxels */
for ( y = 0; y < lm->sh; y++ )
{
for ( x = 0; x < lm->sw; x++ )
{
/* get cluster */
const int cluster = lm->getSuperCluster( x, y );
/* only fill mapped luxels */
if ( cluster < 0 ) {
continue;
}
/* get particulars */
SuperLuxel& luxel = lm->getSuperLuxel( 0, x, y );
/* color the luxel with raw lightmap num? */
if ( debugSurfaces ) {
luxel.value = debugColors[ rawLightmapNum % 12 ];
}
/* color the luxel with lightmap axis? */
else if ( debugAxis ) {
luxel.value = ( lm->axis + Vector3( 1, 1, 1 ) ) * 127.5f;
}
/* color the luxel with luxel cluster? */
else if ( debugCluster ) {
luxel.value = debugColors[ cluster % 12 ];
}
/* color the luxel with luxel origin? */
else if ( debugOrigin ) {
const Vector3 temp = ( lm->minmax.maxs - lm->minmax.mins ) * ( 1.0f / 255.0f );
const Vector3 temp2 = lm->getSuperOrigin( x, y ) - lm->minmax.mins;
luxel.value = lm->minmax.mins + ( temp * temp2 );
}
/* color the luxel with the normal */
else if ( normalmap ) {
luxel.value = ( lm->getSuperNormal( x, y ) + Vector3( 1, 1, 1 ) ) * 127.5f;
}
/* otherwise clear it */
else{
luxel.value.set( 0 );
}
/* add to counts */
luxel.count = 1.0f;
}
}
}
else
{
/* allocate temporary per-light luxel storage */
rawLightmap_t tmplm = *lm;
const size_t llSize = lm->sw * lm->sh * sizeof( *lm->superLuxels[0] );
const size_t ldSize = lm->sw * lm->sh * sizeof( *lm->superDeluxels );
if ( llSize <= sizeof( stackLightLuxels ) ) {
tmplm.superLuxels[0] = stackLightLuxels;
}
else{
tmplm.superLuxels[0] = safe_malloc( llSize );
}
if ( deluxemap ) {
tmplm.superDeluxels = safe_malloc( ldSize );
}
else{
tmplm.superDeluxels = NULL;
}
/* clear luxels */
//% memset( lm->superLuxels[ 0 ], 0, llSize );
/* set ambient color */
for ( y = 0; y < lm->sh; y++ )
{
for ( x = 0; x < lm->sw; x++ )
{
/* get cluster */
SuperLuxel& luxel = lm->getSuperLuxel( 0, x, y );
/* blacken unmapped clusters */
if ( lm->getSuperCluster( x, y ) < 0 ) {
luxel.value.set( 0 );
}
/* set ambient */
else
{
luxel.value = ambientColor;
if ( deluxemap ) {
// use AT LEAST this amount of contribution from ambient for the deluxemap, fixes points that receive ZERO light
const float brightness = std::max( 0.00390625f, RGBTOGRAY( ambientColor ) * ( 1.0f / 255.0f ) );
lm->getSuperDeluxel( x, y ) = lm->getSuperNormal( x, y ) * brightness;
}
luxel.count = 1.0f;
}
}
}
/* clear styled lightmaps */
size = lm->sw * lm->sh * sizeof( *lm->superLuxels[0] );
for ( lightmapNum = 1; lightmapNum < MAX_LIGHTMAPS; lightmapNum++ )
{
if ( lm->superLuxels[ lightmapNum ] != NULL ) {
memset( lm->superLuxels[ lightmapNum ], 0, size );
}
}
/* debugging code */
//% if( trace.numLights <= 0 )
//% Sys_Printf( "Lightmap %9d: 0 lights, axis: %.2f, %.2f, %.2f\n", rawLightmapNum, lm->axis[ 0 ], lm->axis[ 1 ], lm->axis[ 2 ] );
/* walk light list */
for ( i = 0; i < trace.numLights; i++ )
{
/* setup trace */
trace.light = trace.lights[ i ];
/* style check */
for ( lightmapNum = 0; lightmapNum < MAX_LIGHTMAPS; lightmapNum++ )
{
if ( lm->styles[ lightmapNum ] == trace.light->style ||
lm->styles[ lightmapNum ] == LS_NONE ) {
break;
}
}
/* max of MAX_LIGHTMAPS (4) styles allowed to hit a surface/lightmap */
if ( lightmapNum >= MAX_LIGHTMAPS ) {
Sys_Warning( "Hit per-surface style limit (%d)\n", MAX_LIGHTMAPS );
continue;
}
/* setup */
memset( tmplm.superLuxels[0], 0, llSize );
if ( deluxemap ) {
memset( tmplm.superDeluxels, 0, ldSize );
}
totalLighted = 0;
/* determine filter radius */
filterRadius = std::max( { 0.f, lm->filterRadius, trace.light->filterRadius } );
/* set luxel filter radius */
luxelFilterRadius = lm->sampleSize != 0 ? superSample * filterRadius / lm->sampleSize : 0;
if ( luxelFilterRadius == 0 && ( filterRadius > 0.0f || filter ) ) {
luxelFilterRadius = 1;
}
/* allocate sampling flags storage */
if ( lightSamples > 1 || lightRandomSamples ) {
size = lm->sw * lm->sh * sizeof( *lm->superFlags );
if ( lm->superFlags == NULL ) {
lm->superFlags = safe_malloc( size );
}
memset( (void *) lm->superFlags, 0, size );
}
/* initial pass, one sample per luxel */
for ( y = 0; y < lm->sh; y++ )
{
for ( x = 0; x < lm->sw; x++ )
{
/* get cluster */
const int cluster = lm->getSuperCluster( x, y );
if ( cluster < 0 ) {
continue;
}
/* get particulars */
SuperLuxel& lightLuxel = tmplm.getSuperLuxel( 0, x, y );
#if 0
////////// 27's temp hack for testing edge clipping ////
if ( origin[0] == 0 && origin[1] == 0 && origin[2] == 0 ) {
lightLuxel.value[ 1 ] = 255;
lightLuxel.count = 1.0f;
totalLighted++;
}
else
#endif
{
/* set contribution count */
lightLuxel.count = 1.0f;
/* setup trace */
trace.cluster = cluster;
trace.origin = lm->getSuperOrigin( x, y );
trace.normal = lm->getSuperNormal( x, y );
/* get light for this sample */
LightContributionToSample( &trace );
lightLuxel.value = trace.color;
/* add the contribution to the deluxemap */
if ( deluxemap ) {
tmplm.getSuperDeluxel( x, y ) = trace.directionContribution;
}
/* check for evilness */
if ( trace.forceSubsampling > 1.0f && ( lightSamples > 1 || lightRandomSamples ) ) {
totalLighted++;
lm->getSuperFlag( x, y ) |= FLAG_FORCE_SUBSAMPLING; /* force */
}
/* add to count */
else if ( trace.color[ 0 ] || trace.color[ 1 ] || trace.color[ 2 ] ) {
totalLighted++;
}
}
}
}
/* don't even bother with everything else if nothing was lit */
if ( totalLighted == 0 ) {
continue;
}
/* secondary pass, adaptive supersampling (fixme: use a contrast function to determine if subsampling is necessary) */
/* 2003-09-27: changed it so filtering disamples supersampling, as it would waste time */
if ( lightSamples > 1 || lightRandomSamples ) {
/* walk luxels */
for ( y = 0; y < ( lm->sh - 1 ); y++ )
{
for ( x = 0; x < ( lm->sw - 1 ); x++ )
{
/* setup */
mapped = 0;
lighted = 0;
Vector3 total( 0, 0, 0 );
/* test 2x2 stamp */
for ( t = 0; t < 4; t++ )
{
/* set sample coords */
sx = x + tests[ t ][ 0 ];
sy = y + tests[ t ][ 1 ];
/* get cluster */
if ( lm->getSuperCluster( sx, sy ) < 0 ) {
continue;
}
mapped++;
/* get luxel */
if ( lm->getSuperFlag( sx, sy ) & FLAG_FORCE_SUBSAMPLING ) {
/* force a lighted/mapped discrepancy so we subsample */
++lighted;
++mapped;
++mapped;
}
const SuperLuxel& lightLuxel = tmplm.getSuperLuxel( 0, sx, sy );
total += lightLuxel.value;
if ( ( lightLuxel.value[ 0 ] + lightLuxel.value[ 1 ] + lightLuxel.value[ 2 ] ) > 0.0f ) {
lighted++;
}
}
/* if total color is under a certain amount, then don't bother subsampling */
if ( total[ 0 ] <= 4.0f && total[ 1 ] <= 4.0f && total[ 2 ] <= 4.0f ) {
continue;
}
/* if all 4 pixels are either in shadow or light, then don't subsample */
if ( lighted != 0 && lighted != mapped ) {
for ( t = 0; t < 4; t++ )
{
/* set sample coords */
sx = x + tests[ t ][ 0 ];
sy = y + tests[ t ][ 1 ];
/* get luxel */
if ( lm->getSuperCluster( sx, sy ) < 0 ) {
continue;
}
byte& flag = lm->getSuperFlag( sx, sy );
if ( flag & FLAG_ALREADY_SUBSAMPLED ) { // already subsampled
continue;
}
SuperLuxel& lightLuxel = tmplm.getSuperLuxel( 0, sx, sy );
Vector3* lightDeluxel = &tmplm.getSuperDeluxel( sx, sy );
const Vector3& origin = lm->getSuperOrigin( sx, sy );
/* only subsample shadowed luxels */
//% if( (lightLuxel[ 0 ] + lightLuxel[ 1 ] + lightLuxel[ 2 ]) <= 0.0f )
//% continue;
/* subsample it */
if ( lightRandomSamples ) {
RandomSubsampleRawLuxel( lm, &trace, origin, sx, sy, 0.5f * lightSamplesSearchBoxSize, lightLuxel, deluxemap ? lightDeluxel : NULL );
}
else{
SubsampleRawLuxel_r( lm, &trace, origin, sx, sy, 0.25f * lightSamplesSearchBoxSize, lightLuxel, deluxemap ? lightDeluxel : NULL );
}
flag |= FLAG_ALREADY_SUBSAMPLED;
/* debug code to colorize subsampled areas to yellow */
//% lm->getSuperLuxel( lightmapNum, sx, sy ).value = { 255, 204, 0 };
}
}
}
}
}
/* tertiary pass, apply dirt map (ambient occlusion) */
if ( 0 && dirty ) {
/* walk luxels */
for ( y = 0; y < lm->sh; y++ )
{
for ( x = 0; x < lm->sw; x++ )
{
/* get cluster */
if ( lm->getSuperCluster( x, y ) < 0 ) {
continue;
}
/* scale light value */
tmplm.getSuperLuxel( 0, x, y ).value *= lm->getSuperDirt( x, y );
}
}
}
/* allocate sampling lightmap storage */
if ( lm->superLuxels[ lightmapNum ] == NULL ) {
/* allocate sampling lightmap storage */
size = lm->sw * lm->sh * sizeof( *lm->superLuxels[0] );
lm->superLuxels[ lightmapNum ] = safe_calloc( size );
}
/* set style */
if ( lightmapNum > 0 ) {
lm->styles[ lightmapNum ] = trace.light->style;
//% Sys_Printf( "Surface %6d has lightstyle %d\n", rawLightmapNum, trace.light->style );
}
/* copy to permanent luxels */
for ( y = 0; y < lm->sh; y++ )
{
for ( x = 0; x < lm->sw; x++ )
{
/* get cluster and origin */
if ( lm->getSuperCluster( x, y ) < 0 ) {
continue;
}
/* filter? */
if ( luxelFilterRadius ) {
/* setup */
averageColor.set( 0 );
averageDir.set( 0 );
samples = 0.0f;
/* cheaper distance-based filtering */
for ( sy = ( y - luxelFilterRadius ); sy <= ( y + luxelFilterRadius ); sy++ )
{
if ( sy < 0 || sy >= lm->sh ) {
continue;
}
for ( sx = ( x - luxelFilterRadius ); sx <= ( x + luxelFilterRadius ); sx++ )
{
if ( sx < 0 || sx >= lm->sw ) {
continue;
}
/* get particulars */
if ( lm->getSuperCluster( sx, sy ) < 0 ) {
continue;
}
/* create weight */
weight = ( abs( sx - x ) == luxelFilterRadius ? 0.5f : 1.0f );
weight *= ( abs( sy - y ) == luxelFilterRadius ? 0.5f : 1.0f );
/* scale luxel by filter weight */
averageColor += tmplm.getSuperLuxel( 0, sx, sy ).value * weight;
if ( deluxemap ) {
averageDir += tmplm.getSuperDeluxel( sx, sy ) * weight;
}
samples += weight;
}
}
/* any samples? */
if ( samples <= 0.0f ) {
continue;
}
/* scale into luxel */
SuperLuxel& luxel = lm->getSuperLuxel( lightmapNum, x, y );
luxel.count = 1.0f;
/* handle negative light */
if ( trace.light->flags & LightFlags::Negative ) {
luxel.value -= averageColor / samples;
}
/* handle normal light */
else
{
luxel.value += averageColor / samples;
}
if ( deluxemap ) {
/* scale into luxel */
lm->getSuperDeluxel( x, y ) += averageDir / samples;
}
}
/* single sample */
else
{
/* get particulars */
const SuperLuxel& lightLuxel = tmplm.getSuperLuxel( 0, x, y );
SuperLuxel& luxel = lm->getSuperLuxel( lightmapNum, x, y );
/* handle negative light */
if ( trace.light->flags & LightFlags::Negative ) {
vector3_negate( averageColor );
}
/* add color */
luxel.count = 1.0f;
/* handle negative light */
if ( trace.light->flags & LightFlags::Negative ) {
luxel.value -= lightLuxel.value;
}
/* handle normal light */
else{
luxel.value += lightLuxel.value;
}
if ( deluxemap ) {
lm->getSuperDeluxel( x, y ) += tmplm.getSuperDeluxel( x, y );
}
}
}
}
}
/* free temporary luxels */
if ( tmplm.superLuxels[0] != stackLightLuxels ) {
free( tmplm.superLuxels[0] );
}
if ( deluxemap ) {
free( tmplm.superDeluxels );
}
}
/* free light list */
FreeTraceLights( &trace );
/* floodlight pass */
if ( floodlighty ) {
FloodlightIlluminateLightmap( lm );
}
if ( debugnormals ) {
for ( lightmapNum = 0; lightmapNum < MAX_LIGHTMAPS; lightmapNum++ )
{
/* early out */
if ( lm->superLuxels[ lightmapNum ] == NULL ) {
continue;
}
for ( y = 0; y < lm->sh; y++ )
{
for ( x = 0; x < lm->sw; x++ )
{
/* get cluster */
//% if( lm->getSuperCluster( x, y ) < 0 )
//% continue;
lm->getSuperLuxel( lightmapNum, x, y ).value = lm->getSuperNormal( x, y ) * 127 + Vector3( 127, 127, 127 );
}
}
}
}
/* -----------------------------------------------------------------
dirt pass
----------------------------------------------------------------- */
if ( dirty ) {
/* walk lightmaps */
for ( lightmapNum = 0; lightmapNum < MAX_LIGHTMAPS; lightmapNum++ )
{
/* early out */
if ( lm->superLuxels[ lightmapNum ] == NULL ) {
continue;
}
/* apply dirt to each luxel */
for ( y = 0; y < lm->sh; y++ )
{
for ( x = 0; x < lm->sw; x++ )
{
/* get cluster */
//% if( lm->getSuperCluster( x, y ) < 0 ) // TODO why not do this check? These pixels should be zero anyway
//% continue;
/* get particulars */
SuperLuxel& luxel = lm->getSuperLuxel( lightmapNum, x, y );
const float dirt = lm->getSuperDirt( x, y );
/* apply dirt */
luxel.value *= dirt;
/* debugging */
if ( dirtDebug ) {
luxel.value.set( dirt * 255.0f );
}
}
}
}
}
/* -----------------------------------------------------------------
filter pass
----------------------------------------------------------------- */
/* walk lightmaps */
for ( lightmapNum = 0; lightmapNum < MAX_LIGHTMAPS; lightmapNum++ )
{
/* early out */
if ( lm->superLuxels[ lightmapNum ] == NULL ) {
continue;
}
/* average occluded luxels from neighbors */
for ( y = 0; y < lm->sh; y++ )
{
for ( x = 0; x < lm->sw; x++ )
{
/* get particulars */
int& cluster = lm->getSuperCluster( x, y );
SuperLuxel& luxel = lm->getSuperLuxel( lightmapNum, x, y );
/* determine if filtering is necessary */
filterColor = false;
filterDir = false;
if ( cluster < 0 ||
( lm->splotchFix && ( luxel.value[ 0 ] <= ambientColor[ 0 ]
|| luxel.value[ 1 ] <= ambientColor[ 1 ]
|| luxel.value[ 2 ] <= ambientColor[ 2 ] ) ) ) {
filterColor = true;
}
if ( deluxemap && lightmapNum == 0 && ( cluster < 0 || filter ) ) {
filterDir = true;
}
if ( !filterColor && !filterDir ) {
continue;
}
/* choose seed amount */
averageColor.set( 0 );
averageDir.set( 0 );
samples = 0.0f;
/* walk 3x3 matrix */
for ( sy = ( y - 1 ); sy <= ( y + 1 ); sy++ )
{
if ( sy < 0 || sy >= lm->sh ) {
continue;
}
for ( sx = ( x - 1 ); sx <= ( x + 1 ); sx++ )
{
if ( sx < 0 || sx >= lm->sw || ( sx == x && sy == y ) ) {
continue;
}
/* get neighbor's particulars */
const SuperLuxel& luxel2 = lm->getSuperLuxel( lightmapNum, sx, sy );
/* ignore unmapped/unlit luxels */
if ( lm->getSuperCluster( sx, sy ) < 0 || luxel2.count == 0.0f ||
( lm->splotchFix && VectorCompare( luxel2.value, ambientColor ) ) ) {
continue;
}
/* add its distinctiveness to our own */
averageColor += luxel2.value;
samples += luxel2.count;
if ( filterDir ) {
averageDir += lm->getSuperDeluxel( sx, sy );
}
}
}
/* fall through */
if ( samples <= 0.0f ) {
continue;
}
/* dark lightmap seams */
if ( dark ) {
if ( lightmapNum == 0 ) {
averageColor += ambientColor * 2;
}
samples += 2.0f;
}
/* average it */
if ( filterColor ) {
luxel.value = averageColor * ( 1.f / samples );
luxel.count = 1.0f;
}
if ( filterDir ) {
lm->getSuperDeluxel( x, y ) = averageDir * ( 1.f / samples );
}
/* set cluster to -3 */
if ( cluster < 0 ) {
cluster = CLUSTER_FLOODED;
}
}
}
}
#if 0
// audit pass
for ( lightmapNum = 0; lightmapNum < MAX_LIGHTMAPS; lightmapNum++ )
{
/* early out */
if ( lm->superLuxels[ lightmapNum ] == NULL ) {
continue;
}
for ( y = 0; y < lm->sh; y++ )
for ( x = 0; x < lm->sw; x++ )
{
/* get cluster */
cluster = SUPER_CLUSTER( x, y );
luxel = SUPER_LUXEL( lightmapNum, x, y );
deluxel = SUPER_DELUXEL( x, y );
if ( !luxel || !deluxel || !cluster ) {
Sys_FPrintf( SYS_WRN | SYS_VRBflag, "WARNING: I got NULL'd.\n" );
continue;
}
else if ( *cluster < 0 ) {
// unmapped pixel
// should have neither deluxemap nor lightmap
if ( deluxel[3] ) {
Sys_FPrintf( SYS_WRN | SYS_VRBflag, "WARNING: I have written deluxe to an unmapped luxel. Sorry.\n" );
}
}
else
{
// mapped pixel
// should have both deluxemap and lightmap
if ( deluxel[3] ) {
Sys_FPrintf( SYS_WRN | SYS_VRBflag, "WARNING: I forgot to write deluxe to a mapped luxel. Sorry.\n" );
}
}
}
}
#endif
}
/*
IlluminateVertexes()
light the surface vertexes
*/
#define VERTEX_NUDGE 4.0f
void IlluminateVertexes( int num ){
int i, x, y, z, x1, y1, z1, sx, sy, radius, maxRadius;
int lightmapNum, numAvg;
float samples, dirt;
Vector3 origin, colors[ MAX_LIGHTMAPS ], avgColors[ MAX_LIGHTMAPS ];
bspDrawSurface_t *ds;
surfaceInfo_t *info;
rawLightmap_t *lm;
bspDrawVert_t *verts;
trace_t trace;
float floodLightAmount;
Vector3 floodColor;
/* get surface, info, and raw lightmap */
ds = &bspDrawSurfaces[ num ];
info = &surfaceInfos[ num ];
lm = info->lm;
/* -----------------------------------------------------------------
illuminate the vertexes
----------------------------------------------------------------- */
/* calculate vertex lighting for surfaces without lightmaps */
if ( lm == NULL || cpmaHack ) {
/* setup trace */
trace.testOcclusion = ( cpmaHack && lm != NULL ) ? false : !noTrace;
trace.forceSunlight = info->si->forceSunlight;
trace.recvShadows = info->recvShadows;
trace.numSurfaces = 1;
trace.surfaces = &num;
trace.inhibitRadius = DEFAULT_INHIBIT_RADIUS;
/* twosided lighting */
trace.twoSided = info->si->twoSided;
/* make light list for this surface */
CreateTraceLightsForSurface( num, &trace );
/* setup */
verts = yDrawVerts + ds->firstVert;
numAvg = 0;
memset( avgColors, 0, sizeof( avgColors ) );
/* walk the surface verts */
for ( i = 0; i < ds->numVerts; i++ )
{
/* get vertex luxel */
Vector3& radVertLuxel = getRadVertexLuxel( 0, ds->firstVert + i );
/* color the luxel with raw lightmap num? */
if ( debugSurfaces ) {
radVertLuxel = debugColors[ num % 12 ];
}
/* color the luxel with luxel origin? */
else if ( debugOrigin ) {
const Vector3 temp = ( info->minmax.maxs - info->minmax.mins ) * ( 1.0f / 255.0f );
const Vector3 temp2 = origin - lm->minmax.mins;
radVertLuxel = info->minmax.mins + ( temp * temp2 );
}
/* color the luxel with the normal */
else if ( normalmap ) {
radVertLuxel = ( verts[ i ].normal + Vector3( 1, 1, 1 ) ) * 127.5f;
}
else if ( info->si->noVertexLight ) {
radVertLuxel.set( 127.5f );
}
else if ( noVertexLighting > 0 ) {
radVertLuxel.set( 127.5f * noVertexLighting );
}
/* illuminate the vertex */
else
{
/* clear vertex luxel */
radVertLuxel.set( -1.0f );
/* try at initial origin */
trace.cluster = ClusterForPointExtFilter( verts[ i ].xyz, VERTEX_EPSILON, info->numSurfaceClusters, &surfaceClusters[ info->firstSurfaceCluster ] );
if ( trace.cluster >= 0 ) {
/* setup trace */
trace.origin = verts[ i ].xyz;
trace.normal = verts[ i ].normal;
/* r7 dirt */
if ( dirty && !bouncing ) {
dirt = DirtForSample( &trace );
}
else{
dirt = 1.0f;
}
/* jal: floodlight */
floodLightAmount = 0.0f;
floodColor.set( 0 );
if ( floodlighty && !bouncing ) {
floodLightAmount = floodlightIntensity * FloodLightForSample( &trace, floodlightDistance, floodlight_lowquality );
floodColor = floodlightRGB * floodLightAmount;
}
/* trace */
LightingAtSample( &trace, ds->vertexStyles, colors );
/* store */
for ( lightmapNum = 0; lightmapNum < MAX_LIGHTMAPS; lightmapNum++ )
{
/* r7 dirt */
colors[ lightmapNum ] *= dirt;
/* jal: floodlight */
colors[ lightmapNum ] += floodColor;
/* store */
getRadVertexLuxel( lightmapNum, ds->firstVert + i ) = colors[ lightmapNum ];
colors[ lightmapNum ] += avgColors[ lightmapNum ];
}
}
/* is this sample bright enough? */
const auto vector3_component_greater = []( const Vector3& greater, const Vector3& lesser ){
return greater[0] > lesser[0] || greater[1] > lesser[1] || greater[2] > lesser[2];
};
if ( !vector3_component_greater( getRadVertexLuxel( 0, ds->firstVert + i ), ambientColor ) ) {
/* nudge the sample point around a bit */
for ( x = 0; x < 5; x++ )
{
/* two's complement 0, 1, -1, 2, -2, etc */
x1 = ( ( x >> 1 ) ^ ( x & 1 ? -1 : 0 ) ) + ( x & 1 );
for ( y = 0; y < 5; y++ )
{
y1 = ( ( y >> 1 ) ^ ( y & 1 ? -1 : 0 ) ) + ( y & 1 );
for ( z = 0; z < 5; z++ )
{
z1 = ( ( z >> 1 ) ^ ( z & 1 ? -1 : 0 ) ) + ( z & 1 );
/* nudge origin */
trace.origin = verts[ i ].xyz + Vector3( x1, y1, z1 ) * Vector3().set( VERTEX_NUDGE );
/* try at nudged origin */
trace.cluster = ClusterForPointExtFilter( origin, VERTEX_EPSILON, info->numSurfaceClusters, &surfaceClusters[ info->firstSurfaceCluster ] );
if ( trace.cluster < 0 ) {
continue;
}
/* r7 dirt */
if ( dirty && !bouncing ) {
dirt = DirtForSample( &trace );
}
else{
dirt = 1.0f;
}
/* jal: floodlight */
floodLightAmount = 0.0f;
floodColor.set( 0 );
if ( floodlighty && !bouncing ) {
floodLightAmount = floodlightIntensity * FloodLightForSample( &trace, floodlightDistance, floodlight_lowquality );
floodColor = floodlightRGB * floodLightAmount;
}
/* trace */
LightingAtSample( &trace, ds->vertexStyles, colors );
/* store */
for ( lightmapNum = 0; lightmapNum < MAX_LIGHTMAPS; lightmapNum++ )
{
/* r7 dirt */
colors[ lightmapNum ] *= dirt;
/* jal: floodlight */
colors[ lightmapNum ] += floodColor;
/* store */
getRadVertexLuxel( lightmapNum, ds->firstVert + i ) = colors[ lightmapNum ];
}
/* bright enough? */
if ( vector3_component_greater( getRadVertexLuxel( 0, ds->firstVert + i ), ambientColor ) ) {
x = y = z = 1000;
}
}
}
}
}
/* add to average? */
if ( vector3_component_greater( getRadVertexLuxel( 0, ds->firstVert + i ), ambientColor ) ) {
numAvg++;
for ( lightmapNum = 0; lightmapNum < MAX_LIGHTMAPS; lightmapNum++ )
{
avgColors[ lightmapNum ] += getRadVertexLuxel( lightmapNum, ds->firstVert + i );
}
}
}
/* another happy customer */
numVertsIlluminated++;
}
/* set average color */
if ( numAvg > 0 ) {
for ( lightmapNum = 0; lightmapNum < MAX_LIGHTMAPS; lightmapNum++ )
avgColors[ lightmapNum ] *= ( 1.0f / numAvg );
}
else
{
avgColors[ 0 ] = ambientColor;
}
/* clean up and store vertex color */
for ( i = 0; i < ds->numVerts; i++ )
{
/* store average in occluded vertexes */
if ( getRadVertexLuxel( 0, ds->firstVert + i )[ 0 ] < 0.0f ) {
for ( lightmapNum = 0; lightmapNum < MAX_LIGHTMAPS; lightmapNum++ )
{
getRadVertexLuxel( lightmapNum, ds->firstVert + i ) = avgColors[ lightmapNum ];
/* debug code */
//% getRadVertexLuxel( lightmapNum, ds->firstVert + i ) = { 255.0f, 0.0f, 0.0f };
}
}
/* store it */
for ( lightmapNum = 0; lightmapNum < MAX_LIGHTMAPS; lightmapNum++ )
{
/* get luxels */
Vector3& vertLuxel = getVertexLuxel( lightmapNum, ds->firstVert + i );
const Vector3& radVertLuxel = getRadVertexLuxel( lightmapNum, ds->firstVert + i );
/* store */
if ( bouncing || bounce == 0 || !bounceOnly ) {
vertLuxel += radVertLuxel;
}
if ( !info->si->noVertexLight ) {
ColorToBytes( vertLuxel, verts[ i ].color[ lightmapNum ].rgb(), info->si->vertexScale );
}
}
}
/* free light list */
FreeTraceLights( &trace );
/* return to sender */
return;
}
/* -----------------------------------------------------------------
reconstitute vertex lighting from the luxels
----------------------------------------------------------------- */
/* set styles from lightmap */
for ( lightmapNum = 0; lightmapNum < MAX_LIGHTMAPS; lightmapNum++ )
ds->vertexStyles[ lightmapNum ] = lm->styles[ lightmapNum ];
/* get max search radius */
maxRadius = std::max( lm->sw, lm->sh );
/* walk the surface verts */
verts = yDrawVerts + ds->firstVert;
for ( i = 0; i < ds->numVerts; i++ )
{
/* do each lightmap */
for ( lightmapNum = 0; lightmapNum < MAX_LIGHTMAPS; lightmapNum++ )
{
/* early out */
if ( lm->superLuxels[ lightmapNum ] == NULL ) {
continue;
}
/* get luxel coords */
x = std::clamp( int( verts[ i ].lightmap[ lightmapNum ][ 0 ] ), 0, lm->sw - 1 );
y = std::clamp( int( verts[ i ].lightmap[ lightmapNum ][ 1 ] ), 0, lm->sh - 1 );
/* get vertex luxels */
Vector3& vertLuxel = getVertexLuxel( lightmapNum, ds->firstVert + i );
Vector3& radVertLuxel = getRadVertexLuxel( lightmapNum, ds->firstVert + i );
/* color the luxel with the normal? */
if ( normalmap ) {
radVertLuxel = ( verts[ i ].normal + Vector3( 1, 1, 1 ) ) * 127.5f;
}
/* color the luxel with surface num? */
else if ( debugSurfaces ) {
radVertLuxel = debugColors[ num % 12 ];
}
else if ( info->si->noVertexLight ) {
radVertLuxel.set( 127.5f );
}
else if ( noVertexLighting > 0 ) {
radVertLuxel.set( 127.5f * noVertexLighting );
}
/* divine color from the superluxels */
else
{
/* increasing radius */
radVertLuxel.set( 0 );
samples = 0.0f;
for ( radius = 0; radius < maxRadius && samples <= 0.0f; radius++ )
{
/* sample within radius */
for ( sy = ( y - radius ); sy <= ( y + radius ); sy++ )
{
if ( sy < 0 || sy >= lm->sh ) {
continue;
}
for ( sx = ( x - radius ); sx <= ( x + radius ); sx++ )
{
if ( sx < 0 || sx >= lm->sw ) {
continue;
}
/* get luxel particulars */
const SuperLuxel& luxel = lm->getSuperLuxel( lightmapNum, sx, sy );
if ( lm->getSuperCluster( sx, sy ) < 0 ) {
continue;
}
/* testing: must be brigher than ambient color */
//% if( luxel[ 0 ] <= ambientColor[ 0 ] || luxel[ 1 ] <= ambientColor[ 1 ] || luxel[ 2 ] <= ambientColor[ 2 ] )
//% continue;
/* add its distinctiveness to our own */
radVertLuxel += luxel.value;
samples += luxel.count;
}
}
}
/* any color? */
if ( samples > 0.0f ) {
radVertLuxel *= ( 1.f / samples );
}
else{
radVertLuxel = ambientColor;
}
}
/* store into floating point storage */
vertLuxel += radVertLuxel;
numVertsIlluminated++;
/* store into bytes (for vertex approximation) */
if ( !info->si->noVertexLight ) {
ColorToBytes( vertLuxel, verts[ i ].color[ lightmapNum ].rgb(), 1.0f );
}
}
}
}
/* -------------------------------------------------------------------------------
light optimization (-fast)
creates a list of lights that will affect a surface and stores it in tw
this is to optimize surface lighting by culling out as many of the
lights in the world as possible from further calculation
------------------------------------------------------------------------------- */
/*
SetupBrushes()
determines opaque brushes in the world and find sky shaders for sunlight calculations
*/
void SetupBrushesFlags( int mask_any, int test_any, int mask_all, int test_all ){
int i, j, b;
int compileFlags, allCompileFlags;
bspBrush_t *brush;
bspBrushSide_t *side;
bspShader_t *shader;
shaderInfo_t *si;
/* note it */
Sys_FPrintf( SYS_VRB, "--- SetupBrushes ---\n" );
/* allocate */
if ( opaqueBrushes == NULL ) {
opaqueBrushes = safe_malloc( numBSPBrushes / 8 + 1 );
}
/* clear */
memset( opaqueBrushes, 0, numBSPBrushes / 8 + 1 );
numOpaqueBrushes = 0;
/* walk the list of worldspawn brushes */
for ( i = 0; i < bspModels[ 0 ].numBSPBrushes; i++ )
{
/* get brush */
b = bspModels[ 0 ].firstBSPBrush + i;
brush = &bspBrushes[ b ];
/* check all sides */
compileFlags = 0;
allCompileFlags = ~( 0 );
for ( j = 0; j < brush->numSides; j++ )
{
/* do bsp shader calculations */
side = &bspBrushSides[ brush->firstSide + j ];
shader = &bspShaders[ side->shaderNum ];
/* get shader info */
si = ShaderInfoForShaderNull( shader->shader );
if ( si == NULL ) {
continue;
}
/* or together compile flags */
compileFlags |= si->compileFlags;
allCompileFlags &= si->compileFlags;
}
/* determine if this brush is opaque to light */
if ( ( compileFlags & mask_any ) == test_any && ( allCompileFlags & mask_all ) == test_all ) {
opaqueBrushes[ b >> 3 ] |= ( 1 << ( b & 7 ) );
numOpaqueBrushes++;
maxOpaqueBrush = i;
}
}
/* emit some statistics */
Sys_FPrintf( SYS_VRB, "%9d opaque brushes\n", numOpaqueBrushes );
}
void SetupBrushes( void ){
SetupBrushesFlags( C_TRANSLUCENT, 0, 0, 0 );
}
/*
ClusterVisible()
determines if two clusters are visible to each other using the PVS
*/
bool ClusterVisible( int a, int b ){
int leafBytes;
byte *pvs;
/* dummy check */
if ( a < 0 || b < 0 ) {
return false;
}
/* early out */
if ( a == b ) {
return true;
}
/* not vised? */
if ( numBSPVisBytes <= 8 ) {
return true;
}
/* get pvs data */
/* portalClusters = ((int *) bspVisBytes)[ 0 ]; */
leafBytes = ( (int*) bspVisBytes )[ 1 ];
pvs = bspVisBytes + VIS_HEADER_SIZE + ( a * leafBytes );
/* check */
if ( ( pvs[ b >> 3 ] & ( 1 << ( b & 7 ) ) ) ) {
return true;
}
return false;
}
/*
PointInLeafNum_r()
borrowed from vlight.c
*/
int PointInLeafNum_r( const Vector3& point, int nodenum ){
int leafnum;
while ( nodenum >= 0 )
{
const bspNode_t& node = bspNodes[ nodenum ];
const bspPlane_t& plane = bspPlanes[ node.planeNum ];
const double dist = plane3_distance_to_point( plane, point );
if ( dist > 0.1 ) {
nodenum = node.children[ 0 ];
}
else if ( dist < -0.1 ) {
nodenum = node.children[ 1 ];
}
else
{
leafnum = PointInLeafNum_r( point, node.children[ 0 ] );
if ( bspLeafs[ leafnum ].cluster != -1 ) {
return leafnum;
}
nodenum = node.children[ 1 ];
}
}
leafnum = -nodenum - 1;
return leafnum;
}
/*
PointInLeafnum()
borrowed from vlight.c
*/
int PointInLeafNum( const Vector3& point ){
return PointInLeafNum_r( point, 0 );
}
/*
ClusterVisibleToPoint() - ydnar
returns true if point can "see" cluster
*/
bool ClusterVisibleToPoint( const Vector3& point, int cluster ){
int pointCluster;
/* get leafNum for point */
pointCluster = ClusterForPoint( point );
if ( pointCluster < 0 ) {
return false;
}
/* check pvs */
return ClusterVisible( pointCluster, cluster );
}
/*
ClusterForPoint() - ydnar
returns the pvs cluster for point
*/
int ClusterForPoint( const Vector3& point ){
int leafNum;
/* get leafNum for point */
leafNum = PointInLeafNum( point );
if ( leafNum < 0 ) {
return -1;
}
/* return the cluster */
return bspLeafs[ leafNum ].cluster;
}
/*
ClusterForPointExt() - ydnar
also takes brushes into account for occlusion testing
*/
int ClusterForPointExt( const Vector3& point, float epsilon ){
int i, j, b, leafNum, cluster;
bool inside;
int *brushes, numBSPBrushes;
bspLeaf_t *leaf;
bspBrush_t *brush;
/* get leaf for point */
leafNum = PointInLeafNum( point );
if ( leafNum < 0 ) {
return -1;
}
leaf = &bspLeafs[ leafNum ];
/* get the cluster */
cluster = leaf->cluster;
if ( cluster < 0 ) {
return -1;
}
/* transparent leaf, so check point against all brushes in the leaf */
brushes = &bspLeafBrushes[ leaf->firstBSPLeafBrush ];
numBSPBrushes = leaf->numBSPLeafBrushes;
for ( i = 0; i < numBSPBrushes; i++ )
{
/* get parts */
b = brushes[ i ];
if ( b > maxOpaqueBrush ) {
continue;
}
brush = &bspBrushes[ b ];
if ( !( opaqueBrushes[ b >> 3 ] & ( 1 << ( b & 7 ) ) ) ) {
continue;
}
/* check point against all planes */
inside = true;
for ( j = 0; j < brush->numSides && inside; j++ )
{
const bspPlane_t& plane = bspPlanes[ bspBrushSides[ brush->firstSide + j ].planeNum ];
if ( plane3_distance_to_point( plane, point ) > epsilon ) {
inside = false;
}
}
/* if inside, return bogus cluster */
if ( inside ) {
return -1 - b;
}
}
/* if the point made it this far, it's not inside any opaque brushes */
return cluster;
}
/*
ClusterForPointExtFilter() - ydnar
adds cluster checking against a list of known valid clusters
*/
int ClusterForPointExtFilter( const Vector3& point, float epsilon, int numClusters, int *clusters ){
int i, cluster;
/* get cluster for point */
cluster = ClusterForPointExt( point, epsilon );
/* check if filtering is necessary */
if ( cluster < 0 || numClusters <= 0 || clusters == NULL ) {
return cluster;
}
/* filter */
for ( i = 0; i < numClusters; i++ )
{
if ( cluster == clusters[ i ] || ClusterVisible( cluster, clusters[ i ] ) ) {
return cluster;
}
}
/* failed */
return -1;
}
/*
ShaderForPointInLeaf() - ydnar
checks a point against all brushes in a leaf, returning the shader of the brush
also sets the cumulative surface and content flags for the brush hit
*/
int ShaderForPointInLeaf( const Vector3& point, int leafNum, float epsilon, int wantContentFlags, int wantSurfaceFlags, int *contentFlags, int *surfaceFlags ){
int i, j;
bool inside;
int *brushes, numBSPBrushes;
bspLeaf_t *leaf;
bspBrush_t *brush;
bspBrushSide_t *side;
bspShader_t *shader;
int allSurfaceFlags, allContentFlags;
/* clear things out first */
*surfaceFlags = 0;
*contentFlags = 0;
/* get leaf */
if ( leafNum < 0 ) {
return -1;
}
leaf = &bspLeafs[ leafNum ];
/* transparent leaf, so check point against all brushes in the leaf */
brushes = &bspLeafBrushes[ leaf->firstBSPLeafBrush ];
numBSPBrushes = leaf->numBSPLeafBrushes;
for ( i = 0; i < numBSPBrushes; i++ )
{
/* get parts */
brush = &bspBrushes[ brushes[ i ] ];
/* check point against all planes */
inside = true;
allSurfaceFlags = 0;
allContentFlags = 0;
for ( j = 0; j < brush->numSides && inside; j++ )
{
side = &bspBrushSides[ brush->firstSide + j ];
const bspPlane_t& plane = bspPlanes[ side->planeNum ];
if ( plane3_distance_to_point( plane, point ) > epsilon ) {
inside = false;
}
else
{
shader = &bspShaders[ side->shaderNum ];
allSurfaceFlags |= shader->surfaceFlags;
allContentFlags |= shader->contentFlags;
}
}
/* handle if inside */
if ( inside ) {
/* if there are desired flags, check for same and continue if they aren't matched */
if ( wantContentFlags && !( wantContentFlags & allContentFlags ) ) {
continue;
}
if ( wantSurfaceFlags && !( wantSurfaceFlags & allSurfaceFlags ) ) {
continue;
}
/* store the cumulative flags and return the brush shader (which is mostly useless) */
*surfaceFlags = allSurfaceFlags;
*contentFlags = allContentFlags;
return brush->shaderNum;
}
}
/* if the point made it this far, it's not inside any brushes */
return -1;
}
/*
ChopBounds()
chops a bounding box by the plane defined by origin and normal
returns false if the bounds is entirely clipped away
this is not exactly the fastest way to do this...
*/
bool ChopBounds( MinMax& minmax, const Vector3& origin, const Vector3& normal ){
/* FIXME: rewrite this so it doesn't use bloody brushes */
return true;
}
/*
SetupEnvelopes()
calculates each light's effective envelope,
taking into account brightness, type, and pvs.
*/
#define LIGHT_EPSILON 0.125f
#define LIGHT_NUDGE 2.0f
void SetupEnvelopes( bool forGrid, bool fastFlag ){
int i, x, y, z, x1, y1, z1;
light_t *light, *light2, **owner;
bspLeaf_t *leaf;
Vector3 origin;
float radius, intensity;
light_t *buckets[ 256 ];
/* early out for weird cases where there are no lights */
if ( lights == NULL ) {
return;
}
/* note it */
Sys_FPrintf( SYS_VRB, "--- SetupEnvelopes%s ---\n", fastFlag ? " (fast)" : "" );
/* count lights */
numLights = 0;
numCulledLights = 0;
owner = &lights;
while ( *owner != NULL )
{
/* get light */
light = *owner;
/* handle negative lights */
if ( light->photons < 0.0f || light->add < 0.0f ) {
light->photons *= -1.0f;
light->add *= -1.0f;
light->flags |= LightFlags::Negative;
}
/* sunlight? */
if ( light->type == ELightType::Sun ) {
/* special cased */
light->cluster = 0;
light->envelope = MAX_WORLD_COORD * 8.0f;
light->minmax.mins.set( MIN_WORLD_COORD * 8.0f );
light->minmax.maxs.set( MAX_WORLD_COORD * 8.0f );
}
/* everything else */
else
{
/* get pvs cluster for light */
light->cluster = ClusterForPointExt( light->origin, LIGHT_EPSILON );
/* invalid cluster? */
if ( light->cluster < 0 ) {
/* nudge the sample point around a bit */
for ( x = 0; x < 4; x++ )
{
/* two's complement 0, 1, -1, 2, -2, etc */
x1 = ( ( x >> 1 ) ^ ( x & 1 ? -1 : 0 ) ) + ( x & 1 );
for ( y = 0; y < 4; y++ )
{
y1 = ( ( y >> 1 ) ^ ( y & 1 ? -1 : 0 ) ) + ( y & 1 );
for ( z = 0; z < 4; z++ )
{
z1 = ( ( z >> 1 ) ^ ( z & 1 ? -1 : 0 ) ) + ( z & 1 );
/* nudge origin */
origin[ 0 ] = light->origin[ 0 ] + ( LIGHT_NUDGE * x1 );
origin[ 1 ] = light->origin[ 1 ] + ( LIGHT_NUDGE * y1 );
origin[ 2 ] = light->origin[ 2 ] + ( LIGHT_NUDGE * z1 );
/* try at nudged origin */
light->cluster = ClusterForPointExt( origin, LIGHT_EPSILON );
if ( light->cluster < 0 ) {
continue;
}
/* set origin */
light->origin = origin;
}
}
}
}
/* only calculate for lights in pvs and outside of opaque brushes */
if ( light->cluster >= 0 ) {
/* set light fast flag */
if ( fastFlag ) {
light->flags |= LightFlags::FastTemp;
}
else{
light->flags &= ~LightFlags::FastTemp;
}
if ( fastpoint && ( light->type != ELightType::Area ) ) {
light->flags |= LightFlags::FastTemp;
}
if ( light->si && light->si->noFast ) {
light->flags &= ~( LightFlags::FastActual );
}
/* clear light envelope */
light->envelope = 0;
/* handle area lights */
if ( exactPointToPolygon && light->type == ELightType::Area && light->w != NULL ) {
light->envelope = MAX_WORLD_COORD * 8.0f;
/* check for fast mode */
if ( light->flags & LightFlags::FastActual ) {
/* ugly hack to calculate extent for area lights, but only done once */
const Vector3 dir = -light->normal;
for ( radius = 100.0f; radius < MAX_WORLD_COORD * 8.0f; radius += 10.0f )
{
origin = light->origin + light->normal * radius;
const float factor = std::abs( PointToPolygonFormFactor( origin, dir, light->w ) );
if ( ( factor * light->add ) <= light->falloffTolerance ) {
light->envelope = radius;
break;
}
}
}
intensity = light->photons; /* hopefully not used */
}
else
{
radius = 0.0f;
intensity = light->photons;
}
/* other calcs */
if ( light->envelope <= 0.0f ) {
/* solve distance for non-distance lights */
if ( !( light->flags & LightFlags::AttenDistance ) ) {
light->envelope = MAX_WORLD_COORD * 8.0f;
}
else if ( light->flags & LightFlags::FastActual ) {
/* solve distance for linear lights */
if ( ( light->flags & LightFlags::AttenLinear ) ) {
light->envelope = ( ( intensity * linearScale ) - light->falloffTolerance ) / light->fade;
}
/*
add = angle * light->photons * linearScale - (dist * light->fade);
T = (light->photons * linearScale) - (dist * light->fade);
T + (dist * light->fade) = (light->photons * linearScale);
dist * light->fade = (light->photons * linearScale) - T;
dist = ((light->photons * linearScale) - T) / light->fade;
*/
/* solve for inverse square falloff */
else{
light->envelope = sqrt( intensity / light->falloffTolerance ) + radius;
}
/*
add = light->photons / (dist * dist);
T = light->photons / (dist * dist);
T * (dist * dist) = light->photons;
dist = sqrt( light->photons / T );
*/
}
else
{
/* solve distance for linear lights */
if ( ( light->flags & LightFlags::AttenLinear ) ) {
light->envelope = ( intensity * linearScale ) / light->fade;
}
/* can't cull these */
else{
light->envelope = MAX_WORLD_COORD * 8.0f;
}
}
}
/* chop radius against pvs */
{
/* clear bounds */
MinMax minmax;
/* check all leaves */
for ( i = 0; i < numBSPLeafs; i++ )
{
/* get test leaf */
leaf = &bspLeafs[ i ];
/* in pvs? */
if ( leaf->cluster < 0 ) {
continue;
}
if ( !ClusterVisible( light->cluster, leaf->cluster ) ) { /* ydnar: thanks Arnout for exposing my stupid error (this never failed before) */
continue;
}
/* add this leafs bbox to the bounds */
minmax.extend( leaf->minmax );
}
/* test to see if bounds encompass light */
if ( !minmax.test( light->origin ) ) {
//% Sys_Warning( "Light PVS bounds (%.0f, %.0f, %.0f) -> (%.0f, %.0f, %.0f)\ndo not encompass light %d (%f, %f, %f)\n",
//% minmax.mins[ 0 ], minmax.mins[ 1 ], minmax.mins[ 2 ],
//% minmax.maxs[ 0 ], minmax.maxs[ 1 ], minmax.maxs[ 2 ],
//% numLights, light->origin[ 0 ], light->origin[ 1 ], light->origin[ 2 ] );
minmax.extend( light->origin );
}
/* chop the bounds by a plane for area lights and spotlights */
if ( light->type == ELightType::Area || light->type == ELightType::Spot ) {
ChopBounds( minmax, light->origin, light->normal );
}
/* copy bounds */
light->minmax = minmax;
/* reflect bounds around light origin */
//% VectorMA( light->origin, -1.0f, origin, origin );
minmax.extend( light->origin * 2 - minmax.maxs );
//% VectorMA( light->origin, -1.0f, mins, origin );
minmax.extend( light->origin * 2 - minmax.mins );
/* calculate spherical bounds */
radius = vector3_length( minmax.maxs - light->origin );
/* if this radius is smaller than the envelope, then set the envelope to it */
//% if ( radius < light->envelope ) Sys_FPrintf( SYS_VRB, "PVS Cull (%d): culled\n", numLights );
//% else Sys_FPrintf( SYS_VRB, "PVS Cull (%d): failed (%8.0f > %8.0f)\n", numLights, radius, light->envelope );
value_minimize( light->envelope, radius );
}
/* add grid/surface only check */
if ( forGrid ) {
if ( !( light->flags & LightFlags::Grid ) ) {
light->envelope = 0.0f;
}
}
else
{
if ( !( light->flags & LightFlags::Surfaces ) ) {
light->envelope = 0.0f;
}
}
}
/* culled? */
if ( light->cluster < 0 || light->envelope <= 0.0f ) {
/* debug code */
//% Sys_Printf( "Culling light: Cluster: %d Envelope: %f\n", light->cluster, light->envelope );
/* delete the light */
numCulledLights++;
*owner = light->next;
free( light->w );
free( light );
continue;
}
}
/* square envelope */
light->envelope2 = ( light->envelope * light->envelope );
/* increment light count */
numLights++;
/* set next light */
owner = &( ( **owner ).next );
}
/* bucket sort lights by style */
memset( buckets, 0, sizeof( buckets ) );
light2 = NULL;
for ( light = lights; light != NULL; light = light2 )
{
/* get next light */
light2 = light->next;
/* filter into correct bucket */
light->next = buckets[ light->style ];
buckets[ light->style ] = light;
/* if any styled light is present, automatically set nocollapse */
if ( light->style != LS_NORMAL ) {
noCollapse = true;
}
}
/* filter back into light list */
lights = NULL;
for ( i = 255; i >= 0; i-- )
{
light2 = NULL;
for ( light = buckets[ i ]; light != NULL; light = light2 )
{
light2 = light->next;
light->next = lights;
lights = light;
}
}
/* emit some statistics */
Sys_Printf( "%9d total lights\n", numLights );
Sys_Printf( "%9d culled lights\n", numCulledLights );
}
/*
CreateTraceLightsForBounds()
creates a list of lights that affect the given bounding box and pvs clusters (bsp leaves)
*/
void CreateTraceLightsForBounds( const MinMax& minmax, const Vector3 *normal, int numClusters, int *clusters, LightFlags flags, trace_t *trace ){
int i;
light_t *light;
float dist, length;
/* potential pre-setup */
if ( numLights == 0 ) {
SetupEnvelopes( false, fast );
}
/* debug code */
//% Sys_Printf( "CTWLFB: (%4.1f %4.1f %4.1f) (%4.1f %4.1f %4.1f)\n", minmax.mins[ 0 ], minmax.mins[ 1 ], minmax.mins[ 2 ], minmax.maxs[ 0 ], minmax.maxs[ 1 ], minmax.maxs[ 2 ] );
/* allocate the light list */
trace->lights = safe_malloc( sizeof( light_t* ) * ( numLights + 1 ) );
trace->numLights = 0;
/* calculate spherical bounds */
const Vector3 origin = minmax.origin();
const float radius = vector3_length( minmax.maxs - origin );
/* get length of normal vector */
if ( normal != NULL ) {
length = vector3_length( *normal );
}
else
{
normal = &g_vector3_identity;
length = 0;
}
/* test each light and see if it reaches the sphere */
/* note: the attenuation code MUST match LightingAtSample() */
for ( light = lights; light; light = light->next )
{
/* check zero sized envelope */
if ( light->envelope <= 0 ) {
lightsEnvelopeCulled++;
continue;
}
/* check flags */
if ( !( light->flags & flags ) ) {
continue;
}
/* sunlight skips all this nonsense */
if ( light->type != ELightType::Sun ) {
/* sun only? */
if ( sunOnly ) {
continue;
}
/* check against pvs cluster */
if ( numClusters > 0 && clusters != NULL ) {
for ( i = 0; i < numClusters; i++ )
{
if ( ClusterVisible( light->cluster, clusters[ i ] ) ) {
break;
}
}
/* fixme! */
if ( i == numClusters ) {
lightsClusterCulled++;
continue;
}
}
/* if the light's bounding sphere intersects with the bounding sphere then this light needs to be tested */
dist = vector3_length( light->origin - origin ) - light->envelope - radius;
if ( dist > 0 ) {
lightsEnvelopeCulled++;
continue;
}
/* check bounding box against light's pvs envelope (note: this code never eliminated any lights, so disabling it) */
#if 0
if( !minmax.test( light->minmax ) ){
lightsBoundsCulled++;
continue;
}
#endif
}
/* planar surfaces (except twosided surfaces) have a couple more checks */
if ( length > 0.0f && !trace->twoSided ) {
/* lights coplanar with a surface won't light it */
if ( !( light->flags & LightFlags::Twosided ) && vector3_dot( light->normal, *normal ) > 0.999f ) {
lightsPlaneCulled++;
continue;
}
/* check to see if light is behind the plane */
if ( vector3_dot( light->origin, *normal ) - vector3_dot( origin, *normal ) < -1.0f ) {
lightsPlaneCulled++;
continue;
}
}
/* add this light */
trace->lights[ trace->numLights++ ] = light;
}
/* make last night null */
trace->lights[ trace->numLights ] = NULL;
}
void FreeTraceLights( trace_t *trace ){
free( trace->lights );
}
/*
CreateTraceLightsForSurface()
creates a list of lights that can potentially affect a drawsurface
*/
void CreateTraceLightsForSurface( int num, trace_t *trace ){
int i;
bspDrawVert_t *dv;
bspDrawSurface_t *ds;
surfaceInfo_t *info;
/* dummy check */
if ( num < 0 ) {
return;
}
/* get drawsurface and info */
ds = &bspDrawSurfaces[ num ];
info = &surfaceInfos[ num ];
/* get the mins/maxs for the dsurf */
MinMax minmax;
Vector3 normal = bspDrawVerts[ ds->firstVert ].normal;
for ( i = 0; i < ds->numVerts; i++ )
{
dv = &yDrawVerts[ ds->firstVert + i ];
minmax.extend( dv->xyz );
if ( !VectorCompare( dv->normal, normal ) ) {
normal.set( 0 );
}
}
/* create the lights for the bounding box */
CreateTraceLightsForBounds( minmax, &normal, info->numSurfaceClusters, &surfaceClusters[ info->firstSurfaceCluster ], LightFlags::Surfaces, trace );
}
/////////////////////////////////////////////////////////////
#define FLOODLIGHT_CONE_ANGLE 88 /* degrees */
#define FLOODLIGHT_NUM_ANGLE_STEPS 16
#define FLOODLIGHT_NUM_ELEVATION_STEPS 4
#define FLOODLIGHT_NUM_VECTORS ( FLOODLIGHT_NUM_ANGLE_STEPS * FLOODLIGHT_NUM_ELEVATION_STEPS )
static Vector3 floodVectors[ FLOODLIGHT_NUM_VECTORS ];
static int numFloodVectors = 0;
void SetupFloodLight( void ){
int i, j;
float angle, elevation, angleStep, elevationStep;
/* note it */
Sys_FPrintf( SYS_VRB, "--- SetupFloodLight ---\n" );
/* calculate angular steps */
angleStep = degrees_to_radians( 360.0f / FLOODLIGHT_NUM_ANGLE_STEPS );
elevationStep = degrees_to_radians( FLOODLIGHT_CONE_ANGLE / FLOODLIGHT_NUM_ELEVATION_STEPS );
/* iterate angle */
angle = 0.0f;
for ( i = 0, angle = 0.0f; i < FLOODLIGHT_NUM_ANGLE_STEPS; i++, angle += angleStep )
{
/* iterate elevation */
for ( j = 0, elevation = elevationStep * 0.5f; j < FLOODLIGHT_NUM_ELEVATION_STEPS; j++, elevation += elevationStep )
{
floodVectors[ numFloodVectors ][ 0 ] = sin( elevation ) * cos( angle );
floodVectors[ numFloodVectors ][ 1 ] = sin( elevation ) * sin( angle );
floodVectors[ numFloodVectors ][ 2 ] = cos( elevation );
numFloodVectors++;
}
}
/* emit some statistics */
Sys_FPrintf( SYS_VRB, "%9d numFloodVectors\n", numFloodVectors );
/* floodlight */
const char *value;
if ( entities[ 0 ].read_keyvalue( value, "_floodlight" ) ) {
double v1,v2,v3,v4,v5,v6;
v1 = v2 = v3 = 0;
v4 = floodlightDistance;
v5 = floodlightIntensity;
v6 = floodlightDirectionScale;
sscanf( value, "%lf %lf %lf %lf %lf %lf", &v1, &v2, &v3, &v4, &v5, &v6 );
floodlightRGB = { v1, v2, v3 };
if ( vector3_length( floodlightRGB ) == 0 ) {
floodlightRGB = { 0.94, 0.94, 1.0 };
}
if ( v4 < 1 ) {
v4 = 1024;
}
if ( v5 < 1 ) {
v5 = 128;
}
if ( v6 < 0 ) {
v6 = 1;
}
floodlightDistance = v4;
floodlightIntensity = v5;
floodlightDirectionScale = v6;
floodlighty = true;
Sys_Printf( "FloodLighting enabled via worldspawn _floodlight key.\n" );
}
else
{
floodlightRGB = { 0.94, 0.94, 1.0 };
}
if ( colorsRGB ) {
floodlightRGB[0] = Image_LinearFloatFromsRGBFloat( floodlightRGB[0] );
floodlightRGB[1] = Image_LinearFloatFromsRGBFloat( floodlightRGB[1] );
floodlightRGB[2] = Image_LinearFloatFromsRGBFloat( floodlightRGB[2] );
}
ColorNormalize( floodlightRGB );
}
/*
FloodLightForSample()
calculates floodlight value for a given sample
once again, kudos to the dirtmapping coder
*/
float FloodLightForSample( trace_t *trace, float floodLightDistance, bool floodLightLowQuality ){
int i;
float contribution;
float gatherLight, outLight;
Vector3 myUp, myRt;
int vecs = 0;
gatherLight = 0;
/* dummy check */
//if( !dirty )
// return 1.0f;
if ( trace == NULL || trace->cluster < 0 ) {
return 0.0f;
}
/* setup */
const float dd = floodLightDistance;
const Vector3 normal( trace->normal );
/* check if the normal is aligned to the world-up */
if ( normal[ 0 ] == 0.0f && normal[ 1 ] == 0.0f && ( normal[ 2 ] == 1.0f || normal[ 2 ] == -1.0f ) ) {
if ( normal[ 2 ] == 1.0f ) {
myRt = g_vector3_axis_x;
myUp = g_vector3_axis_y;
}
else if ( normal[ 2 ] == -1.0f ) {
myRt = -g_vector3_axis_x;
myUp = g_vector3_axis_y;
}
}
else
{
myRt = VectorNormalized( vector3_cross( normal, g_vector3_axis_z ) );
myUp = VectorNormalized( vector3_cross( myRt, normal ) );
}
/* vortex: optimise floodLightLowQuality a bit */
if ( floodLightLowQuality ) {
/* iterate through ordered vectors */
for ( i = 0; i < numFloodVectors; i++ )
if ( rand() % 10 != 0 ) {
continue;
}
}
else
{
/* iterate through ordered vectors */
for ( i = 0; i < numFloodVectors; i++ )
{
vecs++;
/* transform vector into tangent space */
const Vector3 direction = myRt * floodVectors[ i ][ 0 ] + myUp * floodVectors[ i ][ 1 ] + normal * floodVectors[ i ][ 2 ];
/* set endpoint */
trace->end = trace->origin + direction * dd;
// trace->origin += direction;
SetupTrace( trace );
trace->color.set( 1 );
/* trace */
TraceLine( trace );
contribution = 1;
if ( trace->compileFlags & C_SKY || trace->compileFlags & C_TRANSLUCENT ) {
contribution = 1.0f;
}
else if ( trace->opaque ) {
const float d = vector3_length( trace->hit - trace->origin );
// d=trace->distance;
//if (d>256) gatherDirt+=1;
contribution = std::min( 1.f, d / dd );
//gatherDirt += 1.0f - ooDepth * VectorLength( displacement );
}
gatherLight += contribution;
}
}
/* early out */
if ( gatherLight <= 0.0f ) {
return 0.0f;
}
gatherLight /= std::max( 1, vecs );
outLight = std::min( 1.f, gatherLight );
/* return to sender */
return outLight;
}
/*
FloodLightRawLightmap
lighttracer style ambient occlusion light hack.
Kudos to the dirtmapping author for most of this source.
VorteX: modified to floodlight up custom surfaces (q3map_floodLight)
VorteX: fixed problems with deluxemapping
*/
// floodlight pass on a lightmap
void FloodLightRawLightmapPass( rawLightmap_t *lm, Vector3& lmFloodLightRGB, float lmFloodLightIntensity, float lmFloodLightDistance, bool lmFloodLightLowQuality, float floodlightDirectionScale ){
int i, x, y;
surfaceInfo_t *info;
trace_t trace;
// int sx, sy;
// float samples, average, *floodlight2;
memset( &trace,0,sizeof( trace_t ) );
/* setup trace */
trace.testOcclusion = true;
trace.forceSunlight = false;
trace.twoSided = true;
trace.recvShadows = lm->recvShadows;
trace.numSurfaces = lm->numLightSurfaces;
trace.surfaces = &lightSurfaces[ lm->firstLightSurface ];
trace.inhibitRadius = DEFAULT_INHIBIT_RADIUS;
trace.testAll = false;
trace.distance = 1024;
/* twosided lighting (may or may not be a good idea for lightmapped stuff) */
//trace.twoSided = false;
for ( i = 0; i < trace.numSurfaces; i++ )
{
/* get surface */
info = &surfaceInfos[ trace.surfaces[ i ] ];
/* check twosidedness */
if ( info->si->twoSided ) {
trace.twoSided = true;
break;
}
}
/* gather floodlight */
for ( y = 0; y < lm->sh; y++ )
{
for ( x = 0; x < lm->sw; x++ )
{
/* get luxel */
const int cluster = lm->getSuperCluster( x, y );
SuperFloodLight& floodlight = lm->getSuperFloodLight( x, y );
/* set default dirt */
floodlight.value[0] = 0.0f;
/* only look at mapped luxels */
if ( cluster < 0 ) {
continue;
}
/* copy to trace */
trace.cluster = cluster;
trace.origin = lm->getSuperOrigin( x, y );
trace.normal = lm->getSuperNormal( x, y );
/* get floodlight */
const float floodLightAmount = FloodLightForSample( &trace, lmFloodLightDistance, lmFloodLightLowQuality ) * lmFloodLightIntensity;
/* add floodlight */
floodlight.value += lmFloodLightRGB * floodLightAmount;
floodlight.scale += floodlightDirectionScale;
}
}
/* testing no filtering */
return;
#if 0
/* filter "dirt" */
for ( y = 0; y < lm->sh; y++ )
{
for ( x = 0; x < lm->sw; x++ )
{
/* get luxel */
SuperFloodLight& floodlight = lm->getSuperFloodLight( x, y );
/* filter dirt by adjacency to unmapped luxels */
average = floodlight.value[0];
samples = 1.0f;
for ( sy = ( y - 1 ); sy <= ( y + 1 ); sy++ )
{
if ( sy < 0 || sy >= lm->sh ) {
continue;
}
for ( sx = ( x - 1 ); sx <= ( x + 1 ); sx++ )
{
if ( sx < 0 || sx >= lm->sw || ( sx == x && sy == y ) ) {
continue;
}
/* get neighboring luxel */
const SuperFloodLight& floodlight2 = lm->getSuperFloodLight( sx, sy );
if ( lm->getSuperCluster( sx, sy ) < 0 || floodlight2.value[0] <= 0.0f ) {
continue;
}
/* add it */
average += floodlight2.value[0];
samples += 1.0f;
}
/* bail */
if ( samples <= 0.0f ) {
break;
}
}
/* bail */
if ( samples <= 0.0f ) {
continue;
}
/* scale dirt */
floodlight.value[0] = average / samples;
}
}
#endif
}
void FloodLightRawLightmap( int rawLightmapNum ){
rawLightmap_t *lm;
/* bail if this number exceeds the number of raw lightmaps */
if ( rawLightmapNum >= numRawLightmaps ) {
return;
}
/* get lightmap */
lm = &rawLightmaps[ rawLightmapNum ];
/* global pass */
if ( floodlighty && floodlightIntensity ) {
FloodLightRawLightmapPass( lm, floodlightRGB, floodlightIntensity, floodlightDistance, floodlight_lowquality, floodlightDirectionScale );
}
/* custom pass */
if ( lm->floodlightIntensity ) {
FloodLightRawLightmapPass( lm, lm->floodlightRGB, lm->floodlightIntensity, lm->floodlightDistance, false, lm->floodlightDirectionScale );
numSurfacesFloodlighten += 1;
}
}
void FloodlightRawLightmaps(){
Sys_Printf( "--- FloodlightRawLightmap ---\n" );
numSurfacesFloodlighten = 0;
RunThreadsOnIndividual( numRawLightmaps, true, FloodLightRawLightmap );
Sys_Printf( "%9d custom lightmaps floodlighted\n", numSurfacesFloodlighten );
}
/*
FloodLightIlluminate()
illuminate floodlight into lightmap luxels
*/
void FloodlightIlluminateLightmap( rawLightmap_t *lm ){
int x, y, lightmapNum;
/* walk lightmaps */
for ( lightmapNum = 0; lightmapNum < MAX_LIGHTMAPS; lightmapNum++ )
{
/* early out */
if ( lm->superLuxels[ lightmapNum ] == NULL ) {
continue;
}
if( lm->styles[lightmapNum] != LS_NORMAL && lm->styles[lightmapNum] != LS_NONE ) // isStyleLight
continue;
/* apply floodlight to each luxel */
for ( y = 0; y < lm->sh; y++ )
{
for ( x = 0; x < lm->sw; x++ )
{
/* get floodlight */
const SuperFloodLight& floodlight = lm->getSuperFloodLight( x, y );
if ( floodlight.value == g_vector3_identity ) {
continue;
}
/* only process mapped luxels */
if ( lm->getSuperCluster( x, y ) < 0 ) {
continue;
}
/* get particulars */
SuperLuxel& luxel = lm->getSuperLuxel( lightmapNum, x, y );
/* add to lightmap */
luxel.value += floodlight.value;
if ( luxel.count == 0 ) {
luxel.count = 1;
}
/* add to deluxemap */
if ( deluxemap && floodlight.scale > 0 ) {
// use AT LEAST this amount of contribution from ambient for the deluxemap, fixes points that receive ZERO light
const float brightness = std::max( 0.00390625f, RGBTOGRAY( floodlight.value ) * ( 1.0f / 255.0f ) * floodlight.scale );
const Vector3 lightvector = lm->getSuperNormal( x, y ) * brightness;
lm->getSuperDeluxel( x, y ) += lightvector;
}
}
}
}
}