netradiant-custom/plugins/entity/curve.h
Garux df02774ff5 tweak StringOutputStream use
auto str = StringOutputStream()(bla) use form was not doing copy elision or move, but copy
2024-01-29 16:54:08 +06:00

454 lines
13 KiB
C++

/*
Copyright (C) 2001-2006, William Joseph.
All Rights Reserved.
This file is part of GtkRadiant.
GtkRadiant is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
GtkRadiant is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GtkRadiant; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#pragma once
#include "ientity.h"
#include "selectable.h"
#include "renderable.h"
#include <set>
#include "math/curve.h"
#include "stream/stringstream.h"
#include "signal/signal.h"
#include "selectionlib.h"
#include "render.h"
#include "stringio.h"
class RenderableCurve : public OpenGLRenderable
{
public:
std::vector<PointVertex> m_vertices;
void render( RenderStateFlags state ) const {
pointvertex_gl_array( &m_vertices.front() );
gl().glDrawArrays( GL_LINE_STRIP, 0, GLsizei( m_vertices.size() ) );
}
};
inline void plotBasisFunction( std::size_t numSegments, int point, int degree ){
Knots knots;
KnotVector_openUniform( knots, 4, degree );
globalOutputStream() << "plotBasisFunction point " << point << " of 4, knot vector:";
for ( Knots::iterator i = knots.begin(); i != knots.end(); ++i )
{
globalOutputStream() << ' ' << *i;
}
globalOutputStream() << '\n';
globalOutputStream() << "t=0 basis=" << BSpline_basis( knots, point, degree, 0.0 ) << '\n';
for ( std::size_t i = 1; i < numSegments; ++i )
{
double t = ( 1.0 / double(numSegments) ) * double(i);
globalOutputStream() << "t=" << t << " basis=" << BSpline_basis( knots, point, degree, t ) << '\n';
}
globalOutputStream() << "t=1 basis=" << BSpline_basis( knots, point, degree, 1.0 ) << '\n';
}
inline bool ControlPoints_parse( ControlPoints& controlPoints, const char* value ){
StringTokeniser tokeniser( value, " " );
std::size_t size;
if ( !string_parse_size( tokeniser.getToken(), size ) ) {
return false;
}
if ( size < 3 ) {
return false;
}
controlPoints.resize( size );
if ( !string_equal( tokeniser.getToken(), "(" ) ) {
return false;
}
for ( ControlPoints::iterator i = controlPoints.begin(); i != controlPoints.end(); ++i )
{
if ( !string_parse_float( tokeniser.getToken(), ( *i ).x() )
|| !string_parse_float( tokeniser.getToken(), ( *i ).y() )
|| !string_parse_float( tokeniser.getToken(), ( *i ).z() ) ) {
return false;
}
}
if ( !string_equal( tokeniser.getToken(), ")" ) ) {
return false;
}
return true;
}
inline void ControlPoints_write( const ControlPoints& controlPoints, StringOutputStream& value ){
value << controlPoints.size() << " (";
for ( ControlPoints::const_iterator i = controlPoints.begin(); i != controlPoints.end(); ++i )
{
value << ' ' << ( *i ).x() << ' ' << ( *i ).y() << ' ' << ( *i ).z() << ' ';
}
value << ')';
}
inline void ControlPoint_testSelect( const Vector3& point, ObservedSelectable& selectable, Selector& selector, SelectionTest& test ){
SelectionIntersection best;
test.TestPoint( point, best );
if ( best.valid() ) {
Selector_add( selector, selectable, best );
}
}
class ControlPointTransform
{
const Matrix4& m_matrix;
public:
ControlPointTransform( const Matrix4& matrix ) : m_matrix( matrix ){
}
void operator()( Vector3& point ) const {
matrix4_transform_point( m_matrix, point );
}
};
class ControlPointSnap
{
float m_snap;
public:
ControlPointSnap( float snap ) : m_snap( snap ){
}
void operator()( Vector3& point ) const {
vector3_snap( point, m_snap );
}
};
class ControlPointAdd
{
RenderablePointVector& m_points;
public:
ControlPointAdd( RenderablePointVector& points ) : m_points( points ){
}
void operator()( const Vector3& point ) const {
m_points.push_back( PointVertex( vertex3f_for_vector3( point ), colour_vertex ) );
}
};
class ControlPointAddSelected
{
RenderablePointVector& m_points;
public:
ControlPointAddSelected( RenderablePointVector& points ) : m_points( points ){
}
void operator()( const Vector3& point ) const {
m_points.push_back( PointVertex( vertex3f_for_vector3( point ), colour_selected ) );
}
};
class CurveEditType
{
public:
Shader* m_controlsShader;
Shader* m_selectedShader;
};
inline void ControlPoints_write( ControlPoints& controlPoints, const char* key, Entity& entity ){
StringOutputStream value( 256 );
if ( !controlPoints.empty() ) {
ControlPoints_write( controlPoints, value );
}
entity.setKeyValue( key, value );
}
class CurveEdit
{
SelectionChangeCallback m_selectionChanged;
ControlPoints& m_controlPoints;
typedef Array<ObservedSelectable> Selectables;
Selectables m_selectables;
RenderablePointVector m_controlsRender;
mutable RenderablePointVector m_selectedRender;
public:
typedef Static<CurveEditType> Type;
CurveEdit( ControlPoints& controlPoints, const SelectionChangeCallback& selectionChanged ) :
m_selectionChanged( selectionChanged ),
m_controlPoints( controlPoints ),
m_controlsRender( GL_POINTS ),
m_selectedRender( GL_POINTS ){
}
template<typename Functor>
const Functor& forEachSelected( const Functor& functor ){
ASSERT_MESSAGE( m_controlPoints.size() == m_selectables.size(), "curve instance mismatch" );
ControlPoints::iterator p = m_controlPoints.begin();
for ( Selectables::iterator i = m_selectables.begin(); i != m_selectables.end(); ++i, ++p )
{
if ( ( *i ).isSelected() ) {
functor( *p );
}
}
return functor;
}
template<typename Functor>
const Functor& forEachSelected( const Functor& functor ) const {
ASSERT_MESSAGE( m_controlPoints.size() == m_selectables.size(), "curve instance mismatch" );
ControlPoints::const_iterator p = m_controlPoints.begin();
for ( Selectables::const_iterator i = m_selectables.begin(); i != m_selectables.end(); ++i, ++p )
{
if ( ( *i ).isSelected() ) {
functor( *p );
}
}
return functor;
}
template<typename Functor>
const Functor& forEach( const Functor& functor ) const {
for ( ControlPoints::const_iterator i = m_controlPoints.begin(); i != m_controlPoints.end(); ++i )
{
functor( *i );
}
return functor;
}
void testSelect( Selector& selector, SelectionTest& test ){
ASSERT_MESSAGE( m_controlPoints.size() == m_selectables.size(), "curve instance mismatch" );
ControlPoints::const_iterator p = m_controlPoints.begin();
for ( Selectables::iterator i = m_selectables.begin(); i != m_selectables.end(); ++i, ++p )
{
ControlPoint_testSelect( *p, *i, selector, test );
}
}
bool isSelected() const {
for ( Selectables::const_iterator i = m_selectables.begin(); i != m_selectables.end(); ++i )
{
if ( ( *i ).isSelected() ) {
return true;
}
}
return false;
}
void setSelected( bool selected ){
for ( Selectables::iterator i = m_selectables.begin(); i != m_selectables.end(); ++i )
{
( *i ).setSelected( selected );
}
}
void write( const char* key, Entity& entity ){
ControlPoints_write( m_controlPoints, key, entity );
}
void transform( const Matrix4& matrix ){
forEachSelected( ControlPointTransform( matrix ) );
}
void snapto( float snap ){
forEachSelected( ControlPointSnap( snap ) );
}
void updateSelected() const {
m_selectedRender.clear();
forEachSelected( ControlPointAddSelected( m_selectedRender ) );
}
void renderComponents( Renderer& renderer, const VolumeTest& volume, const Matrix4& localToWorld ) const {
renderer.SetState( Type::instance().m_controlsShader, Renderer::eWireframeOnly );
renderer.SetState( Type::instance().m_controlsShader, Renderer::eFullMaterials );
renderer.addRenderable( m_controlsRender, localToWorld );
}
void renderComponentsSelected( Renderer& renderer, const VolumeTest& volume, const Matrix4& localToWorld ) const {
updateSelected();
if ( !m_selectedRender.empty() ) {
renderer.Highlight( Renderer::ePrimitive, false );
renderer.SetState( Type::instance().m_selectedShader, Renderer::eWireframeOnly );
renderer.SetState( Type::instance().m_selectedShader, Renderer::eFullMaterials );
renderer.addRenderable( m_selectedRender, localToWorld );
}
}
void curveChanged(){
m_selectables.resize( m_controlPoints.size(), m_selectionChanged );
m_controlsRender.clear();
m_controlsRender.reserve( m_controlPoints.size() );
forEach( ControlPointAdd( m_controlsRender ) );
m_selectedRender.reserve( m_controlPoints.size() );
}
typedef MemberCaller<CurveEdit, &CurveEdit::curveChanged> CurveChangedCaller;
};
const int NURBS_degree = 3;
class NURBSCurve
{
Signal0 m_curveChanged;
Callback m_boundsChanged;
public:
ControlPoints m_controlPoints;
ControlPoints m_controlPointsTransformed;
NURBSWeights m_weights;
Knots m_knots;
RenderableCurve m_renderCurve;
AABB m_bounds;
NURBSCurve( const Callback& boundsChanged ) : m_boundsChanged( boundsChanged ){
}
SignalHandlerId connect( const SignalHandler& curveChanged ){
curveChanged();
return m_curveChanged.connectLast( curveChanged );
}
void disconnect( SignalHandlerId id ){
m_curveChanged.disconnect( id );
}
void notify(){
m_curveChanged();
}
void tesselate(){
if ( !m_controlPointsTransformed.empty() ) {
const std::size_t numSegments = ( m_controlPointsTransformed.size() - 1 ) * 16;
m_renderCurve.m_vertices.resize( numSegments + 1 );
m_renderCurve.m_vertices[0].vertex = vertex3f_for_vector3( m_controlPointsTransformed[0] );
for ( std::size_t i = 1; i < numSegments; ++i )
{
m_renderCurve.m_vertices[i].vertex = vertex3f_for_vector3( NURBS_evaluate( m_controlPointsTransformed, m_weights, m_knots, NURBS_degree, ( 1.0 / double(numSegments) ) * double(i) ) );
}
m_renderCurve.m_vertices[numSegments].vertex = vertex3f_for_vector3( m_controlPointsTransformed[m_controlPointsTransformed.size() - 1] );
}
else
{
m_renderCurve.m_vertices.clear();
}
}
void curveChanged(){
tesselate();
m_bounds = AABB();
for ( ControlPoints::iterator i = m_controlPointsTransformed.begin(); i != m_controlPointsTransformed.end(); ++i )
{
aabb_extend_by_point_safe( m_bounds, ( *i ) );
}
m_boundsChanged();
notify();
}
bool parseCurve( const char* value ){
if ( !ControlPoints_parse( m_controlPoints, value ) ) {
return false;
}
m_weights.resize( m_controlPoints.size() );
for ( NURBSWeights::iterator i = m_weights.begin(); i != m_weights.end(); ++i )
{
( *i ) = 1;
}
KnotVector_openUniform( m_knots, m_controlPoints.size(), NURBS_degree );
//plotBasisFunction(8, 0, NURBS_degree);
return true;
}
void curveChanged( const char* value ){
if ( string_empty( value ) || !parseCurve( value ) ) {
m_controlPoints.resize( 0 );
m_knots.resize( 0 );
m_weights.resize( 0 );
}
m_controlPointsTransformed = m_controlPoints;
curveChanged();
}
typedef MemberCaller1<NURBSCurve, const char*, &NURBSCurve::curveChanged> CurveChangedCaller;
};
class CatmullRomSpline
{
Signal0 m_curveChanged;
Callback m_boundsChanged;
public:
ControlPoints m_controlPoints;
ControlPoints m_controlPointsTransformed;
RenderableCurve m_renderCurve;
AABB m_bounds;
CatmullRomSpline( const Callback& boundsChanged ) : m_boundsChanged( boundsChanged ){
}
SignalHandlerId connect( const SignalHandler& curveChanged ){
curveChanged();
return m_curveChanged.connectLast( curveChanged );
}
void disconnect( SignalHandlerId id ){
m_curveChanged.disconnect( id );
}
void notify(){
m_curveChanged();
}
void tesselate(){
if ( !m_controlPointsTransformed.empty() ) {
const std::size_t numSegments = ( m_controlPointsTransformed.size() - 1 ) * 16;
m_renderCurve.m_vertices.resize( numSegments + 1 );
m_renderCurve.m_vertices[0].vertex = vertex3f_for_vector3( m_controlPointsTransformed[0] );
for ( std::size_t i = 1; i < numSegments; ++i )
{
m_renderCurve.m_vertices[i].vertex = vertex3f_for_vector3( CatmullRom_evaluate( m_controlPointsTransformed, ( 1.0 / double(numSegments) ) * double(i) ) );
}
m_renderCurve.m_vertices[numSegments].vertex = vertex3f_for_vector3( m_controlPointsTransformed[m_controlPointsTransformed.size() - 1] );
}
else
{
m_renderCurve.m_vertices.clear();
}
}
bool parseCurve( const char* value ){
return ControlPoints_parse( m_controlPoints, value );
}
void curveChanged(){
tesselate();
m_bounds = AABB();
for ( ControlPoints::iterator i = m_controlPointsTransformed.begin(); i != m_controlPointsTransformed.end(); ++i )
{
aabb_extend_by_point_safe( m_bounds, ( *i ) );
}
m_boundsChanged();
notify();
}
void curveChanged( const char* value ){
if ( string_empty( value ) || !parseCurve( value ) ) {
m_controlPoints.resize( 0 );
}
m_controlPointsTransformed = m_controlPoints;
curveChanged();
}
typedef MemberCaller1<CatmullRomSpline, const char*, &CatmullRomSpline::curveChanged> CurveChangedCaller;
};
const char* const curve_Nurbs = "curve_Nurbs";
const char* const curve_CatmullRomSpline = "curve_CatmullRomSpline";