179 lines
5.2 KiB
C++
179 lines
5.2 KiB
C++
/*
|
|
Copyright (C) 2001-2006, William Joseph.
|
|
All Rights Reserved.
|
|
|
|
This file is part of GtkRadiant.
|
|
|
|
GtkRadiant is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
GtkRadiant is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GtkRadiant; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
/// \file
|
|
/// \brief Line data types and related operations.
|
|
|
|
#include "math/vector.h"
|
|
#include "math/plane.h"
|
|
|
|
/// \brief A line segment defined by a start point and and end point.
|
|
class Line
|
|
{
|
|
public:
|
|
Vector3 start, end;
|
|
|
|
Line(){
|
|
}
|
|
Line( const Vector3& start_, const Vector3& end_ ) : start( start_ ), end( end_ ){
|
|
}
|
|
};
|
|
|
|
inline Vector3 line_closest_point( const Line& line, const Vector3& point ){
|
|
Vector3 v = line.end - line.start;
|
|
Vector3 w = point - line.start;
|
|
|
|
double c1 = vector3_dot( w,v );
|
|
if ( c1 <= 0 ) {
|
|
return line.start;
|
|
}
|
|
|
|
double c2 = vector3_dot( v,v );
|
|
if ( c2 <= c1 ) {
|
|
return line.end;
|
|
}
|
|
|
|
return Vector3( line.start + v * ( c1 / c2 ) );
|
|
}
|
|
|
|
|
|
class Segment
|
|
{
|
|
public:
|
|
Vector3 origin, extents;
|
|
|
|
Segment(){
|
|
}
|
|
Segment( const Vector3& origin_, const Vector3& extents_ ) :
|
|
origin( origin_ ), extents( extents_ ){
|
|
}
|
|
};
|
|
|
|
|
|
inline Segment segment_for_startend( const Vector3& start, const Vector3& end ){
|
|
Segment segment;
|
|
segment.origin = vector3_mid( start, end );
|
|
segment.extents = vector3_subtracted( end, segment.origin );
|
|
return segment;
|
|
}
|
|
|
|
inline unsigned int segment_classify_plane( const Segment& segment, const Plane3& plane ){
|
|
double distance_origin = vector3_dot( plane.normal(), segment.origin ) + plane.dist();
|
|
|
|
if ( fabs( distance_origin ) < fabs( vector3_dot( plane.normal(), segment.extents ) ) ) {
|
|
return 1; // partially inside
|
|
}
|
|
else if ( distance_origin < 0 ) {
|
|
return 2; // totally inside
|
|
}
|
|
return 0; // totally outside
|
|
}
|
|
|
|
|
|
template<typename T>
|
|
class BasicRay
|
|
{
|
|
public:
|
|
BasicVector3<T> origin, direction;
|
|
|
|
BasicRay(){
|
|
}
|
|
BasicRay( const BasicVector3<T>& origin_, const BasicVector3<T>& direction_ ) :
|
|
origin( origin_ ), direction( direction_ ){
|
|
}
|
|
};
|
|
|
|
typedef BasicRay<float> Ray;
|
|
typedef BasicRay<double> DoubleRay;
|
|
|
|
template<typename T>
|
|
inline BasicRay<T> ray_for_points( const BasicVector3<T>& origin, const BasicVector3<T>& p2 ){
|
|
return BasicRay<T>( origin, vector3_normalised( vector3_subtracted( p2, origin ) ) );
|
|
}
|
|
|
|
inline void ray_transform( Ray& ray, const Matrix4& matrix ){
|
|
matrix4_transform_point( matrix, ray.origin );
|
|
matrix4_transform_direction( matrix, ray.direction );
|
|
}
|
|
|
|
// closest-point-on-line
|
|
inline double ray_squared_distance_to_point( const Ray& ray, const Vector3& point ){
|
|
return vector3_length_squared(
|
|
vector3_subtracted(
|
|
point,
|
|
vector3_added(
|
|
ray.origin,
|
|
vector3_scaled(
|
|
ray.direction,
|
|
vector3_dot(
|
|
vector3_subtracted( point, ray.origin ),
|
|
ray.direction
|
|
)
|
|
)
|
|
)
|
|
)
|
|
);
|
|
}
|
|
|
|
inline double ray_distance_to_plane( const Ray& ray, const Plane3& plane ){
|
|
return -plane3_distance_to_point( plane, ray.origin ) / vector3_dot( ray.direction, plane.normal() );
|
|
}
|
|
|
|
/// \brief Returns the point at which \p ray intersects \p plane, or an undefined value if there is no intersection.
|
|
template<typename T>
|
|
inline BasicVector3<T> ray_intersect_plane( const BasicRay<T>& ray, const Plane3& plane ){
|
|
return ray.origin + vector3_scaled(
|
|
ray.direction,
|
|
-plane3_distance_to_point( plane, ray.origin )
|
|
/ vector3_dot( ray.direction, plane.normal() )
|
|
);
|
|
}
|
|
|
|
/// \brief Returns the infinite line that is the intersection of \p plane and \p other.
|
|
inline DoubleRay plane3_intersect_plane3( const Plane3& plane, const Plane3& other ){
|
|
DoubleRay line;
|
|
line.direction = vector3_cross( plane.normal(), other.normal() );
|
|
switch ( vector3_max_abs_component_index( line.direction ) )
|
|
{
|
|
case 0:
|
|
line.origin.x() = 0;
|
|
line.origin.y() = ( -other.dist() * plane.normal().z() - -plane.dist() * other.normal().z() ) / line.direction.x();
|
|
line.origin.z() = ( -plane.dist() * other.normal().y() - -other.dist() * plane.normal().y() ) / line.direction.x();
|
|
break;
|
|
case 1:
|
|
line.origin.x() = ( -plane.dist() * other.normal().z() - -other.dist() * plane.normal().z() ) / line.direction.y();
|
|
line.origin.y() = 0;
|
|
line.origin.z() = ( -other.dist() * plane.normal().x() - -plane.dist() * other.normal().x() ) / line.direction.y();
|
|
break;
|
|
case 2:
|
|
line.origin.x() = ( -other.dist() * plane.normal().y() - -plane.dist() * other.normal().y() ) / line.direction.z();
|
|
line.origin.y() = ( -plane.dist() * other.normal().x() - -other.dist() * plane.normal().x() ) / line.direction.z();
|
|
line.origin.z() = 0;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return line;
|
|
}
|