netradiant-custom/radiant/winding.cpp

316 lines
11 KiB
C++

/*
Copyright (C) 1999-2006 Id Software, Inc. and contributors.
For a list of contributors, see the accompanying CONTRIBUTORS file.
This file is part of GtkRadiant.
GtkRadiant is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
GtkRadiant is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GtkRadiant; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "winding.h"
#include <algorithm>
#include "math/line.h"
inline double plane3_distance_to_point( const Plane3& plane, const DoubleVector3& point ){
return vector3_dot( point, plane.normal() ) - plane.dist();
}
inline double plane3_distance_to_point( const Plane3& plane, const Vector3& point ){
return vector3_dot( point, plane.normal() ) - plane.dist();
}
/// \brief Returns the point at which \p line intersects \p plane, or an undefined value if there is no intersection.
inline DoubleVector3 line_intersect_plane( const DoubleLine& line, const Plane3& plane ){
return line.origin + vector3_scaled(
line.direction,
-plane3_distance_to_point( plane, line.origin )
/ vector3_dot( line.direction, plane.normal() )
);
}
inline bool float_is_largest_absolute( double axis, double other ){
return fabs( axis ) > fabs( other );
}
/// \brief Returns the index of the component of \p v that has the largest absolute value.
inline int vector3_largest_absolute_component_index( const DoubleVector3& v ){
return ( float_is_largest_absolute( v[1], v[0] ) )
? ( float_is_largest_absolute( v[1], v[2] ) )
? 1
: 2
: ( float_is_largest_absolute( v[0], v[2] ) )
? 0
: 2;
}
/// \brief Returns the infinite line that is the intersection of \p plane and \p other.
DoubleLine plane3_intersect_plane3( const Plane3& plane, const Plane3& other ){
DoubleLine line;
line.direction = vector3_cross( plane.normal(), other.normal() );
switch ( vector3_largest_absolute_component_index( line.direction ) )
{
case 0:
line.origin.x() = 0;
line.origin.y() = ( -other.dist() * plane.normal().z() - -plane.dist() * other.normal().z() ) / line.direction.x();
line.origin.z() = ( -plane.dist() * other.normal().y() - -other.dist() * plane.normal().y() ) / line.direction.x();
break;
case 1:
line.origin.x() = ( -plane.dist() * other.normal().z() - -other.dist() * plane.normal().z() ) / line.direction.y();
line.origin.y() = 0;
line.origin.z() = ( -other.dist() * plane.normal().x() - -plane.dist() * other.normal().x() ) / line.direction.y();
break;
case 2:
line.origin.x() = ( -other.dist() * plane.normal().y() - -plane.dist() * other.normal().y() ) / line.direction.z();
line.origin.y() = ( -plane.dist() * other.normal().x() - -other.dist() * plane.normal().x() ) / line.direction.z();
line.origin.z() = 0;
break;
default:
break;
}
return line;
}
/// \brief Keep the value of \p infinity as small as possible to improve precision in Winding_Clip.
void Winding_createInfinite( FixedWinding& winding, const Plane3& plane, double infinity ){
double max = -infinity;
int x = -1;
for ( int i = 0 ; i < 3; i++ )
{
double d = fabs( plane.normal()[i] );
if ( d > max ) {
x = i;
max = d;
}
}
if ( x == -1 ) {
globalErrorStream() << "invalid plane\n";
return;
}
DoubleVector3 vup = g_vector3_identity;
switch ( x )
{
case 0:
case 1:
vup[2] = 1;
break;
case 2:
vup[0] = 1;
break;
}
vector3_add( vup, vector3_scaled( plane.normal(), -vector3_dot( vup, plane.normal() ) ) );
vector3_normalise( vup );
DoubleVector3 org = vector3_scaled( plane.normal(), plane.dist() );
DoubleVector3 vright = vector3_cross( vup, plane.normal() );
vector3_scale( vup, infinity );
vector3_scale( vright, infinity );
// project a really big axis aligned box onto the plane
DoubleLine r1, r2, r3, r4;
r1.origin = vector3_added( vector3_subtracted( org, vright ), vup );
r1.direction = vector3_normalised( vright );
winding.push_back( FixedWindingVertex( r1.origin, r1, c_brush_maxFaces ) );
r2.origin = vector3_added( vector3_added( org, vright ), vup );
r2.direction = vector3_normalised( vector3_negated( vup ) );
winding.push_back( FixedWindingVertex( r2.origin, r2, c_brush_maxFaces ) );
r3.origin = vector3_subtracted( vector3_added( org, vright ), vup );
r3.direction = vector3_normalised( vector3_negated( vright ) );
winding.push_back( FixedWindingVertex( r3.origin, r3, c_brush_maxFaces ) );
r4.origin = vector3_subtracted( vector3_subtracted( org, vright ), vup );
r4.direction = vector3_normalised( vup );
winding.push_back( FixedWindingVertex( r4.origin, r4, c_brush_maxFaces ) );
}
inline PlaneClassification Winding_ClassifyDistance( const double distance, const double epsilon ){
if ( distance > epsilon ) {
return ePlaneFront;
}
if ( distance < -epsilon ) {
return ePlaneBack;
}
return ePlaneOn;
}
/// \brief Returns true if
/// !flipped && winding is completely BACK or ON
/// or flipped && winding is completely FRONT or ON
bool Winding_TestPlane( const Winding& winding, const Plane3& plane, bool flipped ){
const int test = ( flipped ) ? ePlaneBack : ePlaneFront;
for ( Winding::const_iterator i = winding.begin(); i != winding.end(); ++i )
{
if ( test == Winding_ClassifyDistance( plane3_distance_to_point( plane, ( *i ).vertex ), ON_EPSILON ) ) {
return false;
}
}
return true;
}
/// \brief Returns true if any point in \p w1 is in front of plane2, or any point in \p w2 is in front of plane1
bool Winding_PlanesConcave( const Winding& w1, const Winding& w2, const Plane3& plane1, const Plane3& plane2 ){
return !Winding_TestPlane( w1, plane2, false ) || !Winding_TestPlane( w2, plane1, false );
}
brushsplit_t Winding_ClassifyPlane( const Winding& winding, const Plane3& plane ){
brushsplit_t split;
for ( Winding::const_iterator i = winding.begin(); i != winding.end(); ++i )
{
++split.counts[Winding_ClassifyDistance( plane3_distance_to_point( plane, ( *i ).vertex ), ON_EPSILON )];
}
return split;
}
#define DEBUG_EPSILON ON_EPSILON
const double DEBUG_EPSILON_SQUARED = DEBUG_EPSILON * DEBUG_EPSILON;
#define WINDING_DEBUG 0
/// \brief Clip \p winding which lies on \p plane by \p clipPlane, resulting in \p clipped.
/// If \p winding is completely in front of the plane, \p clipped will be identical to \p winding.
/// If \p winding is completely in back of the plane, \p clipped will be empty.
/// If \p winding intersects the plane, the edge of \p clipped which lies on \p clipPlane will store the value of \p adjacent.
void Winding_Clip( const FixedWinding& winding, const Plane3& plane, const Plane3& clipPlane, std::size_t adjacent, FixedWinding& clipped ){
PlaneClassification classification = Winding_ClassifyDistance( plane3_distance_to_point( clipPlane, winding.back().vertex ), ON_EPSILON );
PlaneClassification nextClassification;
// for each edge
for ( std::size_t next = 0, i = winding.size() - 1; next != winding.size(); i = next, ++next, classification = nextClassification )
{
nextClassification = Winding_ClassifyDistance( plane3_distance_to_point( clipPlane, winding[next].vertex ), ON_EPSILON );
const FixedWindingVertex& vertex = winding[i];
// if first vertex of edge is ON
if ( classification == ePlaneOn ) {
// append first vertex to output winding
if ( nextClassification == ePlaneBack ) {
// this edge lies on the clip plane
clipped.push_back( FixedWindingVertex( vertex.vertex, plane3_intersect_plane3( plane, clipPlane ), adjacent ) );
}
else
{
clipped.push_back( vertex );
}
continue;
}
// if first vertex of edge is FRONT
if ( classification == ePlaneFront ) {
// add first vertex to output winding
clipped.push_back( vertex );
}
// if second vertex of edge is ON
if ( nextClassification == ePlaneOn ) {
continue;
}
// else if second vertex of edge is same as first
else if ( nextClassification == classification ) {
continue;
}
// else if first vertex of edge is FRONT and there are only two edges
else if ( classification == ePlaneFront && winding.size() == 2 ) {
continue;
}
// else first vertex is FRONT and second is BACK or vice versa
else
{
// append intersection point of line and plane to output winding
DoubleVector3 mid( line_intersect_plane( vertex.edge, clipPlane ) );
if ( classification == ePlaneFront ) {
// this edge lies on the clip plane
clipped.push_back( FixedWindingVertex( mid, plane3_intersect_plane3( plane, clipPlane ), adjacent ) );
}
else
{
clipped.push_back( FixedWindingVertex( mid, vertex.edge, vertex.adjacent ) );
}
}
}
}
std::size_t Winding_FindAdjacent( const Winding& winding, std::size_t face ){
for ( std::size_t i = 0; i < winding.numpoints; ++i )
{
ASSERT_MESSAGE( winding[i].adjacent != c_brush_maxFaces, "edge connectivity data is invalid" );
if ( winding[i].adjacent == face ) {
return i;
}
}
return c_brush_maxFaces;
}
std::size_t Winding_Opposite( const Winding& winding, const std::size_t index, const std::size_t other ){
ASSERT_MESSAGE( index < winding.numpoints && other < winding.numpoints, "Winding_Opposite: index out of range" );
double dist_best = 0;
std::size_t index_best = c_brush_maxFaces;
Ray edge( ray_for_points( winding[index].vertex, winding[other].vertex ) );
for ( std::size_t i = 0; i < winding.numpoints; ++i )
{
if ( i == index || i == other ) {
continue;
}
double dist_squared = ray_squared_distance_to_point( edge, winding[i].vertex );
if ( dist_squared > dist_best ) {
dist_best = dist_squared;
index_best = i;
}
}
return index_best;
}
std::size_t Winding_Opposite( const Winding& winding, const std::size_t index ){
return Winding_Opposite( winding, index, Winding_next( winding, index ) );
}
/// \brief Calculate the \p centroid of the polygon defined by \p winding which lies on plane \p plane.
void Winding_Centroid( const Winding& winding, const Plane3& plane, Vector3& centroid ){
double area2 = 0, x_sum = 0, y_sum = 0;
const ProjectionAxis axis = projectionaxis_for_normal( plane.normal() );
const indexremap_t remap = indexremap_for_projectionaxis( axis );
for ( std::size_t i = winding.numpoints - 1, j = 0; j < winding.numpoints; i = j, ++j )
{
const double ai = winding[i].vertex[remap.x] * winding[j].vertex[remap.y] - winding[j].vertex[remap.x] * winding[i].vertex[remap.y];
area2 += ai;
x_sum += ( winding[j].vertex[remap.x] + winding[i].vertex[remap.x] ) * ai;
y_sum += ( winding[j].vertex[remap.y] + winding[i].vertex[remap.y] ) * ai;
}
centroid[remap.x] = static_cast<float>( x_sum / ( 3 * area2 ) );
centroid[remap.y] = static_cast<float>( y_sum / ( 3 * area2 ) );
{
Ray ray( Vector3( 0, 0, 0 ), Vector3( 0, 0, 0 ) );
ray.origin[remap.x] = centroid[remap.x];
ray.origin[remap.y] = centroid[remap.y];
ray.direction[remap.z] = 1;
centroid[remap.z] = static_cast<float>( ray_distance_to_plane( ray, plane ) );
}
}