netradiant-custom/radiant/selection.cpp
2021-05-24 20:23:09 +03:00

8541 lines
299 KiB
C++

/*
Copyright (C) 2001-2006, William Joseph.
All Rights Reserved.
This file is part of GtkRadiant.
GtkRadiant is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
GtkRadiant is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GtkRadiant; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "selection.h"
#include "debugging/debugging.h"
#include <map>
#include <list>
#include <set>
#include "windowobserver.h"
#include "iundo.h"
#include "ientity.h"
#include "cullable.h"
#include "renderable.h"
#include "selectable.h"
#include "editable.h"
#include "math/frustum.h"
#include "signal/signal.h"
#include "generic/object.h"
#include "selectionlib.h"
#include "render.h"
#include "view.h"
#include "renderer.h"
#include "stream/stringstream.h"
#include "eclasslib.h"
#include "generic/bitfield.h"
#include "generic/static.h"
#include "pivot.h"
#include "stringio.h"
#include "container/container.h"
#include "grid.h"
int g_SELECT_EPSILON = 12;
struct Pivot2World
{
Matrix4 m_worldSpace;
Matrix4 m_viewpointSpace;
Matrix4 m_viewplaneSpace;
Vector3 m_axis_screen;
void update( const Matrix4& pivot2world, const Matrix4& modelview, const Matrix4& projection, const Matrix4& viewport ){
Pivot2World_worldSpace( m_worldSpace, pivot2world, modelview, projection, viewport );
Pivot2World_viewpointSpace( m_viewpointSpace, m_axis_screen, pivot2world, modelview, projection, viewport );
Pivot2World_viewplaneSpace( m_viewplaneSpace, pivot2world, modelview, projection, viewport );
}
};
inline Vector3 point_for_device_point( const Matrix4& device2object, const float x, const float y, const float z ){
// transform from normalised device coords to object coords
return vector4_projected( matrix4_transformed_vector4( device2object, Vector4( x, y, z, 1 ) ) );
}
inline Ray ray_for_device_point( const Matrix4& device2object, const float x, const float y ){
return ray_for_points( point_for_device_point( device2object, x, y, -1 ), // point at x, y, zNear
point_for_device_point( device2object, x, y, 0 ) // point at x, y, zFar
//point_for_device_point( device2object, x, y, 1 ) //sometimes is inaccurate up to negative ray direction
);
}
inline Vector3 sphere_intersect_ray( const Vector3& origin, float radius, const Ray& ray ){
const Vector3 intersection = vector3_subtracted( origin, ray.origin );
const double a = vector3_dot( intersection, ray.direction );
const double d = radius * radius - ( vector3_dot( intersection, intersection ) - a * a );
if ( d > 0 ) {
return vector3_added( ray.origin, vector3_scaled( ray.direction, a - sqrt( d ) ) );
// return true;
}
else
{
return vector3_added( ray.origin, vector3_scaled( ray.direction, a ) );
// return false;
}
}
inline Vector3 ray_intersect_ray( const Ray& ray, const Ray& other ){
const Vector3 intersection = vector3_subtracted( ray.origin, other.origin );
//float a = 1;//vector3_dot(ray.direction, ray.direction); // always >= 0
const double dot = vector3_dot( ray.direction, other.direction );
//float c = 1;//vector3_dot(other.direction, other.direction); // always >= 0
const double d = vector3_dot( ray.direction, intersection );
const double e = vector3_dot( other.direction, intersection );
const double D = 1 - dot * dot; //a*c - dot*dot; // always >= 0
if ( D < 0.000001 ) {
// the lines are almost parallel
return vector3_added( other.origin, vector3_scaled( other.direction, e ) );
}
else
{
return vector3_added( other.origin, vector3_scaled( other.direction, ( e - dot * d ) / D ) );
}
}
const Vector3 g_origin( 0, 0, 0 );
const float g_radius = 64;
inline Vector3 point_on_sphere( const Matrix4& device2object, const float x, const float y, const float radius = g_radius ){
return sphere_intersect_ray( g_origin,
radius,
ray_for_device_point( device2object, x, y ) );
}
inline Vector3 point_on_axis( const Vector3& axis, const Matrix4& device2object, const float x, const float y ){
return ray_intersect_ray( ray_for_device_point( device2object, x, y ),
Ray( Vector3( 0, 0, 0 ), axis ) );
}
inline Vector3 point_on_plane( const Matrix4& device2object, const float x, const float y ){
const Matrix4 object2device( matrix4_full_inverse( device2object ) );
return vector4_projected( matrix4_transformed_vector4( device2object, Vector4( x, y, object2device[14] / object2device[15], 1 ) ) );
}
inline Vector3 point_on_plane( const Plane3& plane, const Matrix4& object2device, const float x, const float y ){
return ray_intersect_plane( ray_for_device_point( matrix4_full_inverse( object2device ), x, y ),
plane );
}
//! a and b are unit vectors .. returns angle in radians
inline float angle_between( const Vector3& a, const Vector3& b ){
return static_cast<float>( 2.0 * atan2(
vector3_length( vector3_subtracted( a, b ) ),
vector3_length( vector3_added( a, b ) )
) );
}
#if defined( _DEBUG ) && !defined( _DEBUG_QUICKER )
class test_quat
{
public:
test_quat( const Vector3& from, const Vector3& to ){
Vector4 quaternion( quaternion_for_unit_vectors( from, to ) );
Matrix4 matrix( matrix4_rotation_for_quaternion( quaternion_multiplied_by_quaternion( quaternion, c_quaternion_identity ) ) );
}
private:
};
static test_quat bleh( g_vector3_axis_x, g_vector3_axis_y );
#endif
//! axis is a unit vector
inline void constrain_to_axis( Vector3& vec, const Vector3& axis ){
vec = vector3_normalised( vector3_added( vec, vector3_scaled( axis, -vector3_dot( vec, axis ) ) ) );
}
//! a and b are unit vectors .. a and b must be orthogonal to axis .. returns angle in radians
inline float angle_for_axis( const Vector3& a, const Vector3& b, const Vector3& axis ){
if ( vector3_dot( axis, vector3_cross( a, b ) ) > 0.0 ) {
return angle_between( a, b );
}
else{
return -angle_between( a, b );
}
}
inline float distance_for_axis( const Vector3& a, const Vector3& b, const Vector3& axis ){
return static_cast<float>( vector3_dot( b, axis ) - vector3_dot( a, axis ) );
}
class Manipulatable
{
public:
virtual void Construct( const Matrix4& device2manip, const float x, const float y, const AABB& bounds, const Vector3& transform_origin ) = 0;
virtual void Transform( const Matrix4& manip2object, const Matrix4& device2manip, const float x, const float y, const bool snap, const bool snapbbox, const bool alt ) = 0;
static const View* m_view;
static float m_device_point[2];
static float m_device_epsilon[2];
static void assign_static( const View& view, const float device_point[2], const float device_epsilon[2] ){
m_view = &view;
m_device_point[0] = device_point[0];
m_device_point[1] = device_point[1];
m_device_epsilon[0] = device_epsilon[0];
m_device_epsilon[1] = device_epsilon[1];
}
};
const View* Manipulatable::m_view = 0;
float Manipulatable::m_device_point[2];
float Manipulatable::m_device_epsilon[2];
inline Matrix4 transform_local2object( const Matrix4& local, const Matrix4& local2object ){
return matrix4_multiplied_by_matrix4(
matrix4_multiplied_by_matrix4( local2object, local ),
matrix4_full_inverse( local2object )
);
}
inline Matrix4 transform_local2object( const Matrix4& localTransform, const Matrix4& local2parent, const Matrix4& parent2local ){
return matrix4_multiplied_by_matrix4(
matrix4_multiplied_by_matrix4( local2parent, localTransform ),
parent2local
);
}
class Rotatable
{
public:
virtual void rotate( const Quaternion& rotation ) = 0;
};
class RotateFree : public Manipulatable
{
Vector3 m_start;
Rotatable& m_rotatable;
public:
RotateFree( Rotatable& rotatable )
: m_rotatable( rotatable ){
}
void Construct( const Matrix4& device2manip, const float x, const float y, const AABB& bounds, const Vector3& transform_origin ){
m_start = point_on_sphere( device2manip, x, y );
vector3_normalise( m_start );
}
void Transform( const Matrix4& manip2object, const Matrix4& device2manip, const float x, const float y, const bool snap, const bool snapbbox, const bool alt ){
Vector3 current = point_on_sphere( device2manip, x, y );
vector3_normalise( current );
if( snap )
for( std::size_t i = 0; i < 3; ++i )
if( current[i] == 0.f )
return m_rotatable.rotate( quaternion_for_axisangle( g_vector3_axes[i], float_snapped( angle_for_axis( m_start, current, g_vector3_axes[i] ), static_cast<float>( c_pi / 12.0 ) ) ) );
m_rotatable.rotate( quaternion_for_unit_vectors( m_start, current ) );
// m_rotatable.rotate( quaternion_for_sphere_vectors( m_start, current ) ); //wrong math, 2x more sensitive
}
};
class RotateAxis : public Manipulatable
{
Vector3 m_axis;
Vector3 m_start;
float m_radius;
bool m_plane_way;
Plane3 m_plane;
Vector3 m_origin;
Rotatable& m_rotatable;
public:
RotateAxis( Rotatable& rotatable )
: m_radius( g_radius ), m_rotatable( rotatable ){
}
void Construct( const Matrix4& device2manip, const float x, const float y, const AABB& bounds, const Vector3& transform_origin ){
const float dot = vector3_dot( m_axis, m_view->fill()? vector3_normalised( m_view->getViewer() - transform_origin ) : m_view->getViewDir() );
m_plane_way = fabs( dot ) > 0.1;
if( m_plane_way ){
m_origin = transform_origin;
m_plane = Plane3( m_axis, vector3_dot( m_axis, m_origin ) );
m_start = point_on_plane( m_plane, m_view->GetViewMatrix(), x, y ) - m_origin;
vector3_normalise( m_start );
}
else{
m_start = point_on_sphere( device2manip, x, y, m_radius );
constrain_to_axis( m_start, m_axis );
}
}
/// \brief Converts current position to a normalised vector orthogonal to axis.
void Transform( const Matrix4& manip2object, const Matrix4& device2manip, const float x, const float y, const bool snap, const bool snapbbox, const bool alt ){
Vector3 current;
if( m_plane_way ){
current = point_on_plane( m_plane, m_view->GetViewMatrix(), x, y ) - m_origin;
vector3_normalise( current );
}
else{
current = point_on_sphere( device2manip, x, y, m_radius );
constrain_to_axis( current, m_axis );
}
if( snap ){
m_rotatable.rotate( quaternion_for_axisangle( m_axis, float_snapped( angle_for_axis( m_start, current, m_axis ), static_cast<float>( c_pi / 12.0 ) ) ) );
}
else{
m_rotatable.rotate( quaternion_for_axisangle( m_axis, angle_for_axis( m_start, current, m_axis ) ) );
}
}
void SetAxis( const Vector3& axis ){
m_axis = axis;
}
void SetRadius( const float radius ){
m_radius = radius;
}
};
/// \brief snaps changed axes of \p move so that \p bounds stick to closest grid lines.
void aabb_snap_translation( Vector3& move, const AABB& bounds ){
const Vector3 maxs( bounds.origin + bounds.extents );
const Vector3 mins( bounds.origin - bounds.extents );
// globalOutputStream() << "move: " << move << "\n";
for( std::size_t i = 0; i < 3; ++i ){
if( fabs( move[i] ) > 1e-2f ){
const float snapto1 = float_snapped( maxs[i] + move[i], GetSnapGridSize() );
const float snapto2 = float_snapped( mins[i] + move[i], GetSnapGridSize() );
const float dist1 = fabs( fabs( maxs[i] + move[i] ) - fabs( snapto1 ) );
const float dist2 = fabs( fabs( mins[i] + move[i] ) - fabs( snapto2 ) );
// globalOutputStream() << "maxs[i] + move[i]: " << maxs[i] + move[i] << " snapto1: " << snapto1 << " dist1: " << dist1 << "\n";
// globalOutputStream() << "mins[i] + move[i]: " << mins[i] + move[i] << " snapto2: " << snapto2 << " dist2: " << dist2 << "\n";
move[i] = dist2 > dist1 ? snapto1 - maxs[i] : snapto2 - mins[i];
}
}
}
inline Vector3 translation_local2object( const Vector3& local, const Matrix4& local2object ){
return matrix4_get_translation_vec3(
matrix4_multiplied_by_matrix4(
matrix4_translated_by_vec3( local2object, local ),
matrix4_full_inverse( local2object )
)
);
}
inline Vector3 translation_local2object( const Vector3& localTranslation, const Matrix4& local2parent, const Matrix4& parent2local ){
return matrix4_get_translation_vec3(
matrix4_multiplied_by_matrix4(
matrix4_translated_by_vec3( local2parent, localTranslation ),
parent2local
)
);
}
class Translatable
{
public:
virtual void translate( const Vector3& translation ) = 0;
};
class TranslateAxis : public Manipulatable
{
Vector3 m_start;
Vector3 m_axis;
Translatable& m_translatable;
AABB m_bounds;
public:
TranslateAxis( Translatable& translatable )
: m_translatable( translatable ){
}
void Construct( const Matrix4& device2manip, const float x, const float y, const AABB& bounds, const Vector3& transform_origin ){
m_start = point_on_axis( m_axis, device2manip, x, y );
m_bounds = bounds;
}
void Transform( const Matrix4& manip2object, const Matrix4& device2manip, const float x, const float y, const bool snap, const bool snapbbox, const bool alt ){
Vector3 current = point_on_axis( m_axis, device2manip, x, y );
current = vector3_scaled( m_axis, distance_for_axis( m_start, current, m_axis ) );
current = translation_local2object( current, manip2object );
if( snapbbox )
aabb_snap_translation( current, m_bounds );
else
vector3_snap( current, GetSnapGridSize() );
m_translatable.translate( current );
}
void SetAxis( const Vector3& axis ){
m_axis = axis;
}
};
class TranslateAxis2 : public Manipulatable
{
private:
Vector3 m_0;
Plane3 m_planeSelected;
std::size_t m_axisZ;
Plane3 m_planeZ;
Vector3 m_startZ;
Translatable& m_translatable;
AABB m_bounds;
public:
TranslateAxis2( Translatable& translatable )
: m_translatable( translatable ){
}
void Construct( const Matrix4& device2manip, const float x, const float y, const AABB& bounds, const Vector3& transform_origin ){
m_axisZ = vector3_max_abs_component_index( m_planeSelected.normal() );
Vector3 xydir( m_view->getViewer() - m_0 );
xydir[m_axisZ] = 0;
vector3_normalise( xydir );
m_planeZ = Plane3( xydir, vector3_dot( xydir, m_0 ) );
m_startZ = point_on_plane( m_planeZ, m_view->GetViewMatrix(), x, y );
m_bounds = bounds;
}
void Transform( const Matrix4& manip2object, const Matrix4& device2manip, const float x, const float y, const bool snap, const bool snapbbox, const bool alt ){
Vector3 current = g_vector3_axes[m_axisZ] * vector3_dot( m_planeSelected.normal(), ( point_on_plane( m_planeZ, m_view->GetViewMatrix(), x, y ) - m_startZ ) )
* ( m_planeSelected.normal()[m_axisZ] >= 0? 1 : -1 );
if( !std::isfinite( current[0] ) || !std::isfinite( current[1] ) || !std::isfinite( current[2] ) ) // catch INF case, is likely with top of the box in 2D
return;
if( snapbbox )
aabb_snap_translation( current, m_bounds );
else
vector3_snap( current, GetSnapGridSize() );
m_translatable.translate( current );
}
void set0( const Vector3& start, const Plane3& planeSelected ){
m_0 = start;
m_planeSelected = planeSelected;
}
};
class TranslateFree : public Manipulatable
{
private:
Vector3 m_start;
Translatable& m_translatable;
AABB m_bounds;
public:
TranslateFree( Translatable& translatable )
: m_translatable( translatable ){
}
void Construct( const Matrix4& device2manip, const float x, const float y, const AABB& bounds, const Vector3& transform_origin ){
m_start = point_on_plane( device2manip, x, y );
m_bounds = bounds;
}
void Transform( const Matrix4& manip2object, const Matrix4& device2manip, const float x, const float y, const bool snap, const bool snapbbox, const bool alt ){
Vector3 current = point_on_plane( device2manip, x, y );
current = vector3_subtracted( current, m_start );
if( snap )
current *= g_vector3_axes[vector3_max_abs_component_index( current )];
current = translation_local2object( current, manip2object );
if( snapbbox )
aabb_snap_translation( current, m_bounds );
else
vector3_snap( current, GetSnapGridSize() );
m_translatable.translate( current );
}
};
class TranslateFreeXY_Z : public Manipulatable
{
private:
Vector3 m_0;
std::size_t m_axisZ;
Plane3 m_planeXY;
Plane3 m_planeZ;
Vector3 m_startXY;
Vector3 m_startZ;
Translatable& m_translatable;
AABB m_bounds;
public:
static int m_viewdependent;
TranslateFreeXY_Z( Translatable& translatable )
: m_translatable( translatable ){
}
void Construct( const Matrix4& device2manip, const float x, const float y, const AABB& bounds, const Vector3& transform_origin ){
m_axisZ = ( m_viewdependent || !m_view->fill() )? vector3_max_abs_component_index( m_view->getViewDir() ) : 2;
if( m_0 == g_vector3_identity ) /* special value to indicate missing good point to start with, i.e. while dragging components by clicking anywhere; m_startXY, m_startZ != m_0 in this case */
m_0 = transform_origin;
m_planeXY = Plane3( g_vector3_axes[m_axisZ], m_0[m_axisZ] );
#if 0
Vector3 xydir( m_view->getViewDir() );
#else
Vector3 xydir( m_view->getViewer() - m_0 );
#endif
xydir[m_axisZ] = 0;
vector3_normalise( xydir );
m_planeZ = Plane3( xydir, vector3_dot( xydir, m_0 ) );
m_startXY = point_on_plane( m_planeXY, m_view->GetViewMatrix(), x, y );
m_startZ = point_on_plane( m_planeZ, m_view->GetViewMatrix(), x, y );
m_bounds = bounds;
}
void Transform( const Matrix4& manip2object, const Matrix4& device2manip, const float x, const float y, const bool snap, const bool snapbbox, const bool alt ){
Vector3 current;
if( alt && m_view->fill() )
current = ( point_on_plane( m_planeZ, m_view->GetViewMatrix(), x, y ) - m_startZ ) * g_vector3_axes[m_axisZ];
else{
current = point_on_plane( m_planeXY, m_view->GetViewMatrix(), x, y ) - m_startXY;
current[m_axisZ] = 0;
}
if( snap )
current *= g_vector3_axes[vector3_max_abs_component_index( current )];
if( snapbbox )
aabb_snap_translation( current, m_bounds );
else
vector3_snap( current, GetSnapGridSize() );
m_translatable.translate( current );
}
void set0( const Vector3& start ){
m_0 = start;
}
};
int TranslateFreeXY_Z::m_viewdependent = 0;
class Scalable
{
public:
virtual void scale( const Vector3& scaling ) = 0;
};
class ScaleAxis : public Manipulatable
{
private:
Vector3 m_start;
Vector3 m_axis;
Scalable& m_scalable;
Vector3 m_chosen_extent;
AABB m_bounds;
public:
ScaleAxis( Scalable& scalable )
: m_scalable( scalable ){
}
void Construct( const Matrix4& device2manip, const float x, const float y, const AABB& bounds, const Vector3& transform_origin ){
m_start = point_on_axis( m_axis, device2manip, x, y );
m_chosen_extent = Vector3(
std::max( bounds.origin[0] + bounds.extents[0] - transform_origin[0], - bounds.origin[0] + bounds.extents[0] + transform_origin[0] ),
std::max( bounds.origin[1] + bounds.extents[1] - transform_origin[1], - bounds.origin[1] + bounds.extents[1] + transform_origin[1] ),
std::max( bounds.origin[2] + bounds.extents[2] - transform_origin[2], - bounds.origin[2] + bounds.extents[2] + transform_origin[2] )
);
m_bounds = bounds;
}
void Transform( const Matrix4& manip2object, const Matrix4& device2manip, const float x, const float y, const bool snap, const bool snapbbox, const bool alt ){
//globalOutputStream() << "manip2object: " << manip2object << " device2manip: " << device2manip << " x: " << x << " y:" << y <<"\n";
Vector3 current = point_on_axis( m_axis, device2manip, x, y );
Vector3 delta = vector3_subtracted( current, m_start );
delta = translation_local2object( delta, manip2object );
vector3_snap( delta, GetSnapGridSize() );
vector3_scale( delta, m_axis );
Vector3 start( vector3_snapped( m_start, GetSnapGridSize() != 0.f ? GetSnapGridSize() : 1e-3f ) );
for ( std::size_t i = 0; i < 3 ; ++i ){ //prevent snapping to 0 with big gridsize
if( float_snapped( m_start[i], 1e-3f ) != 0.f && start[i] == 0.f ){
start[i] = GetSnapGridSize();
}
}
//globalOutputStream() << "m_start: " << m_start << " start: " << start << " delta: " << delta <<"\n";
/* boundless way */
Vector3 scale(
start[0] == 0 ? 1 : 1 + delta[0] / start[0],
start[1] == 0 ? 1 : 1 + delta[1] / start[1],
start[2] == 0 ? 1 : 1 + delta[2] / start[2]
);
/* try bbox way */
for( std::size_t i = 0; i < 3; i++ ){
if( m_chosen_extent[i] > 0.0625f && m_axis[i] != 0.f ){ //epsilon to prevent super high scale for set of models, having really small extent, formed by origins
scale[i] = ( m_chosen_extent[i] + delta[i] ) / m_chosen_extent[i];
if( snapbbox ){
const float snappdwidth = float_snapped( scale[i] * m_bounds.extents[i] * 2.f, GetSnapGridSize() );
scale[i] = snappdwidth / ( m_bounds.extents[i] * 2.f );
}
}
}
if( snap ){
for( std::size_t i = 0; i < 3; i++ ){
if( m_axis[i] == 0.f ){
scale[i] = vector3_dot( scale, vector3_scaled( m_axis, m_axis ) );
}
}
}
//globalOutputStream() << "scale: " << scale <<"\n";
m_scalable.scale( scale );
}
void SetAxis( const Vector3& axis ){
m_axis = axis;
}
};
class ScaleFree : public Manipulatable
{
private:
Vector3 m_start;
Vector3 m_axis;
Vector3 m_axis2;
Scalable& m_scalable;
Vector3 m_chosen_extent;
AABB m_bounds;
public:
ScaleFree( Scalable& scalable )
: m_scalable( scalable ){
}
void Construct( const Matrix4& device2manip, const float x, const float y, const AABB& bounds, const Vector3& transform_origin ){
m_start = point_on_plane( device2manip, x, y );
m_chosen_extent = Vector3(
std::max( bounds.origin[0] + bounds.extents[0] - transform_origin[0], -( bounds.origin[0] - bounds.extents[0] - transform_origin[0] ) ),
std::max( bounds.origin[1] + bounds.extents[1] - transform_origin[1], -( bounds.origin[1] - bounds.extents[1] - transform_origin[1] ) ),
std::max( bounds.origin[2] + bounds.extents[2] - transform_origin[2], -( bounds.origin[2] - bounds.extents[2] - transform_origin[2] ) )
);
m_bounds = bounds;
}
void Transform( const Matrix4& manip2object, const Matrix4& device2manip, const float x, const float y, const bool snap, const bool snapbbox, const bool alt ){
Vector3 current = point_on_plane( device2manip, x, y );
Vector3 delta = vector3_subtracted( current, m_start );
delta = translation_local2object( delta, manip2object );
vector3_snap( delta, GetSnapGridSize() );
if( m_axis != g_vector3_identity )
delta = vector3_scaled( delta, m_axis ) + vector3_scaled( delta, m_axis2 );
Vector3 start( vector3_snapped( m_start, GetSnapGridSize() != 0.f ? GetSnapGridSize() : 1e-3f ) );
for ( std::size_t i = 0; i < 3 ; ++i ){ //prevent snapping to 0 with big gridsize
if( float_snapped( m_start[i], 1e-3f ) != 0.f && start[i] == 0.f ){
start[i] = GetSnapGridSize();
}
}
const std::size_t ignore_axis = vector3_min_abs_component_index( m_start );
if( snap )
start[ignore_axis] = 0.f;
Vector3 scale(
start[0] == 0 ? 1 : 1 + delta[0] / start[0],
start[1] == 0 ? 1 : 1 + delta[1] / start[1],
start[2] == 0 ? 1 : 1 + delta[2] / start[2]
);
//globalOutputStream() << "m_start: " << m_start << " start: " << start << " delta: " << delta <<"\n";
for( std::size_t i = 0; i < 3; i++ ){
if( m_chosen_extent[i] > 0.0625f && start[i] != 0.f ){
scale[i] = ( m_chosen_extent[i] + delta[i] ) / m_chosen_extent[i];
if( snapbbox ){
const float snappdwidth = float_snapped( scale[i] * m_bounds.extents[i] * 2.f, GetSnapGridSize() );
scale[i] = snappdwidth / ( m_bounds.extents[i] * 2.f );
}
}
}
//globalOutputStream() << "pre snap scale: " << scale <<"\n";
if( snap ){
float bestscale = ignore_axis != 0 ? scale[0] : scale[1];
for( std::size_t i = ignore_axis != 0 ? 1 : 2; i < 3; i++ ){
if( ignore_axis != i && fabs( scale[i] ) < fabs( bestscale ) ){
bestscale = scale[i];
}
//globalOutputStream() << "bestscale: " << bestscale <<"\n";
}
for( std::size_t i = 0; i < 3; i++ ){
if( ignore_axis != i ){
scale[i] = ( scale[i] < 0.f ) ? -fabs( bestscale ) : fabs( bestscale );
}
}
}
//globalOutputStream() << "scale: " << scale <<"\n";
m_scalable.scale( scale );
}
void SetAxes( const Vector3& axis, const Vector3& axis2 ){
m_axis = axis;
m_axis2 = axis2;
}
};
class Skewable
{
public:
virtual void skew( const Skew& skew ) = 0;
};
class SkewAxis : public Manipulatable
{
private:
Vector3 m_0;
Plane3 m_planeZ;
int m_axis_which;
int m_axis_by;
int m_axis_by_sign;
Skewable& m_skewable;
float m_axis_by_extent;
AABB m_bounds;
public:
SkewAxis( Skewable& skewable )
: m_skewable( skewable ){
}
void Construct( const Matrix4& device2manip, const float x, const float y, const AABB& bounds, const Vector3& transform_origin ){
Vector3 xydir( m_view->getViewer() - m_0 );
xydir[m_axis_which] = 0;
// xydir *= g_vector3_axes[vector3_max_abs_component_index( xydir )];
vector3_normalise( xydir );
m_planeZ = Plane3( xydir, vector3_dot( xydir, m_0 ) );
m_bounds = bounds;
m_axis_by_extent = bounds.origin[m_axis_by] + bounds.extents[m_axis_by] * m_axis_by_sign - transform_origin[m_axis_by];
}
void Transform( const Matrix4& manip2object, const Matrix4& device2manip, const float x, const float y, const bool snap, const bool snapbbox, const bool alt ){
const Vector3 current = point_on_plane( m_planeZ, m_view->GetViewMatrix(), x, y ) - m_0;
// globalOutputStream() << m_axis_which << " by axis " << m_axis_by << "\n";
m_skewable.skew( Skew( m_axis_by * 4 + m_axis_which, m_axis_by_extent != 0.f? float_snapped( current[m_axis_which], GetSnapGridSize() ) / m_axis_by_extent : 0 ) );
}
void SetAxes( int axis_which, int axis_by, int axis_by_sign ){
m_axis_which = axis_which;
m_axis_by = axis_by;
m_axis_by_sign = axis_by_sign;
}
void set0( const Vector3& start ){
m_0 = start;
}
};
#include "brush.h"
#include "brushnode.h"
#include "brushmanip.h"
class DragNewBrush : public Manipulatable
{
private:
Vector3 m_0;
Vector3 m_size;
float m_setSizeZ; /* store separately for fine square/cube modes handling */
scene::Node* m_newBrushNode;
public:
DragNewBrush(){
}
void Construct( const Matrix4& device2manip, const float x, const float y, const AABB& bounds, const Vector3& transform_origin ){
m_setSizeZ = m_size[0] = m_size[1] = m_size[2] = GetGridSize();
m_newBrushNode = 0;
}
void Transform( const Matrix4& manip2object, const Matrix4& device2manip, const float x, const float y, const bool snap, const bool snapbbox, const bool alt ){
Vector3 diff_raw = point_on_plane( Plane3( g_vector3_axis_z, vector3_dot( g_vector3_axis_z, Vector3( m_size.x(), m_size.y(), m_setSizeZ ) + m_0 ) ), m_view->GetViewMatrix(), x, y ) - m_0;
const Vector3 xydir( vector3_normalised( Vector3( m_view->GetModelview()[2], m_view->GetModelview()[6], 0 ) ) );
diff_raw.z() = ( point_on_plane( Plane3( xydir, vector3_dot( xydir, Vector3( m_size.x(), m_size.y(), m_setSizeZ ) + m_0 ) ), m_view->GetViewMatrix(), x, y ) - m_0 ).z();
Vector3 diff = vector3_snapped( diff_raw, GetSnapGridSize() );
for ( std::size_t i = 0; i < 3; ++i )
if( diff[i] == 0 )
diff[i] = diff_raw[i] < 0? -GetGridSize() : GetGridSize();
if( alt ){
diff.x() = m_size.x();
diff.y() = m_size.y();
}
else{
diff.z() = m_size.z();
}
const float z = vector4_projected( matrix4_transformed_vector4( m_view->GetViewMatrix(), Vector4( diff + m_0, 1 ) ) ).z();
if( z != z || z > 1 ) //catch NAN and behind near, far planes cases
return;
if( snap || snapbbox ){
const float squaresize = std::max( fabs( diff.x() ), fabs( diff.y() ) );
diff.x() = diff.x() > 0? squaresize : -squaresize; //square
diff.y() = diff.y() > 0? squaresize : -squaresize;
if( snapbbox && !alt ) //cube
diff.z() = diff.z() > 0? squaresize : -squaresize;
}
m_size = diff;
if( alt )
m_setSizeZ = diff.z();
Vector3 mins( m_0 );
Vector3 maxs( m_0 + diff );
for ( std::size_t i = 0; i < 3; ++i )
if( mins[i] > maxs[i] )
std::swap( mins[i], maxs[i] );
Scene_BrushResize_Cuboid( m_newBrushNode, aabb_for_minmax( mins, maxs ) );
}
void set0( const Vector3& start ){
m_0 = start;
}
};
class DragExtrudeFaces : public Manipulatable
{
private:
Vector3 m_0;
Plane3 m_planeSelected;
std::size_t m_axisZ;
Plane3 m_planeZ;
Vector3 m_startZ;
bool m_originalBrushSaved;
bool m_originalBrushChanged;
public:
class ExtrudeSource
{
public:
BrushInstance* m_brushInstance;
struct InFaceOutBrush{
Face* m_face;
PlanePoints m_planepoints;
Brush* m_outBrush;
};
std::vector<InFaceOutBrush> m_faces;
std::vector<InFaceOutBrush>::iterator faceFind( const Face* face ){
return std::find_if( m_faces.begin(), m_faces.end(), [face]( const InFaceOutBrush& infaceoutbrush ){
return face == infaceoutbrush.m_face;
} );
}
std::vector<InFaceOutBrush>::const_iterator faceFind( const Face* face ) const {
return std::find_if( m_faces.begin(), m_faces.end(), [face]( const InFaceOutBrush& infaceoutbrush ){
return face == infaceoutbrush.m_face;
} );
}
bool faceExcluded( const Face* face ) const {
return faceFind( face ) == m_faces.end();
}
};
std::vector<ExtrudeSource> m_extrudeSources;
DragExtrudeFaces(){
}
void Construct( const Matrix4& device2manip, const float x, const float y, const AABB& bounds, const Vector3& transform_origin ){
m_axisZ = vector3_max_abs_component_index( m_planeSelected.normal() );
Vector3 xydir( m_view->getViewer() - m_0 );
xydir[m_axisZ] = 0;
vector3_normalise( xydir );
m_planeZ = Plane3( xydir, vector3_dot( xydir, m_0 ) );
m_startZ = point_on_plane( m_planeZ, m_view->GetViewMatrix(), x, y );
m_originalBrushSaved = false;
m_originalBrushChanged = false;
UndoableCommand undo( "ExtrudeBrushFaces" );
for( ExtrudeSource& source : m_extrudeSources ){
for( auto& infaceoutbrush : source.m_faces ){
const Face* face = infaceoutbrush.m_face;
NodeSmartReference node( GlobalBrushCreator().createBrush() );
Node_getTraversable( source.m_brushInstance->path().parent() )->insert( node );
scene::Path path( source.m_brushInstance->path() );
path.pop();
path.push( makeReference( node.get() ) );
selectPath( path, true );
Brush* brush = Node_getBrush( node.get() );
infaceoutbrush.m_outBrush = brush;
Face* f = brush->addFace( *face );
f->getPlane().offset( GetGridSize() );
f->planeChanged();
f = brush->addFace( *face );
f->getPlane().reverse();
f->planeChanged();
for( const WindingVertex& vertex : face->getWinding() ){
if( vertex.adjacent != c_brush_maxFaces ){
f = brush->addFace( **std::next( source.m_brushInstance->getBrush().begin(), vertex.adjacent ) );
const DoubleVector3 cross = vector3_cross( f->plane3_().normal(), face->plane3_().normal() );
f->getPlane().copy( vertex.vertex, vertex.vertex + cross * 64, vertex.vertex + face->plane3_().normal() * 64 );
f->planeChanged();
}
}
}
}
}
void Transform( const Matrix4& manip2object, const Matrix4& device2manip, const float x, const float y, const bool snap, const bool snapbbox, const bool alt ){
Vector3 current = g_vector3_axes[m_axisZ] * vector3_dot( m_planeSelected.normal(), ( point_on_plane( m_planeZ, m_view->GetViewMatrix(), x, y ) - m_startZ ) )
* ( m_planeSelected.normal()[m_axisZ] >= 0? 1 : -1 );
if( !std::isfinite( current[0] ) || !std::isfinite( current[1] ) || !std::isfinite( current[2] ) ) // catch INF case, is likely with top of the box in 2D
return;
vector3_snap( current, GetSnapGridSize() );
const float offset = fabs( m_planeSelected.normal()[m_axisZ] ) * std::copysign(
std::max( static_cast<double>( GetGridSize() ), vector3_length( current ) ),
vector3_dot( current, m_planeSelected.normal() ) );
if( offset >= 0 ){ // extrude outside
if( m_originalBrushChanged ){
m_originalBrushChanged = false;
for( ExtrudeSource& source : m_extrudeSources ){
// revert original brush
for( auto& infaceoutbrush : source.m_faces ){
Face* face = infaceoutbrush.m_face;
face->getPlane().copy( infaceoutbrush.m_planepoints );
face->planeChanged();
}
}
}
for( ExtrudeSource& source : m_extrudeSources ){
Brush& brush0 = source.m_brushInstance->getBrush();
if( source.m_faces.size() > 1 ){
Brush* tmpbrush = new Brush( brush0 );
offsetFaces( source, *tmpbrush, offset );
brush_extrudeDiag( brush0, *tmpbrush, source );
delete tmpbrush;
}
else{
for( auto& infaceoutbrush : source.m_faces ){
const Face* face = infaceoutbrush.m_face;
Brush* brush = infaceoutbrush.m_outBrush;
brush->clear();
Face* f = brush->addFace( *face );
f->getPlane().offset( offset );
f->planeChanged();
f = brush->addFace( *face );
f->getPlane().reverse();
f->planeChanged();
for( const WindingVertex& vertex : face->getWinding() ){
if( vertex.adjacent != c_brush_maxFaces ){
brush->addFace( **std::next( brush0.begin(), vertex.adjacent ) );
}
}
}
}
}
}
else{ // extrude inside
if( !m_originalBrushSaved ){
m_originalBrushSaved = true;
for( ExtrudeSource& source : m_extrudeSources )
for( auto& infaceoutbrush : source.m_faces )
infaceoutbrush.m_face->undoSave();
}
m_originalBrushChanged = true;
for( ExtrudeSource& source : m_extrudeSources ){
Brush& brush0 = source.m_brushInstance->getBrush();
// revert original brush
for( auto& infaceoutbrush : source.m_faces ){
Face* face = infaceoutbrush.m_face;
face->getPlane().copy( infaceoutbrush.m_planepoints );
face->planeChanged();
}
if( source.m_faces.size() > 1 ){
Brush* tmpbrush = new Brush( brush0 );
tmpbrush->evaluateBRep();
offsetFaces( source, brush0, offset );
if( brush0.hasContributingFaces() )
brush_extrudeDiag( brush0, *tmpbrush, source );
delete tmpbrush;
}
else{
for( auto& infaceoutbrush : source.m_faces ){
Face* face = infaceoutbrush.m_face;
Brush* brush = infaceoutbrush.m_outBrush;
brush->clear();
brush->copy( brush0 );
Face* f = brush->addFace( *face );
f->getPlane().offset( offset );
f->getPlane().reverse();
f->planeChanged();
brush->removeEmptyFaces();
// modify original brush
face->getPlane().offset( offset );
face->planeChanged();
}
}
}
}
}
void set0( const Vector3& start, const Plane3& planeSelected ){
m_0 = start;
m_planeSelected = planeSelected;
}
private:
void offsetFaces( const ExtrudeSource& source, Brush& brush, const float offset ){
const Brush& brush0 = source.m_brushInstance->getBrush();
for( Brush::const_iterator i0 = brush0.begin(); i0 != brush0.end(); ++i0 ){
const Face& face0 = *( *i0 );
if( !source.faceExcluded( &face0 ) ){
Face& face = *( *std::next( brush.begin(), std::distance( brush0.begin(), i0 ) ) );
face.getPlane().offset( offset );
face.planeChanged();
}
}
brush.evaluateBRep();
}
/* brush0, brush2 are supposed to have same amount of faces in the same order; brush2 bigger than brush0 */
void brush_extrudeDiag( const Brush& brush0, const Brush& brush2, ExtrudeSource& source ){
TextureProjection projection;
TexDef_Construct_Default( projection );
for( Brush::const_iterator i0 = brush0.begin(); i0 != brush0.end(); ++i0 ){
const Face& face0 = *( *i0 );
const Face& face2 = *( *std::next( brush2.begin(), std::distance( brush0.begin(), i0 ) ) );
auto infaceoutbrush_iter = source.faceFind( &face0 ); // brush0 = source.m_brushInstance->getBrush()
if( infaceoutbrush_iter != source.m_faces.end() ) {
if( face0.contributes() || face2.contributes() ) {
const char* shader = face0.GetShader();
Brush* outBrush = ( *infaceoutbrush_iter ).m_outBrush;
outBrush->clear();
if( face0.contributes() ){
if( Face* newFace = outBrush->addFace( face0 ) ) {
newFace->flipWinding();
}
}
if( face2.contributes() ){
outBrush->addFace( face2 );
}
if( face0.contributes() && face2.contributes() ){ //sew two valid windings
const auto addSidePlanes = [&outBrush, shader, &projection]( const Winding& winding0, const Winding& winding2, const DoubleVector3 normal, const bool swap ){
for( std::size_t index0 = 0; index0 < winding0.numpoints; ++index0 ){
const std::size_t next = Winding_next( winding0, index0 );
Vector3 BestPoint;
double bestdot = -1;
for( std::size_t index2 = 0; index2 < winding2.numpoints; ++index2 ){
const double dot = vector3_dot(
vector3_normalised(
vector3_cross(
winding0[index0].vertex - winding0[next].vertex,
winding0[index0].vertex - winding2[index2].vertex
)
),
normal
);
if( dot > bestdot ) {
bestdot = dot;
BestPoint = winding2[index2].vertex;
}
}
outBrush->addPlane( winding0[swap? next : index0].vertex,
winding0[swap? index0 : next].vertex,
BestPoint,
shader,
projection );
}
};
//insert side planes from each winding perspective, as their form may change after brush expansion
addSidePlanes( face0.getWinding(), face2.getWinding(), face0.getPlane().plane3().normal(), false );
addSidePlanes( face2.getWinding(), face0.getWinding(), face0.getPlane().plane3().normal(), true );
}
else{ //one valid winding: this way may produce garbage with complex brushes, extruded partially, but does preferred result with simple ones
const auto addSidePlanes = [&outBrush, shader, &projection]( const Winding& winding0, const Brush& brush2, const Plane3 plane, const bool swap ){
for( std::size_t index0 = 0; index0 < winding0.numpoints; ++index0 ){
const std::size_t next = Winding_next( winding0, index0 );
Vector3 BestPoint;
double bestdist = 999999;
for( const Face* f : brush2 ) {
const Winding& winding2 = f->getWinding();
for( std::size_t index2 = 0; index2 < winding2.numpoints; ++index2 ){
const double testdist = vector3_length( winding0[index0].vertex - winding2[index2].vertex );
if( testdist < bestdist && plane3_distance_to_point( plane, winding2[index2].vertex ) > .05 ) {
bestdist = testdist;
BestPoint = winding2[index2].vertex;
}
}
}
outBrush->addPlane( winding0[swap? next : index0].vertex,
winding0[swap? index0 : next].vertex,
BestPoint,
shader,
projection );
}
};
if( face0.contributes() )
addSidePlanes( face0.getWinding(), brush2, face0.getPlane().plane3(), false );
else if( face2.contributes() )
addSidePlanes( face2.getWinding(), brush0, plane3_flipped( face2.getPlane().plane3() ), true );
}
outBrush->removeEmptyFaces();
}
}
}
}
};
class RenderableClippedPrimitive : public OpenGLRenderable
{
struct primitive_t
{
PointVertex m_points[9];
std::size_t m_count;
};
Matrix4 m_inverse;
std::vector<primitive_t> m_primitives;
public:
Matrix4 m_world;
void render( RenderStateFlags state ) const {
for ( std::size_t i = 0; i < m_primitives.size(); ++i )
{
glColorPointer( 4, GL_UNSIGNED_BYTE, sizeof( PointVertex ), &m_primitives[i].m_points[0].colour );
glVertexPointer( 3, GL_FLOAT, sizeof( PointVertex ), &m_primitives[i].m_points[0].vertex );
switch ( m_primitives[i].m_count )
{
case 1: break;
case 2: glDrawArrays( GL_LINES, 0, GLsizei( m_primitives[i].m_count ) ); break;
default: glDrawArrays( GL_POLYGON, 0, GLsizei( m_primitives[i].m_count ) ); break;
}
}
}
void construct( const Matrix4& world2device ){
m_inverse = matrix4_full_inverse( world2device );
m_world = g_matrix4_identity;
}
void insert( const Vector4 clipped[9], std::size_t count ){
add_one();
m_primitives.back().m_count = count;
for ( std::size_t i = 0; i < count; ++i )
{
Vector3 world_point( vector4_projected( matrix4_transformed_vector4( m_inverse, clipped[i] ) ) );
m_primitives.back().m_points[i].vertex = vertex3f_for_vector3( world_point );
}
}
void destroy(){
m_primitives.clear();
}
private:
void add_one(){
m_primitives.push_back( primitive_t() );
const Colour4b colour_clipped( 255, 127, 0, 255 );
for ( std::size_t i = 0; i < 9; ++i )
m_primitives.back().m_points[i].colour = colour_clipped;
}
};
#if defined( _DEBUG ) && !defined( _DEBUG_QUICKER )
#define DEBUG_SELECTION
#endif
#if defined( DEBUG_SELECTION )
Shader* g_state_clipped;
RenderableClippedPrimitive g_render_clipped;
#endif
typedef Vector3 point_t;
typedef const Vector3* point_iterator_t;
// crossing number test for a point in a polygon
// This code is patterned after [Franklin, 2000]
bool point_test_polygon_2d( const point_t& P, point_iterator_t start, point_iterator_t finish ){
std::size_t crossings = 0;
// loop through all edges of the polygon
for ( point_iterator_t prev = finish - 1, cur = start; cur != finish; prev = cur, ++cur )
{ // edge from (*prev) to (*cur)
if ( ( ( ( *prev )[1] <= P[1] ) && ( ( *cur )[1] > P[1] ) ) // an upward crossing
|| ( ( ( *prev )[1] > P[1] ) && ( ( *cur )[1] <= P[1] ) ) ) { // a downward crossing
// compute the actual edge-ray intersect x-coordinate
float vt = (float)( P[1] - ( *prev )[1] ) / ( ( *cur )[1] - ( *prev )[1] );
if ( P[0] < ( *prev )[0] + vt * ( ( *cur )[0] - ( *prev )[0] ) ) { // P[0] < intersect
++crossings; // a valid crossing of y=P[1] right of P[0]
}
}
}
return ( crossings & 0x1 ) != 0; // 0 if even (out), and 1 if odd (in)
}
inline double triangle_signed_area_XY( const Vector3& p0, const Vector3& p1, const Vector3& p2 ){
return ( ( p1[0] - p0[0] ) * ( p2[1] - p0[1] ) ) - ( ( p2[0] - p0[0] ) * ( p1[1] - p0[1] ) );
}
enum clipcull_t
{
eClipCullNone,
eClipCullCW,
eClipCullCCW,
};
inline SelectionIntersection select_point_from_clipped( Vector4& clipped ){
return SelectionIntersection( clipped[2] / clipped[3], static_cast<float>( vector3_length_squared( Vector3( clipped[0] / clipped[3], clipped[1] / clipped[3], 0 ) ) ) );
}
void BestPoint( std::size_t count, Vector4 clipped[9], SelectionIntersection& best, clipcull_t cull, const Plane3* plane = 0 ){
Vector3 normalised[9];
{
for ( std::size_t i = 0; i < count; ++i )
{
normalised[i][0] = clipped[i][0] / clipped[i][3];
normalised[i][1] = clipped[i][1] / clipped[i][3];
normalised[i][2] = clipped[i][2] / clipped[i][3];
}
}
if ( cull != eClipCullNone && count > 2 ) {
double signed_area = triangle_signed_area_XY( normalised[0], normalised[1], normalised[2] );
if ( ( cull == eClipCullCW && signed_area > 0 )
|| ( cull == eClipCullCCW && signed_area < 0 ) ) {
return;
}
}
if ( count == 2 ) {
const Vector3 point = line_closest_point( Line( normalised[0], normalised[1] ), Vector3( 0, 0, 0 ) );
assign_if_closer( best, SelectionIntersection( point.z(), vector3_length_squared( Vector3( point.x(), point.y(), 0 ) ) ) );
}
else if ( count > 2 && !point_test_polygon_2d( Vector3( 0, 0, 0 ), normalised, normalised + count ) ) {
Plane3 plaine;
if( !plane ){
plaine = plane3_for_points( normalised[0], normalised[1], normalised[2] );
plane = &plaine;
}
//globalOutputStream() << plane.a << " " << plane.b << " " << plane.c << " " << "\n";
const point_iterator_t end = normalised + count;
for ( point_iterator_t previous = end - 1, current = normalised; current != end; previous = current, ++current )
{
Vector3 point = line_closest_point( Line( *previous, *current ), Vector3( 0, 0, 0 ) );
float depth = point.z();
point.z() = 0;
float distance = static_cast<float>( vector3_length_squared( point ) );
if( plane->c == 0 ){
assign_if_closer( best, SelectionIntersection( depth, distance ) );
}
else{
assign_if_closer( best, SelectionIntersection( depth, distance, ray_distance_to_plane(
Ray( Vector3( 0, 0, 0 ), Vector3( 0, 0, 1 ) ),
*plane
) ) );
// globalOutputStream() << static_cast<float>( ray_distance_to_plane(
// Ray( Vector3( 0, 0, 0 ), Vector3( 0, 0, 1 ) ),
// plane
// ) ) << "\n";
}
}
}
else if ( count > 2 ) {
Plane3 plaine;
if( !plane ){
plaine = plane3_for_points( normalised[0], normalised[1], normalised[2] );
plane = &plaine;
}
assign_if_closer(
best,
SelectionIntersection(
ray_distance_to_plane(
Ray( Vector3( 0, 0, 0 ), Vector3( 0, 0, 1 ) ),
*plane
),
0,
ray_distance_to_plane(
Ray( Vector3( 10, 8, 0 ), Vector3( 0, 0, 1 ) ),
*plane
)
)
);
}
#if defined( DEBUG_SELECTION )
if ( count >= 2 ) {
g_render_clipped.insert( clipped, count );
}
#endif
}
void Point_BestPoint( const Matrix4& local2view, const PointVertex& vertex, SelectionIntersection& best ){
Vector4 clipped;
if ( matrix4_clip_point( local2view, vertex3f_to_vector3( vertex.vertex ), clipped ) == c_CLIP_PASS ) {
assign_if_closer( best, select_point_from_clipped( clipped ) );
}
}
void LineStrip_BestPoint( const Matrix4& local2view, const PointVertex* vertices, const std::size_t size, SelectionIntersection& best ){
Vector4 clipped[2];
for ( std::size_t i = 0; ( i + 1 ) < size; ++i )
{
const std::size_t count = matrix4_clip_line( local2view, vertex3f_to_vector3( vertices[i].vertex ), vertex3f_to_vector3( vertices[i + 1].vertex ), clipped );
BestPoint( count, clipped, best, eClipCullNone );
}
}
void LineLoop_BestPoint( const Matrix4& local2view, const PointVertex* vertices, const std::size_t size, SelectionIntersection& best ){
Vector4 clipped[2];
for ( std::size_t i = 0; i < size; ++i )
{
const std::size_t count = matrix4_clip_line( local2view, vertex3f_to_vector3( vertices[i].vertex ), vertex3f_to_vector3( vertices[( i + 1 ) % size].vertex ), clipped );
BestPoint( count, clipped, best, eClipCullNone );
}
}
void Line_BestPoint( const Matrix4& local2view, const PointVertex vertices[2], SelectionIntersection& best ){
Vector4 clipped[2];
const std::size_t count = matrix4_clip_line( local2view, vertex3f_to_vector3( vertices[0].vertex ), vertex3f_to_vector3( vertices[1].vertex ), clipped );
BestPoint( count, clipped, best, eClipCullNone );
}
void Circle_BestPoint( const Matrix4& local2view, clipcull_t cull, const PointVertex* vertices, const std::size_t size, SelectionIntersection& best ){
Vector4 clipped[9];
for ( std::size_t i = 0; i < size; ++i )
{
const std::size_t count = matrix4_clip_triangle( local2view, g_vector3_identity, vertex3f_to_vector3( vertices[i].vertex ), vertex3f_to_vector3( vertices[( i + 1 ) % size].vertex ), clipped );
BestPoint( count, clipped, best, cull );
}
}
void Quad_BestPoint( const Matrix4& local2view, clipcull_t cull, const PointVertex* vertices, SelectionIntersection& best ){
Vector4 clipped[9];
{
const std::size_t count = matrix4_clip_triangle( local2view, vertex3f_to_vector3( vertices[0].vertex ), vertex3f_to_vector3( vertices[1].vertex ), vertex3f_to_vector3( vertices[3].vertex ), clipped );
BestPoint( count, clipped, best, cull );
}
{
const std::size_t count = matrix4_clip_triangle( local2view, vertex3f_to_vector3( vertices[1].vertex ), vertex3f_to_vector3( vertices[2].vertex ), vertex3f_to_vector3( vertices[3].vertex ), clipped );
BestPoint( count, clipped, best, cull );
}
}
void AABB_BestPoint( const Matrix4& local2view, clipcull_t cull, const AABB& aabb, SelectionIntersection& best ){
const IndexPointer::index_type indices_[24] = {
2, 1, 5, 6,
1, 0, 4, 5,
0, 1, 2, 3,
3, 7, 4, 0,
3, 2, 6, 7,
7, 6, 5, 4,
};
Vector3 points[8];
aabb_corners( aabb, points );
const IndexPointer indices( indices_, 24 );
Vector4 clipped[9];
for ( IndexPointer::iterator i( indices.begin() ); i != indices.end(); i += 4 )
{
BestPoint(
matrix4_clip_triangle(
local2view,
points[*i],
points[*( i + 1 )],
points[*( i + 3 )],
clipped
),
clipped,
best,
cull
);
BestPoint(
matrix4_clip_triangle(
local2view,
points[*( i + 1 )],
points[*( i + 2 )],
points[*( i + 3 )],
clipped
),
clipped,
best,
cull
);
}
}
struct FlatShadedVertex
{
Vertex3f vertex;
Colour4b colour;
Normal3f normal;
FlatShadedVertex(){
}
};
typedef FlatShadedVertex* FlatShadedVertexIterator;
void Triangles_BestPoint( const Matrix4& local2view, clipcull_t cull, FlatShadedVertexIterator first, FlatShadedVertexIterator last, SelectionIntersection& best ){
for ( FlatShadedVertexIterator x( first ), y( first + 1 ), z( first + 2 ); x != last; x += 3, y += 3, z += 3 )
{
Vector4 clipped[9];
BestPoint(
matrix4_clip_triangle(
local2view,
reinterpret_cast<const Vector3&>( ( *x ).vertex ),
reinterpret_cast<const Vector3&>( ( *y ).vertex ),
reinterpret_cast<const Vector3&>( ( *z ).vertex ),
clipped
),
clipped,
best,
cull
);
}
}
typedef std::multimap<SelectionIntersection, Selectable*> SelectableSortedSet;
class SelectionPool : public Selector
{
SelectableSortedSet m_pool;
SelectionIntersection m_intersection;
Selectable* m_selectable;
public:
void pushSelectable( Selectable& selectable ){
m_intersection = SelectionIntersection();
m_selectable = &selectable;
}
void popSelectable(){
addSelectable( m_intersection, m_selectable );
m_intersection = SelectionIntersection();
}
void addIntersection( const SelectionIntersection& intersection ){
assign_if_closer( m_intersection, intersection );
}
void addSelectable( const SelectionIntersection& intersection, Selectable* selectable ){
if ( intersection.valid() ) {
m_pool.insert( SelectableSortedSet::value_type( intersection, selectable ) );
}
}
typedef SelectableSortedSet::iterator iterator;
iterator begin(){
return m_pool.begin();
}
iterator end(){
return m_pool.end();
}
bool failed(){
return m_pool.empty();
}
};
const Colour4b g_colour_sphere( 0, 0, 0, 255 );
const Colour4b g_colour_screen( 0, 255, 255, 255 );
const Colour4b g_colour_selected( 255, 255, 0, 255 );
inline const Colour4b& colourSelected( const Colour4b& colour, bool selected ){
return ( selected ) ? g_colour_selected : colour;
}
template<typename remap_policy>
inline void draw_semicircle( const std::size_t segments, const float radius, PointVertex* vertices, remap_policy remap ){
const double increment = c_pi / double(segments << 2);
std::size_t count = 0;
float x = radius;
float y = 0;
remap_policy::set( vertices[segments << 2].vertex, -radius, 0, 0 );
while ( count < segments )
{
PointVertex* i = vertices + count;
PointVertex* j = vertices + ( ( segments << 1 ) - ( count + 1 ) );
PointVertex* k = i + ( segments << 1 );
PointVertex* l = j + ( segments << 1 );
#if 0
PointVertex* m = i + ( segments << 2 );
PointVertex* n = j + ( segments << 2 );
PointVertex* o = k + ( segments << 2 );
PointVertex* p = l + ( segments << 2 );
#endif
remap_policy::set( i->vertex, x,-y, 0 );
remap_policy::set( k->vertex,-y,-x, 0 );
#if 0
remap_policy::set( m->vertex,-x, y, 0 );
remap_policy::set( o->vertex, y, x, 0 );
#endif
++count;
{
const double theta = increment * count;
x = static_cast<float>( radius * cos( theta ) );
y = static_cast<float>( radius * sin( theta ) );
}
remap_policy::set( j->vertex, y,-x, 0 );
remap_policy::set( l->vertex,-x,-y, 0 );
#if 0
remap_policy::set( n->vertex,-y, x, 0 );
remap_policy::set( p->vertex, x, y, 0 );
#endif
}
}
class Manipulator
{
public:
virtual Manipulatable* GetManipulatable() = 0;
virtual void testSelect( const View& view, const Matrix4& pivot2world ) = 0;
virtual void render( Renderer& renderer, const VolumeTest& volume, const Matrix4& pivot2world ){
}
virtual void setSelected( bool select ) = 0;
virtual bool isSelected() const = 0;
};
inline Vector3 normalised_safe( const Vector3& self ){
if ( vector3_equal( self, g_vector3_identity ) ) {
return g_vector3_identity;
}
return vector3_normalised( self );
}
class RotateManipulator : public Manipulator
{
struct RenderableCircle : public OpenGLRenderable
{
Array<PointVertex> m_vertices;
RenderableCircle( std::size_t size ) : m_vertices( size ){
}
void render( RenderStateFlags state ) const {
glColorPointer( 4, GL_UNSIGNED_BYTE, sizeof( PointVertex ), &m_vertices.data()->colour );
glVertexPointer( 3, GL_FLOAT, sizeof( PointVertex ), &m_vertices.data()->vertex );
glDrawArrays( GL_LINE_LOOP, 0, GLsizei( m_vertices.size() ) );
}
void setColour( const Colour4b& colour ){
for ( Array<PointVertex>::iterator i = m_vertices.begin(); i != m_vertices.end(); ++i )
{
( *i ).colour = colour;
}
}
};
struct RenderableSemiCircle : public OpenGLRenderable
{
Array<PointVertex> m_vertices;
RenderableSemiCircle( std::size_t size ) : m_vertices( size ){
}
void render( RenderStateFlags state ) const {
glColorPointer( 4, GL_UNSIGNED_BYTE, sizeof( PointVertex ), &m_vertices.data()->colour );
glVertexPointer( 3, GL_FLOAT, sizeof( PointVertex ), &m_vertices.data()->vertex );
glDrawArrays( GL_LINE_STRIP, 0, GLsizei( m_vertices.size() ) );
}
void setColour( const Colour4b& colour ){
for ( Array<PointVertex>::iterator i = m_vertices.begin(); i != m_vertices.end(); ++i )
{
( *i ).colour = colour;
}
}
};
RotateFree m_free;
RotateAxis m_axis;
Vector3 m_axis_screen;
RenderableSemiCircle m_circle_x;
RenderableSemiCircle m_circle_y;
RenderableSemiCircle m_circle_z;
RenderableCircle m_circle_screen;
RenderableCircle m_circle_sphere;
SelectableBool m_selectable_x;
SelectableBool m_selectable_y;
SelectableBool m_selectable_z;
SelectableBool m_selectable_screen;
SelectableBool m_selectable_sphere;
Selectable* m_selectable_prev_ptr;
Pivot2World m_pivot;
Matrix4 m_local2world_x;
Matrix4 m_local2world_y;
Matrix4 m_local2world_z;
bool m_circle_x_visible;
bool m_circle_y_visible;
bool m_circle_z_visible;
public:
static Shader* m_state_outer;
RotateManipulator( Rotatable& rotatable, std::size_t segments, float radius ) :
m_free( rotatable ),
m_axis( rotatable ),
m_circle_x( ( segments << 2 ) + 1 ),
m_circle_y( ( segments << 2 ) + 1 ),
m_circle_z( ( segments << 2 ) + 1 ),
m_circle_screen( segments << 3 ),
m_circle_sphere( segments << 3 ),
m_selectable_prev_ptr( 0 ){
draw_semicircle( segments, radius, m_circle_x.m_vertices.data(), RemapYZX() );
draw_semicircle( segments, radius, m_circle_y.m_vertices.data(), RemapZXY() );
draw_semicircle( segments, radius, m_circle_z.m_vertices.data(), RemapXYZ() );
draw_circle( segments, radius * 1.15f, m_circle_screen.m_vertices.data(), RemapXYZ() );
draw_circle( segments, radius, m_circle_sphere.m_vertices.data(), RemapXYZ() );
}
void UpdateColours(){
m_circle_x.setColour( colourSelected( g_colour_x, m_selectable_x.isSelected() ) );
m_circle_y.setColour( colourSelected( g_colour_y, m_selectable_y.isSelected() ) );
m_circle_z.setColour( colourSelected( g_colour_z, m_selectable_z.isSelected() ) );
m_circle_screen.setColour( colourSelected( g_colour_screen, m_selectable_screen.isSelected() ) );
m_circle_sphere.setColour( colourSelected( g_colour_sphere, false ) );
}
void updateCircleTransforms(){
Vector3 localViewpoint( matrix4_transformed_direction( matrix4_transposed( m_pivot.m_worldSpace ), vector4_to_vector3( m_pivot.m_viewpointSpace.z() ) ) );
m_circle_x_visible = !vector3_equal_epsilon( g_vector3_axis_x, localViewpoint, 1e-6f );
if ( m_circle_x_visible ) {
m_local2world_x = g_matrix4_identity;
vector4_to_vector3( m_local2world_x.y() ) = normalised_safe(
vector3_cross( g_vector3_axis_x, localViewpoint )
);
vector4_to_vector3( m_local2world_x.z() ) = normalised_safe(
vector3_cross( vector4_to_vector3( m_local2world_x.x() ), vector4_to_vector3( m_local2world_x.y() ) )
);
matrix4_premultiply_by_matrix4( m_local2world_x, m_pivot.m_worldSpace );
}
m_circle_y_visible = !vector3_equal_epsilon( g_vector3_axis_y, localViewpoint, 1e-6f );
if ( m_circle_y_visible ) {
m_local2world_y = g_matrix4_identity;
vector4_to_vector3( m_local2world_y.z() ) = normalised_safe(
vector3_cross( g_vector3_axis_y, localViewpoint )
);
vector4_to_vector3( m_local2world_y.x() ) = normalised_safe(
vector3_cross( vector4_to_vector3( m_local2world_y.y() ), vector4_to_vector3( m_local2world_y.z() ) )
);
matrix4_premultiply_by_matrix4( m_local2world_y, m_pivot.m_worldSpace );
}
m_circle_z_visible = !vector3_equal_epsilon( g_vector3_axis_z, localViewpoint, 1e-6f );
if ( m_circle_z_visible ) {
m_local2world_z = g_matrix4_identity;
vector4_to_vector3( m_local2world_z.x() ) = normalised_safe(
vector3_cross( g_vector3_axis_z, localViewpoint )
);
vector4_to_vector3( m_local2world_z.y() ) = normalised_safe(
vector3_cross( vector4_to_vector3( m_local2world_z.z() ), vector4_to_vector3( m_local2world_z.x() ) )
);
matrix4_premultiply_by_matrix4( m_local2world_z, m_pivot.m_worldSpace );
}
}
void render( Renderer& renderer, const VolumeTest& volume, const Matrix4& pivot2world ){
m_pivot.update( pivot2world, volume.GetModelview(), volume.GetProjection(), volume.GetViewport() );
updateCircleTransforms();
// temp hack
UpdateColours();
renderer.SetState( m_state_outer, Renderer::eWireframeOnly );
renderer.SetState( m_state_outer, Renderer::eFullMaterials );
renderer.addRenderable( m_circle_screen, m_pivot.m_viewpointSpace );
renderer.addRenderable( m_circle_sphere, m_pivot.m_viewpointSpace );
if ( m_circle_x_visible ) {
renderer.addRenderable( m_circle_x, m_local2world_x );
}
if ( m_circle_y_visible ) {
renderer.addRenderable( m_circle_y, m_local2world_y );
}
if ( m_circle_z_visible ) {
renderer.addRenderable( m_circle_z, m_local2world_z );
}
}
void testSelect( const View& view, const Matrix4& pivot2world ){
m_pivot.update( pivot2world, view.GetModelview(), view.GetProjection(), view.GetViewport() );
updateCircleTransforms();
SelectionPool selector;
{
{
const Matrix4 local2view( matrix4_multiplied_by_matrix4( view.GetViewMatrix(), m_local2world_x ) );
#if defined( DEBUG_SELECTION )
g_render_clipped.construct( view.GetViewMatrix() );
#endif
SelectionIntersection best;
LineStrip_BestPoint( local2view, m_circle_x.m_vertices.data(), m_circle_x.m_vertices.size(), best );
selector.addSelectable( best, &m_selectable_x );
}
{
const Matrix4 local2view( matrix4_multiplied_by_matrix4( view.GetViewMatrix(), m_local2world_y ) );
#if defined( DEBUG_SELECTION )
g_render_clipped.construct( view.GetViewMatrix() );
#endif
SelectionIntersection best;
LineStrip_BestPoint( local2view, m_circle_y.m_vertices.data(), m_circle_y.m_vertices.size(), best );
selector.addSelectable( best, &m_selectable_y );
}
{
const Matrix4 local2view( matrix4_multiplied_by_matrix4( view.GetViewMatrix(), m_local2world_z ) );
#if defined( DEBUG_SELECTION )
g_render_clipped.construct( view.GetViewMatrix() );
#endif
SelectionIntersection best;
LineStrip_BestPoint( local2view, m_circle_z.m_vertices.data(), m_circle_z.m_vertices.size(), best );
selector.addSelectable( best, &m_selectable_z );
}
}
{
const Matrix4 local2view( matrix4_multiplied_by_matrix4( view.GetViewMatrix(), m_pivot.m_viewpointSpace ) );
{
SelectionIntersection best;
LineLoop_BestPoint( local2view, m_circle_screen.m_vertices.data(), m_circle_screen.m_vertices.size(), best );
selector.addSelectable( best, &m_selectable_screen );
}
// {
// SelectionIntersection best;
// Circle_BestPoint( local2view, eClipCullCW, m_circle_sphere.m_vertices.data(), m_circle_sphere.m_vertices.size(), best );
// selector.addSelectable( best, &m_selectable_sphere );
// }
}
m_axis_screen = m_pivot.m_axis_screen;
if ( !selector.failed() ) {
( *selector.begin() ).second->setSelected( true );
if( m_selectable_prev_ptr != ( *selector.begin() ).second ){
m_selectable_prev_ptr = ( *selector.begin() ).second;
SceneChangeNotify();
}
}
else{
m_selectable_sphere.setSelected( true );
if( m_selectable_prev_ptr != &m_selectable_sphere ){
m_selectable_prev_ptr = &m_selectable_sphere;
SceneChangeNotify();
}
}
}
Manipulatable* GetManipulatable(){
if ( m_selectable_x.isSelected() ) {
m_axis.SetAxis( g_vector3_axis_x );
return &m_axis;
}
else if ( m_selectable_y.isSelected() ) {
m_axis.SetAxis( g_vector3_axis_y );
return &m_axis;
}
else if ( m_selectable_z.isSelected() ) {
m_axis.SetAxis( g_vector3_axis_z );
return &m_axis;
}
else if ( m_selectable_screen.isSelected() ) {
m_axis.SetAxis( m_axis_screen );
return &m_axis;
}
else{
return &m_free;
}
}
void setSelected( bool select ){
m_selectable_x.setSelected( select );
m_selectable_y.setSelected( select );
m_selectable_z.setSelected( select );
m_selectable_screen.setSelected( select );
m_selectable_sphere.setSelected( select );
}
bool isSelected() const {
return m_selectable_x.isSelected()
| m_selectable_y.isSelected()
| m_selectable_z.isSelected()
| m_selectable_screen.isSelected()
| m_selectable_sphere.isSelected();
}
};
Shader* RotateManipulator::m_state_outer;
const float arrowhead_length = 16;
const float arrowhead_radius = 4;
inline void draw_arrowline( const float length, PointVertex* line, const std::size_t axis ){
( *line++ ).vertex = vertex3f_identity;
( *line ).vertex = vertex3f_identity;
vertex3f_to_array( ( *line ).vertex )[axis] = length - arrowhead_length;
}
template<typename VertexRemap, typename NormalRemap>
inline void draw_arrowhead( const std::size_t segments, const float length, FlatShadedVertex* vertices, VertexRemap, NormalRemap ){
std::size_t head_tris = ( segments << 3 );
const double head_segment = c_2pi / head_tris;
for ( std::size_t i = 0; i < head_tris; ++i )
{
{
FlatShadedVertex& point = vertices[i * 6 + 0];
VertexRemap::x( point.vertex ) = length - arrowhead_length;
VertexRemap::y( point.vertex ) = arrowhead_radius * static_cast<float>( cos( i * head_segment ) );
VertexRemap::z( point.vertex ) = arrowhead_radius * static_cast<float>( sin( i * head_segment ) );
NormalRemap::x( point.normal ) = arrowhead_radius / arrowhead_length;
NormalRemap::y( point.normal ) = static_cast<float>( cos( i * head_segment ) );
NormalRemap::z( point.normal ) = static_cast<float>( sin( i * head_segment ) );
}
{
FlatShadedVertex& point = vertices[i * 6 + 1];
VertexRemap::x( point.vertex ) = length;
VertexRemap::y( point.vertex ) = 0;
VertexRemap::z( point.vertex ) = 0;
NormalRemap::x( point.normal ) = arrowhead_radius / arrowhead_length;
NormalRemap::y( point.normal ) = static_cast<float>( cos( ( i + 0.5 ) * head_segment ) );
NormalRemap::z( point.normal ) = static_cast<float>( sin( ( i + 0.5 ) * head_segment ) );
}
{
FlatShadedVertex& point = vertices[i * 6 + 2];
VertexRemap::x( point.vertex ) = length - arrowhead_length;
VertexRemap::y( point.vertex ) = arrowhead_radius * static_cast<float>( cos( ( i + 1 ) * head_segment ) );
VertexRemap::z( point.vertex ) = arrowhead_radius * static_cast<float>( sin( ( i + 1 ) * head_segment ) );
NormalRemap::x( point.normal ) = arrowhead_radius / arrowhead_length;
NormalRemap::y( point.normal ) = static_cast<float>( cos( ( i + 1 ) * head_segment ) );
NormalRemap::z( point.normal ) = static_cast<float>( sin( ( i + 1 ) * head_segment ) );
}
{
FlatShadedVertex& point = vertices[i * 6 + 3];
VertexRemap::x( point.vertex ) = length - arrowhead_length;
VertexRemap::y( point.vertex ) = 0;
VertexRemap::z( point.vertex ) = 0;
NormalRemap::x( point.normal ) = -1;
NormalRemap::y( point.normal ) = 0;
NormalRemap::z( point.normal ) = 0;
}
{
FlatShadedVertex& point = vertices[i * 6 + 4];
VertexRemap::x( point.vertex ) = length - arrowhead_length;
VertexRemap::y( point.vertex ) = arrowhead_radius * static_cast<float>( cos( i * head_segment ) );
VertexRemap::z( point.vertex ) = arrowhead_radius * static_cast<float>( sin( i * head_segment ) );
NormalRemap::x( point.normal ) = -1;
NormalRemap::y( point.normal ) = 0;
NormalRemap::z( point.normal ) = 0;
}
{
FlatShadedVertex& point = vertices[i * 6 + 5];
VertexRemap::x( point.vertex ) = length - arrowhead_length;
VertexRemap::y( point.vertex ) = arrowhead_radius * static_cast<float>( cos( ( i + 1 ) * head_segment ) );
VertexRemap::z( point.vertex ) = arrowhead_radius * static_cast<float>( sin( ( i + 1 ) * head_segment ) );
NormalRemap::x( point.normal ) = -1;
NormalRemap::y( point.normal ) = 0;
NormalRemap::z( point.normal ) = 0;
}
}
}
template<typename Triple>
class TripleRemapXYZ
{
public:
static float& x( Triple& triple ){
return triple.x();
}
static float& y( Triple& triple ){
return triple.y();
}
static float& z( Triple& triple ){
return triple.z();
}
};
template<typename Triple>
class TripleRemapYZX
{
public:
static float& x( Triple& triple ){
return triple.y();
}
static float& y( Triple& triple ){
return triple.z();
}
static float& z( Triple& triple ){
return triple.x();
}
};
template<typename Triple>
class TripleRemapZXY
{
public:
static float& x( Triple& triple ){
return triple.z();
}
static float& y( Triple& triple ){
return triple.x();
}
static float& z( Triple& triple ){
return triple.y();
}
};
class ManipulatorSelectionChangeable
{
Selectable* m_selectable_prev_ptr;
public:
ManipulatorSelectionChangeable() : m_selectable_prev_ptr( 0 ){
}
void selectionChange( SelectionPool& selector ){
if ( !selector.failed() ) {
( *selector.begin() ).second->setSelected( true );
if( m_selectable_prev_ptr != ( *selector.begin() ).second ){
m_selectable_prev_ptr = ( *selector.begin() ).second;
SceneChangeNotify();
}
}
else if( m_selectable_prev_ptr ){
m_selectable_prev_ptr = 0;
SceneChangeNotify();
}
}
};
class TranslateManipulator : public Manipulator, public ManipulatorSelectionChangeable
{
struct RenderableArrowLine : public OpenGLRenderable
{
PointVertex m_line[2];
RenderableArrowLine(){
}
void render( RenderStateFlags state ) const {
glColorPointer( 4, GL_UNSIGNED_BYTE, sizeof( PointVertex ), &m_line[0].colour );
glVertexPointer( 3, GL_FLOAT, sizeof( PointVertex ), &m_line[0].vertex );
glDrawArrays( GL_LINES, 0, 2 );
}
void setColour( const Colour4b& colour ){
m_line[0].colour = colour;
m_line[1].colour = colour;
}
};
struct RenderableArrowHead : public OpenGLRenderable
{
Array<FlatShadedVertex> m_vertices;
RenderableArrowHead( std::size_t size )
: m_vertices( size ){
}
void render( RenderStateFlags state ) const {
glColorPointer( 4, GL_UNSIGNED_BYTE, sizeof( FlatShadedVertex ), &m_vertices.data()->colour );
glVertexPointer( 3, GL_FLOAT, sizeof( FlatShadedVertex ), &m_vertices.data()->vertex );
glNormalPointer( GL_FLOAT, sizeof( FlatShadedVertex ), &m_vertices.data()->normal );
glDrawArrays( GL_TRIANGLES, 0, GLsizei( m_vertices.size() ) );
}
void setColour( const Colour4b& colour ){
for ( Array<FlatShadedVertex>::iterator i = m_vertices.begin(); i != m_vertices.end(); ++i )
{
( *i ).colour = colour;
}
}
};
struct RenderableQuad : public OpenGLRenderable
{
PointVertex m_quad[4];
void render( RenderStateFlags state ) const {
glColorPointer( 4, GL_UNSIGNED_BYTE, sizeof( PointVertex ), &m_quad[0].colour );
glVertexPointer( 3, GL_FLOAT, sizeof( PointVertex ), &m_quad[0].vertex );
glDrawArrays( GL_LINE_LOOP, 0, 4 );
}
void setColour( const Colour4b& colour ){
m_quad[0].colour = colour;
m_quad[1].colour = colour;
m_quad[2].colour = colour;
m_quad[3].colour = colour;
}
};
TranslateFree m_free;
TranslateAxis m_axis;
RenderableArrowLine m_arrow_x;
RenderableArrowLine m_arrow_y;
RenderableArrowLine m_arrow_z;
RenderableArrowHead m_arrow_head_x;
RenderableArrowHead m_arrow_head_y;
RenderableArrowHead m_arrow_head_z;
RenderableQuad m_quad_screen;
SelectableBool m_selectable_x;
SelectableBool m_selectable_y;
SelectableBool m_selectable_z;
SelectableBool m_selectable_screen;
Pivot2World m_pivot;
public:
static Shader* m_state_wire;
static Shader* m_state_fill;
TranslateManipulator( Translatable& translatable, std::size_t segments, float length ) :
m_free( translatable ),
m_axis( translatable ),
m_arrow_head_x( 3 * 2 * ( segments << 3 ) ),
m_arrow_head_y( 3 * 2 * ( segments << 3 ) ),
m_arrow_head_z( 3 * 2 * ( segments << 3 ) ){
draw_arrowline( length, m_arrow_x.m_line, 0 );
draw_arrowhead( segments, length, m_arrow_head_x.m_vertices.data(), TripleRemapXYZ<Vertex3f>(), TripleRemapXYZ<Normal3f>() );
draw_arrowline( length, m_arrow_y.m_line, 1 );
draw_arrowhead( segments, length, m_arrow_head_y.m_vertices.data(), TripleRemapYZX<Vertex3f>(), TripleRemapYZX<Normal3f>() );
draw_arrowline( length, m_arrow_z.m_line, 2 );
draw_arrowhead( segments, length, m_arrow_head_z.m_vertices.data(), TripleRemapZXY<Vertex3f>(), TripleRemapZXY<Normal3f>() );
draw_quad( 16, m_quad_screen.m_quad );
}
void UpdateColours(){
m_arrow_x.setColour( colourSelected( g_colour_x, m_selectable_x.isSelected() ) );
m_arrow_head_x.setColour( colourSelected( g_colour_x, m_selectable_x.isSelected() ) );
m_arrow_y.setColour( colourSelected( g_colour_y, m_selectable_y.isSelected() ) );
m_arrow_head_y.setColour( colourSelected( g_colour_y, m_selectable_y.isSelected() ) );
m_arrow_z.setColour( colourSelected( g_colour_z, m_selectable_z.isSelected() ) );
m_arrow_head_z.setColour( colourSelected( g_colour_z, m_selectable_z.isSelected() ) );
m_quad_screen.setColour( colourSelected( g_colour_screen, m_selectable_screen.isSelected() ) );
}
bool manipulator_show_axis( const Pivot2World& pivot, const Vector3& axis ){
return fabs( vector3_dot( pivot.m_axis_screen, axis ) ) < 0.95;
}
void render( Renderer& renderer, const VolumeTest& volume, const Matrix4& pivot2world ){
m_pivot.update( pivot2world, volume.GetModelview(), volume.GetProjection(), volume.GetViewport() );
// temp hack
UpdateColours();
Vector3 x = vector3_normalised( vector4_to_vector3( m_pivot.m_worldSpace.x() ) );
bool show_x = manipulator_show_axis( m_pivot, x );
Vector3 y = vector3_normalised( vector4_to_vector3( m_pivot.m_worldSpace.y() ) );
bool show_y = manipulator_show_axis( m_pivot, y );
Vector3 z = vector3_normalised( vector4_to_vector3( m_pivot.m_worldSpace.z() ) );
bool show_z = manipulator_show_axis( m_pivot, z );
renderer.SetState( m_state_wire, Renderer::eWireframeOnly );
renderer.SetState( m_state_wire, Renderer::eFullMaterials );
if ( show_x ) {
renderer.addRenderable( m_arrow_x, m_pivot.m_worldSpace );
}
if ( show_y ) {
renderer.addRenderable( m_arrow_y, m_pivot.m_worldSpace );
}
if ( show_z ) {
renderer.addRenderable( m_arrow_z, m_pivot.m_worldSpace );
}
renderer.addRenderable( m_quad_screen, m_pivot.m_viewplaneSpace );
renderer.SetState( m_state_fill, Renderer::eWireframeOnly );
renderer.SetState( m_state_fill, Renderer::eFullMaterials );
if ( show_x ) {
renderer.addRenderable( m_arrow_head_x, m_pivot.m_worldSpace );
}
if ( show_y ) {
renderer.addRenderable( m_arrow_head_y, m_pivot.m_worldSpace );
}
if ( show_z ) {
renderer.addRenderable( m_arrow_head_z, m_pivot.m_worldSpace );
}
}
void testSelect( const View& view, const Matrix4& pivot2world ){
m_pivot.update( pivot2world, view.GetModelview(), view.GetProjection(), view.GetViewport() );
SelectionPool selector;
Vector3 x = vector3_normalised( vector4_to_vector3( m_pivot.m_worldSpace.x() ) );
bool show_x = manipulator_show_axis( m_pivot, x );
Vector3 y = vector3_normalised( vector4_to_vector3( m_pivot.m_worldSpace.y() ) );
bool show_y = manipulator_show_axis( m_pivot, y );
Vector3 z = vector3_normalised( vector4_to_vector3( m_pivot.m_worldSpace.z() ) );
bool show_z = manipulator_show_axis( m_pivot, z );
{
const Matrix4 local2view( matrix4_multiplied_by_matrix4( view.GetViewMatrix(), m_pivot.m_viewpointSpace ) );
{
SelectionIntersection best;
Quad_BestPoint( local2view, eClipCullCW, m_quad_screen.m_quad, best );
if ( best.valid() ) {
best = SelectionIntersection( 0, 0 );
selector.addSelectable( best, &m_selectable_screen );
}
}
}
{
const Matrix4 local2view( matrix4_multiplied_by_matrix4( view.GetViewMatrix(), m_pivot.m_worldSpace ) );
#if defined( DEBUG_SELECTION )
g_render_clipped.construct( view.GetViewMatrix() );
#endif
if ( show_x ) {
SelectionIntersection best;
Line_BestPoint( local2view, m_arrow_x.m_line, best );
Triangles_BestPoint( local2view, eClipCullCW, m_arrow_head_x.m_vertices.begin(), m_arrow_head_x.m_vertices.end(), best );
selector.addSelectable( best, &m_selectable_x );
}
if ( show_y ) {
SelectionIntersection best;
Line_BestPoint( local2view, m_arrow_y.m_line, best );
Triangles_BestPoint( local2view, eClipCullCW, m_arrow_head_y.m_vertices.begin(), m_arrow_head_y.m_vertices.end(), best );
selector.addSelectable( best, &m_selectable_y );
}
if ( show_z ) {
SelectionIntersection best;
Line_BestPoint( local2view, m_arrow_z.m_line, best );
Triangles_BestPoint( local2view, eClipCullCW, m_arrow_head_z.m_vertices.begin(), m_arrow_head_z.m_vertices.end(), best );
selector.addSelectable( best, &m_selectable_z );
}
}
selectionChange( selector );
}
Manipulatable* GetManipulatable(){
if ( m_selectable_x.isSelected() ) {
m_axis.SetAxis( g_vector3_axis_x );
return &m_axis;
}
else if ( m_selectable_y.isSelected() ) {
m_axis.SetAxis( g_vector3_axis_y );
return &m_axis;
}
else if ( m_selectable_z.isSelected() ) {
m_axis.SetAxis( g_vector3_axis_z );
return &m_axis;
}
else
{
return &m_free;
}
}
void setSelected( bool select ){
m_selectable_x.setSelected( select );
m_selectable_y.setSelected( select );
m_selectable_z.setSelected( select );
m_selectable_screen.setSelected( select );
}
bool isSelected() const {
return m_selectable_x.isSelected()
| m_selectable_y.isSelected()
| m_selectable_z.isSelected()
| m_selectable_screen.isSelected();
}
};
Shader* TranslateManipulator::m_state_wire;
Shader* TranslateManipulator::m_state_fill;
class ScaleManipulator : public Manipulator, public ManipulatorSelectionChangeable
{
struct RenderableArrow : public OpenGLRenderable
{
PointVertex m_line[2];
void render( RenderStateFlags state ) const {
glColorPointer( 4, GL_UNSIGNED_BYTE, sizeof( PointVertex ), &m_line[0].colour );
glVertexPointer( 3, GL_FLOAT, sizeof( PointVertex ), &m_line[0].vertex );
glDrawArrays( GL_LINES, 0, 2 );
}
void setColour( const Colour4b& colour ){
m_line[0].colour = colour;
m_line[1].colour = colour;
}
};
struct RenderableQuad : public OpenGLRenderable
{
PointVertex m_quad[4];
void render( RenderStateFlags state ) const {
glColorPointer( 4, GL_UNSIGNED_BYTE, sizeof( PointVertex ), &m_quad[0].colour );
glVertexPointer( 3, GL_FLOAT, sizeof( PointVertex ), &m_quad[0].vertex );
glDrawArrays( GL_QUADS, 0, 4 );
}
void setColour( const Colour4b& colour ){
m_quad[0].colour = colour;
m_quad[1].colour = colour;
m_quad[2].colour = colour;
m_quad[3].colour = colour;
}
};
ScaleFree m_free;
ScaleAxis m_axis;
RenderableArrow m_arrow_x;
RenderableArrow m_arrow_y;
RenderableArrow m_arrow_z;
RenderableQuad m_quad_screen;
SelectableBool m_selectable_x;
SelectableBool m_selectable_y;
SelectableBool m_selectable_z;
SelectableBool m_selectable_screen;
Pivot2World m_pivot;
public:
ScaleManipulator( Scalable& scalable, std::size_t segments, float length ) :
m_free( scalable ),
m_axis( scalable ){
draw_arrowline( length, m_arrow_x.m_line, 0 );
draw_arrowline( length, m_arrow_y.m_line, 1 );
draw_arrowline( length, m_arrow_z.m_line, 2 );
draw_quad( 16, m_quad_screen.m_quad );
}
void UpdateColours(){
m_arrow_x.setColour( colourSelected( g_colour_x, m_selectable_x.isSelected() ) );
m_arrow_y.setColour( colourSelected( g_colour_y, m_selectable_y.isSelected() ) );
m_arrow_z.setColour( colourSelected( g_colour_z, m_selectable_z.isSelected() ) );
m_quad_screen.setColour( colourSelected( g_colour_screen, m_selectable_screen.isSelected() ) );
}
void render( Renderer& renderer, const VolumeTest& volume, const Matrix4& pivot2world ){
m_pivot.update( pivot2world, volume.GetModelview(), volume.GetProjection(), volume.GetViewport() );
// temp hack
UpdateColours();
renderer.addRenderable( m_arrow_x, m_pivot.m_worldSpace );
renderer.addRenderable( m_arrow_y, m_pivot.m_worldSpace );
renderer.addRenderable( m_arrow_z, m_pivot.m_worldSpace );
renderer.addRenderable( m_quad_screen, m_pivot.m_viewpointSpace );
}
void testSelect( const View& view, const Matrix4& pivot2world ){
m_pivot.update( pivot2world, view.GetModelview(), view.GetProjection(), view.GetViewport() );
SelectionPool selector;
{
const Matrix4 local2view( matrix4_multiplied_by_matrix4( view.GetViewMatrix(), m_pivot.m_worldSpace ) );
#if defined( DEBUG_SELECTION )
g_render_clipped.construct( view.GetViewMatrix() );
#endif
{
SelectionIntersection best;
Line_BestPoint( local2view, m_arrow_x.m_line, best );
selector.addSelectable( best, &m_selectable_x );
}
{
SelectionIntersection best;
Line_BestPoint( local2view, m_arrow_y.m_line, best );
selector.addSelectable( best, &m_selectable_y );
}
{
SelectionIntersection best;
Line_BestPoint( local2view, m_arrow_z.m_line, best );
selector.addSelectable( best, &m_selectable_z );
}
}
{
const Matrix4 local2view( matrix4_multiplied_by_matrix4( view.GetViewMatrix(), m_pivot.m_viewpointSpace ) );
{
SelectionIntersection best;
Quad_BestPoint( local2view, eClipCullCW, m_quad_screen.m_quad, best );
selector.addSelectable( best, &m_selectable_screen );
}
}
selectionChange( selector );
}
Manipulatable* GetManipulatable(){
if ( m_selectable_x.isSelected() ) {
m_axis.SetAxis( g_vector3_axis_x );
return &m_axis;
}
else if ( m_selectable_y.isSelected() ) {
m_axis.SetAxis( g_vector3_axis_y );
return &m_axis;
}
else if ( m_selectable_z.isSelected() ) {
m_axis.SetAxis( g_vector3_axis_z );
return &m_axis;
}
else{
m_free.SetAxes( g_vector3_identity, g_vector3_identity );
return &m_free;
}
}
void setSelected( bool select ){
m_selectable_x.setSelected( select );
m_selectable_y.setSelected( select );
m_selectable_z.setSelected( select );
m_selectable_screen.setSelected( select );
}
bool isSelected() const {
return m_selectable_x.isSelected()
| m_selectable_y.isSelected()
| m_selectable_z.isSelected()
| m_selectable_screen.isSelected();
}
};
class SkewManipulator : public Manipulator
{
struct RenderableLine : public OpenGLRenderable {
PointVertex m_line[2];
RenderableLine() {
}
void render( RenderStateFlags state ) const {
glColorPointer( 4, GL_UNSIGNED_BYTE, sizeof( PointVertex ), &m_line[0].colour );
glVertexPointer( 3, GL_FLOAT, sizeof( PointVertex ), &m_line[0].vertex );
glDrawArrays( GL_LINES, 0, 2 );
}
void setColour( const Colour4b& colour ) {
m_line[0].colour = colour;
m_line[1].colour = colour;
}
};
struct RenderableArrowHead : public OpenGLRenderable
{
Array<FlatShadedVertex> m_vertices;
RenderableArrowHead( std::size_t size )
: m_vertices( size ) {
}
void render( RenderStateFlags state ) const {
glColorPointer( 4, GL_UNSIGNED_BYTE, sizeof( FlatShadedVertex ), &m_vertices.data()->colour );
glVertexPointer( 3, GL_FLOAT, sizeof( FlatShadedVertex ), &m_vertices.data()->vertex );
glNormalPointer( GL_FLOAT, sizeof( FlatShadedVertex ), &m_vertices.data()->normal );
glDrawArrays( GL_TRIANGLES, 0, GLsizei( m_vertices.size() ) );
}
void setColour( const Colour4b & colour ) {
for( Array<FlatShadedVertex>::iterator i = m_vertices.begin(); i != m_vertices.end(); ++i ) {
( *i ).colour = colour;
}
}
};
struct RenderablePoint : public OpenGLRenderable
{
PointVertex m_point;
RenderablePoint():
m_point( vertex3f_identity ) {
}
void render( RenderStateFlags state ) const {
glColorPointer( 4, GL_UNSIGNED_BYTE, sizeof( PointVertex ), &m_point.colour );
glVertexPointer( 3, GL_FLOAT, sizeof( PointVertex ), &m_point.vertex );
glDrawArrays( GL_POINTS, 0, 1 );
}
void setColour( const Colour4b & colour ) {
m_point.colour = colour;
}
};
SkewAxis m_skew;
TranslateFreeXY_Z m_translateFreeXY_Z;
ScaleAxis m_scaleAxis;
ScaleFree m_scaleFree;
RotateAxis m_rotateAxis;
AABB m_bounds_draw;
const AABB& m_bounds;
Matrix4& m_pivot2world;
const bool& m_pivotIsCustom;
/*
RenderableLine m_lineXy_;
RenderableLine m_lineXy;
RenderableLine m_lineXz_;
RenderableLine m_lineXz;
RenderableLine m_lineYz_;
RenderableLine m_lineYz;
RenderableLine m_lineYx_;
RenderableLine m_lineYx;
RenderableLine m_lineZx_;
RenderableLine m_lineZx;
RenderableLine m_lineZy_;
RenderableLine m_lineZy;
*/
RenderableLine m_lines[3][2][2];
SelectableBool m_selectables[3][2][2]; //[X][YZ][-+]
SelectableBool m_selectable_translateFree;
SelectableBool m_selectables_scale[3][2]; //[X][-+]
SelectableBool m_selectables_rotate[3][2][2]; //[X][-+Y][-+Z]
Selectable* m_selectable_prev_ptr;
Selectable* m_selectable_prev_ptr2;
Pivot2World m_pivot;
Matrix4 m_worldSpace;
RenderableArrowHead m_arrow;
Matrix4 m_arrow_modelview;
Matrix4 m_arrow_modelview2;
RenderablePoint m_point;
public:
static Shader* m_state_wire;
static Shader* m_state_fill;
static Shader* m_state_point;
SkewManipulator( Skewable& skewable, Translatable& translatable, Scalable& scalable, Rotatable& rotatable, const AABB& bounds, Matrix4& pivot2world, const bool& pivotIsCustom, const std::size_t segments = 2 ) :
m_skew( skewable ),
m_translateFreeXY_Z( translatable ),
m_scaleAxis( scalable ),
m_scaleFree( scalable ),
m_rotateAxis( rotatable ),
m_bounds( bounds ),
m_pivot2world( pivot2world ),
m_pivotIsCustom( pivotIsCustom ),
m_selectable_prev_ptr( 0 ),
m_selectable_prev_ptr2( 0 ),
m_arrow( 3 * 2 * ( segments << 3 ) ) {
for ( int i = 0; i < 3; ++i ){
for ( int j = 0; j < 2; ++j ){
const int x = i;
const int y = ( i + j + 1 )%3;
Vertex3f& xy_ = m_lines[i][j][0].m_line[0].vertex;
Vertex3f& x_y_ = m_lines[i][j][0].m_line[1].vertex;
Vertex3f& xy = m_lines[i][j][1].m_line[0].vertex;
Vertex3f& x_y = m_lines[i][j][1].m_line[1].vertex;
xy = x_y = xy_ = x_y_ = vertex3f_identity;
xy[x] = xy_[x] = 1;
x_y[x] = x_y_[x] = -1;
xy[y] = x_y[y] = 1;
xy_[y] = x_y_[y] = -1;
}
}
draw_arrowhead( segments, 0, m_arrow.m_vertices.data(), TripleRemapXYZ<Vertex3f>(), TripleRemapXYZ<Normal3f>() );
m_arrow.setColour( g_colour_selected );
m_point.setColour( g_colour_selected );
}
void UpdateColours() {
for ( int i = 0; i < 3; ++i )
for ( int j = 0; j < 2; ++j )
for ( int k = 0; k < 2; ++k )
m_lines[i][j][k].setColour( colourSelected( g_colour_screen, m_selectables[i][j][k].isSelected() ) );
for ( int i = 0; i < 3; ++i )
for ( int j = 0; j < 2; ++j )
if( m_selectables_scale[i][j].isSelected() ){
m_lines[(i + 1)%3][1][j].setColour( g_colour_z );
m_lines[(i + 2)%3][0][j].setColour( g_colour_z );
}
}
void updateModelview( const VolumeTest& volume, const Matrix4& pivot2world ){
//m_pivot.update( pivot2world, volume.GetModelview(), volume.GetProjection(), volume.GetViewport() );
//m_pivot.update( matrix4_translation_for_vec3( matrix4_get_translation_vec3( pivot2world ) ), volume.GetModelview(), volume.GetProjection(), volume.GetViewport() );
m_pivot.update( matrix4_translation_for_vec3( m_bounds.origin ), volume.GetModelview(), volume.GetProjection(), volume.GetViewport() );
//m_pivot.update( g_matrix4_identity, volume.GetModelview(), volume.GetProjection(), volume.GetViewport() ); //no shaking in cam due to low precision this way; smooth and sometimes very incorrect result
// globalOutputStream() << m_pivot.m_worldSpace << "\n";
Matrix4& m = m_pivot.m_worldSpace; /* go affine to increase precision */
m[1] = m[2] = m[3] = m[4] = m[6] = m[7] = m[8] = m[9] = m[11] = 0;
m[15] = 1;
m_bounds_draw = aabb_for_oriented_aabb( m_bounds, matrix4_affine_inverse( m_pivot.m_worldSpace ) ); //screen scale
for ( int i = 0; i < 3; ++i ){
if( m_bounds_draw.extents[i] < 16 )
m_bounds_draw.extents[i] = 18;
else
m_bounds_draw.extents[i] += 2.0f;
}
m_bounds_draw = aabb_for_oriented_aabb( m_bounds_draw, m_pivot.m_worldSpace ); //world scale
m_bounds_draw.origin = m_bounds.origin;
m_worldSpace = matrix4_multiplied_by_matrix4( matrix4_translation_for_vec3( m_bounds_draw.origin ), matrix4_scale_for_vec3( m_bounds_draw.extents ) );
matrix4_premultiply_by_matrix4( m_worldSpace, matrix4_translation_for_vec3( -matrix4_get_translation_vec3( pivot2world ) ) );
matrix4_premultiply_by_matrix4( m_worldSpace, pivot2world );
// globalOutputStream() << m_worldSpace << "\n";
// globalOutputStream() << pivot2world << "\n";
}
void render( Renderer& renderer, const VolumeTest& volume, const Matrix4& pivot2world ) {
updateModelview( volume, pivot2world );
// temp hack
UpdateColours();
renderer.SetState( m_state_wire, Renderer::eWireframeOnly );
renderer.SetState( m_state_wire, Renderer::eFullMaterials );
for ( int i = 0; i < 3; ++i )
for ( int j = 0; j < 2; ++j ){
#if 0
const Vector3 dir = ( m_lines[i][j][0].m_line[0].vertex - m_lines[i][j][1].m_line[0].vertex ) / 2;
const float dot = vector3_dot( dir, m_pivot.m_axis_screen );
if( dot > 0.9999f )
renderer.addRenderable( m_lines[i][j][0], m_worldSpace );
else if( dot < -0.9999f )
renderer.addRenderable( m_lines[i][j][1], m_worldSpace );
else{
renderer.addRenderable( m_lines[i][j][0], m_worldSpace );
renderer.addRenderable( m_lines[i][j][1], m_worldSpace );
}
#else
if( m_selectables[i][j][0].isSelected() ){ /* add selected last to get highlighted one rendered on top in 2d */
renderer.addRenderable( m_lines[i][j][1], m_worldSpace );
renderer.addRenderable( m_lines[i][j][0], m_worldSpace );
}
else{
renderer.addRenderable( m_lines[i][j][0], m_worldSpace );
renderer.addRenderable( m_lines[i][j][1], m_worldSpace );
}
#endif
}
for ( int i = 0; i < 3; ++i )
for ( int j = 0; j < 2; ++j )
for ( int k = 0; k < 2; ++k )
if( m_selectables[i][j][k].isSelected() ){
Vector3 origin = matrix4_transformed_point( m_worldSpace, m_lines[i][j][k].m_line[0].vertex );
Vector3 origin2 = matrix4_transformed_point( m_worldSpace, m_lines[i][j][k].m_line[1].vertex );
Pivot2World_worldSpace( m_arrow_modelview, matrix4_translation_for_vec3( origin ), volume.GetModelview(), volume.GetProjection(), volume.GetViewport() );
Pivot2World_worldSpace( m_arrow_modelview2, matrix4_translation_for_vec3( origin2 ), volume.GetModelview(), volume.GetProjection(), volume.GetViewport() );
const Matrix4 rot( i == 0? g_matrix4_identity: i == 1? matrix4_rotation_for_sincos_z( 1, 0 ): matrix4_rotation_for_sincos_y( -1, 0 ) );
matrix4_multiply_by_matrix4( m_arrow_modelview, rot );
matrix4_multiply_by_matrix4( m_arrow_modelview2, rot );
const float x = 0.7f;
matrix4_multiply_by_matrix4( m_arrow_modelview, matrix4_scale_for_vec3( Vector3( x, x, x ) ) );
matrix4_multiply_by_matrix4( m_arrow_modelview2, matrix4_scale_for_vec3( Vector3( -x, x, x ) ) );
renderer.SetState( m_state_fill, Renderer::eWireframeOnly );
renderer.SetState( m_state_fill, Renderer::eFullMaterials );
renderer.addRenderable( m_arrow, m_arrow_modelview );
renderer.addRenderable( m_arrow, m_arrow_modelview2 );
return;
}
for ( int i = 0; i < 3; ++i )
for ( int j = 0; j < 2; ++j )
for ( int k = 0; k < 2; ++k )
if( m_selectables_rotate[i][j][k].isSelected() ){
renderer.SetState( m_state_point, Renderer::eWireframeOnly );
renderer.SetState( m_state_point, Renderer::eFullMaterials );
renderer.addRenderable( m_point, m_worldSpace );
renderer.addRenderable( m_point, m_worldSpace );
return;
}
}
void testSelect( const View& view, const Matrix4& pivot2world ) {
updateModelview( view, pivot2world );
SelectionPool selector;
const Matrix4 local2view( matrix4_multiplied_by_matrix4( view.GetViewMatrix(), m_worldSpace ) );
/* try corner points to rotate */
for ( int i = 0; i < 3; ++i )
for ( int j = 0; j < 2; ++j )
for ( int k = 0; k < 2; ++k ){
m_point.m_point.vertex[i] = 0;
m_point.m_point.vertex[(i + 1)%3] = j? 1 : -1;
m_point.m_point.vertex[(i + 2)%3] = k? 1 : -1;
SelectionIntersection best;
Point_BestPoint( local2view, m_point.m_point, best );
selector.addSelectable( best, &m_selectables_rotate[i][j][k] );
}
if( !selector.failed() ) {
( *selector.begin() ).second->setSelected( true );
for ( int i = 0; i < 3; ++i )
for ( int j = 0; j < 2; ++j )
for ( int k = 0; k < 2; ++k )
if( m_selectables_rotate[i][j][k].isSelected() ){
m_point.m_point.vertex[i] = 0;
m_point.m_point.vertex[(i + 1)%3] = j? 1 : -1;
m_point.m_point.vertex[(i + 2)%3] = k? 1 : -1;
if( !m_pivotIsCustom ){
const Vector3 origin = m_bounds.origin + m_point.m_point.vertex * -1 * m_bounds.extents;
m_pivot2world = matrix4_translation_for_vec3( origin );
}
/* set radius */
if( fabs( vector3_dot( m_pivot.m_axis_screen, g_vector3_axes[i] ) ) < 0.2 ){
Vector3 origin = matrix4_get_translation_vec3( m_pivot2world );
Vector3 point = m_bounds_draw.origin + m_point.m_point.vertex * m_bounds_draw.extents;
const Matrix4 inv = matrix4_affine_inverse( m_pivot.m_worldSpace );
matrix4_transform_point( inv, origin );
matrix4_transform_point( inv, point );
point -= origin;
point = vector3_added( point, vector3_scaled( m_pivot.m_axis_screen, -vector3_dot( point, m_pivot.m_axis_screen ) ) ); //constrain_to_axis
m_rotateAxis.SetRadius( vector3_length( point ) - g_SELECT_EPSILON / 2.0 - 1.0 ); /* use smaller radius to constrain to one rotation direction in 2D */
//globalOutputStream() << "radius " << ( vector3_length( point ) - g_SELECT_EPSILON / 2.0 - 1.0 ) << "\n";
}
else{
m_rotateAxis.SetRadius( g_radius );
//globalOutputStream() << "g_radius\n";
}
}
}
else{
/* try lines to skew */
for ( int i = 0; i < 3; ++i )
for ( int j = 0; j < 2; ++j )
for ( int k = 0; k < 2; ++k ){
SelectionIntersection best;
Line_BestPoint( local2view, m_lines[i][j][k].m_line, best );
selector.addSelectable( best, &m_selectables[i][j][k] );
}
if( !selector.failed() ) {
( *selector.begin() ).second->setSelected( true );
m_skew.set0( vector4_projected( matrix4_transformed_vector4( matrix4_full_inverse( view.GetViewMatrix() ), Vector4( 0, 0, selector.begin()->first.depth(), 1 ) ) ) );
if( !m_pivotIsCustom )
for ( int i = 0; i < 3; ++i )
for ( int j = 0; j < 2; ++j )
for ( int k = 0; k < 2; ++k )
if( m_selectables[i][j][k].isSelected() ){
const int axis_by = ( i + j + 1 ) % 3;
Vector3 origin = m_bounds.origin;
origin[axis_by] += k? -m_bounds.extents[axis_by] : m_bounds.extents[axis_by];
m_pivot2world = matrix4_translation_for_vec3( origin );
}
}
else{ /* try bbox to translate */
SelectionIntersection best;
AABB_BestPoint( local2view, eClipCullCW, AABB( Vector3( 0, 0, 0 ), Vector3( 1, 1, 1 ) ), best );
selector.addSelectable( best, &m_selectable_translateFree );
if( !selector.failed() )
m_translateFreeXY_Z.set0( vector4_projected( matrix4_transformed_vector4( matrix4_full_inverse( view.GetViewMatrix() ), Vector4( 0, 0, selector.begin()->first.depth(), 1 ) ) ) );
}
}
/* try bbox planes to scale*/
if( selector.failed() ){
const Matrix4 screen2world( matrix4_full_inverse( view.GetViewMatrix() ) );
Vector3 corners[8];
aabb_corners( m_bounds_draw, corners );
const int indices[24] = {
3, 7, 4, 0, //-x
2, 1, 5, 6, //+x
3, 2, 6, 7, //-y
1, 0, 4, 5, //+y
7, 6, 5, 4, //-z
0, 1, 2, 3, //+z
};
Selectable* selectable = 0;
Selectable* selectable2 = 0;
double bestDot = 1;
const Vector3 viewdir( view.getViewDir() );
for ( int i = 0; i < 3; ++i ){
for ( int j = 0; j < 2; ++j ){
const Vector3 normal = j? g_vector3_axes[i] : -g_vector3_axes[i];
const Vector3 centroid = m_bounds.origin + m_bounds.extents * normal;
const Vector3 projected = vector4_projected( matrix4_transformed_vector4( view.GetViewMatrix(), Vector4( centroid, 1 ) ) );
const Vector3 closest_point = vector4_projected( matrix4_transformed_vector4( screen2world, Vector4( 0, 0, projected[2], 1 ) ) );
const int index = i * 8 + j * 4;
if( vector3_dot( normal, closest_point - corners[indices[index]] ) > 0
&& vector3_dot( normal, closest_point - corners[indices[index + 1]] ) > 0
&& vector3_dot( normal, closest_point - corners[indices[index + 2]] ) > 0
&& vector3_dot( normal, closest_point - corners[indices[index + 3]] ) > 0 )
{
const double dot = fabs( vector3_dot( normal, viewdir ) );
const double diff = bestDot - dot;
if( diff > 0.03 ){
bestDot = dot;
selectable = &m_selectables_scale[i][j];
selectable2 = 0;
}
else if( fabs( diff ) <= 0.03 ){
selectable2 = &m_selectables_scale[i][j];
}
}
}
}
// if( view.GetViewMatrix().xw() != 0 || view.GetViewMatrix().yw() != 0 )
if( view.fill() ) // select only plane in camera
selectable2 = 0;
if( selectable ){
Vector3 origin = m_bounds.origin;
for ( int i = 0; i < 3; ++i )
for ( int j = 0; j < 2; ++j )
if( &m_selectables_scale[i][j] == selectable || &m_selectables_scale[i][j] == selectable2 ){
m_selectables_scale[i][j].setSelected( true );
origin[i] += j? -m_bounds.extents[i] : m_bounds.extents[i];
}
if( !m_pivotIsCustom )
m_pivot2world = matrix4_translation_for_vec3( origin );
if( m_selectable_prev_ptr != selectable || m_selectable_prev_ptr2 != selectable2 ){
m_selectable_prev_ptr = selectable;
m_selectable_prev_ptr2 = selectable2;
SceneChangeNotify();
}
return;
}
}
if( !selector.failed() ) {
( *selector.begin() ).second->setSelected( true );
if( m_selectable_prev_ptr != ( *selector.begin() ).second ) {
m_selectable_prev_ptr = ( *selector.begin() ).second;
m_selectable_prev_ptr2 = 0;
SceneChangeNotify();
}
}
else if( m_selectable_prev_ptr ) {
m_selectable_prev_ptr = 0;
m_selectable_prev_ptr2 = 0;
SceneChangeNotify();
}
}
Manipulatable* GetManipulatable() {
for ( int i = 0; i < 3; ++i )
for ( int j = 0; j < 2; ++j )
for ( int k = 0; k < 2; ++k )
if( m_selectables[i][j][k].isSelected() ){
m_skew.SetAxes( i, ( i + j + 1 ) % 3, k? 1 : -1 );
return &m_skew;
}
else if( m_selectables_rotate[i][j][k].isSelected() ){
m_rotateAxis.SetAxis( g_vector3_axes[i] );
return &m_rotateAxis;
}
{
Vector3 axes[2] = { g_vector3_identity, g_vector3_identity };
Vector3* axis = axes;
for ( int i = 0; i < 3; ++i )
for ( int j = 0; j < 2; ++j )
if( m_selectables_scale[i][j].isSelected() )
(*axis++)[i] = j? 1 : -1;
if( m_selectable_prev_ptr2 ){
m_scaleFree.SetAxes( axes[0], axes[1] );
return &m_scaleFree;
}
else if( axis != axes ){
m_scaleAxis.SetAxis( axes[0] );
return &m_scaleAxis;
}
}
return &m_translateFreeXY_Z;
}
void setSelected( bool select ) {
m_selectable_translateFree.setSelected( select );
for ( int i = 0; i < 3; ++i )
for ( int j = 0; j < 2; ++j )
for ( int k = 0; k < 2; ++k ){
m_selectables[i][j][k].setSelected( select );
m_selectables_rotate[i][j][k].setSelected( select );
}
for ( int i = 0; i < 3; ++i )
for ( int j = 0; j < 2; ++j )
m_selectables_scale[i][j].setSelected( select );
}
bool isSelected() const {
bool selected = false;
for ( int i = 0; i < 3; ++i )
for ( int j = 0; j < 2; ++j )
for ( int k = 0; k < 2; ++k ){
selected |= m_selectables[i][j][k].isSelected();
selected |= m_selectables_rotate[i][j][k].isSelected();
}
for ( int i = 0; i < 3; ++i )
for ( int j = 0; j < 2; ++j )
selected |= m_selectables_scale[i][j].isSelected();
return selected | m_selectable_translateFree.isSelected();
}
};
Shader* SkewManipulator::m_state_wire;
Shader* SkewManipulator::m_state_fill;
Shader* SkewManipulator::m_state_point;
inline PlaneSelectable* Instance_getPlaneSelectable( scene::Instance& instance ){
return InstanceTypeCast<PlaneSelectable>::cast( instance );
}
class PlaneSelectableSelectPlanes : public scene::Graph::Walker
{
Selector& m_selector;
SelectionTest& m_test;
PlaneCallback m_selectedPlaneCallback;
public:
PlaneSelectableSelectPlanes( Selector& selector, SelectionTest& test, const PlaneCallback& selectedPlaneCallback )
: m_selector( selector ), m_test( test ), m_selectedPlaneCallback( selectedPlaneCallback ){
}
bool pre( const scene::Path& path, scene::Instance& instance ) const {
if ( path.top().get().visible() && Instance_isSelected( instance ) ) {
PlaneSelectable* planeSelectable = Instance_getPlaneSelectable( instance );
if ( planeSelectable != 0 ) {
planeSelectable->selectPlanes( m_selector, m_test, m_selectedPlaneCallback );
}
}
return true;
}
};
class PlaneSelectableSelectReversedPlanes : public scene::Graph::Walker
{
Selector& m_selector;
const SelectedPlanes& m_selectedPlanes;
public:
PlaneSelectableSelectReversedPlanes( Selector& selector, const SelectedPlanes& selectedPlanes )
: m_selector( selector ), m_selectedPlanes( selectedPlanes ){
}
bool pre( const scene::Path& path, scene::Instance& instance ) const {
if ( path.top().get().visible() && Instance_isSelected( instance ) ) {
PlaneSelectable* planeSelectable = Instance_getPlaneSelectable( instance );
if ( planeSelectable != 0 ) {
planeSelectable->selectReversedPlanes( m_selector, m_selectedPlanes );
}
}
return true;
}
};
void Scene_forEachPlaneSelectable_selectPlanes( scene::Graph& graph, Selector& selector, SelectionTest& test, const PlaneCallback& selectedPlaneCallback ){
graph.traverse( PlaneSelectableSelectPlanes( selector, test, selectedPlaneCallback ) );
}
void Scene_forEachPlaneSelectable_selectReversedPlanes( scene::Graph& graph, Selector& selector, const SelectedPlanes& selectedPlanes ){
graph.traverse( PlaneSelectableSelectReversedPlanes( selector, selectedPlanes ) );
}
class PlaneLess
{
public:
bool operator()( const Plane3& plane, const Plane3& other ) const {
if ( plane.a < other.a ) {
return true;
}
if ( other.a < plane.a ) {
return false;
}
if ( plane.b < other.b ) {
return true;
}
if ( other.b < plane.b ) {
return false;
}
if ( plane.c < other.c ) {
return true;
}
if ( other.c < plane.c ) {
return false;
}
if ( plane.d < other.d ) {
return true;
}
if ( other.d < plane.d ) {
return false;
}
return false;
}
};
typedef std::set<Plane3, PlaneLess> PlaneSet;
inline void PlaneSet_insert( PlaneSet& self, const Plane3& plane ){
self.insert( plane );
}
inline bool PlaneSet_contains( const PlaneSet& self, const Plane3& plane ){
return self.find( plane ) != self.end();
}
class SelectedPlaneSet : public SelectedPlanes
{
PlaneSet m_selectedPlanes;
public:
bool empty() const {
return m_selectedPlanes.empty();
}
void insert( const Plane3& plane ){
PlaneSet_insert( m_selectedPlanes, plane );
}
bool contains( const Plane3& plane ) const {
return PlaneSet_contains( m_selectedPlanes, plane );
}
typedef MemberCaller1<SelectedPlaneSet, const Plane3&, &SelectedPlaneSet::insert> InsertCaller;
};
bool Scene_forEachPlaneSelectable_selectPlanes( scene::Graph& graph, Selector& selector, SelectionTest& test ){
SelectedPlaneSet selectedPlanes;
Scene_forEachPlaneSelectable_selectPlanes( graph, selector, test, SelectedPlaneSet::InsertCaller( selectedPlanes ) );
Scene_forEachPlaneSelectable_selectReversedPlanes( graph, selector, selectedPlanes );
return !selectedPlanes.empty();
}
template<typename Functor>
class PlaneselectableVisibleSelectedVisitor : public SelectionSystem::Visitor
{
const Functor& m_functor;
public:
PlaneselectableVisibleSelectedVisitor( const Functor& functor ) : m_functor( functor ){
}
void visit( scene::Instance& instance ) const {
PlaneSelectable* planeSelectable = Instance_getPlaneSelectable( instance );
if ( planeSelectable != 0
&& instance.path().top().get().visible() ) {
m_functor( *planeSelectable );
}
}
};
template<typename Functor>
inline const Functor& Scene_forEachVisibleSelectedPlaneselectable( const Functor& functor ){
GlobalSelectionSystem().foreachSelected( PlaneselectableVisibleSelectedVisitor<Functor>( functor ) );
return functor;
}
void Scene_forEachPlaneSelectable_bestPlane( SelectionTest& test, Plane3& plane, Vector3& intersectionPoint ){
SelectionIntersection intersection;
auto bestPlaneDirect = [&test, &plane, &intersection]( PlaneSelectable& planeSelectable ){
planeSelectable.bestPlaneDirect( test, plane, intersection );
};
Scene_forEachVisibleSelectedPlaneselectable( bestPlaneDirect );
if( !plane3_valid( plane ) ){
float dist( FLT_MAX );
auto bestPlaneIndirect = [&test, &plane, &intersectionPoint, &dist]( PlaneSelectable& planeSelectable ){
planeSelectable.bestPlaneIndirect( test, plane, intersectionPoint, dist );
};
Scene_forEachVisibleSelectedPlaneselectable( bestPlaneIndirect );
}
}
bool Scene_forEachPlaneSelectable_selectPlanes2( SelectionTest& test, TranslateAxis2& translateAxis ){
Plane3 plane( 0, 0, 0, 0 );
Vector3 intersectionPoint( FLT_MAX, FLT_MAX, FLT_MAX );
Scene_forEachPlaneSelectable_bestPlane( test, plane, intersectionPoint );
if( plane3_valid( plane ) ){
if( intersectionPoint == Vector3( FLT_MAX, FLT_MAX, FLT_MAX ) ){ // direct
translateAxis.set0( point_on_plane( plane, test.getVolume().GetViewMatrix(), 0, 0 ), plane );
}
else{ // indirect
test.BeginMesh( g_matrix4_identity );
/* may introduce some screen space offset in manipulatable to handle far-from-edge clicks perfectly; thought clicking not so far isn't too nasty, right? */
translateAxis.set0( vector4_projected( matrix4_transformed_vector4( test.getScreen2world(), Vector4( intersectionPoint, 1 ) ) ), plane );
}
auto selectByPlane = [plane]( PlaneSelectable& planeSelectable ){
planeSelectable.selectByPlane( plane );
};
Scene_forEachVisibleSelectedPlaneselectable( selectByPlane );
}
return plane3_valid( plane );
}
void Scene_forEachSelectedBrush_bestPlane( SelectionTest& test, Plane3& plane, Vector3& intersectionPoint ){
SelectionIntersection intersection;
auto bestPlaneDirect = [&test, &plane, &intersection]( BrushInstance& brushInstance ){
brushInstance.bestPlaneDirect( test, plane, intersection );
};
Scene_forEachVisibleSelectedBrush( bestPlaneDirect );
if( !plane3_valid( plane ) ){
float dist( FLT_MAX );
auto bestPlaneIndirect = [&test, &plane, &intersectionPoint, &dist]( BrushInstance& brushInstance ){
brushInstance.bestPlaneIndirect( test, plane, intersectionPoint, dist );
};
Scene_forEachVisibleSelectedBrush( bestPlaneIndirect );
}
}
void Scene_forEachBrush_bestPlane( SelectionTest& test, Plane3& plane, Vector3& intersectionPoint ){
if( g_SelectedFaceInstances.empty() ){
Scene_forEachSelectedBrush_bestPlane( test, plane, intersectionPoint );
}
else{
SelectionIntersection intersection;
auto bestPlaneDirect = [&test, &plane, &intersection]( BrushInstance& brushInstance ){
if( brushInstance.isSelected() || brushInstance.isSelectedComponents() )
brushInstance.bestPlaneDirect( test, plane, intersection );
};
Scene_forEachVisibleBrush( GlobalSceneGraph(), bestPlaneDirect );
if( !plane3_valid( plane ) ){
float dist( FLT_MAX );
auto bestPlaneIndirect = [&test, &plane, &intersectionPoint, &dist]( BrushInstance& brushInstance ){
if( brushInstance.isSelected() || brushInstance.isSelectedComponents() )
brushInstance.bestPlaneIndirect( test, plane, intersectionPoint, dist );
};
Scene_forEachVisibleBrush( GlobalSceneGraph(), bestPlaneIndirect );
}
}
}
bool Scene_forEachBrush_setupExtrude( SelectionTest& test, DragExtrudeFaces& extrudeFaces ){
Plane3 plane( 0, 0, 0, 0 );
Vector3 intersectionPoint( FLT_MAX, FLT_MAX, FLT_MAX );
Scene_forEachBrush_bestPlane( test, plane, intersectionPoint );
if( plane3_valid( plane ) ){
if( intersectionPoint == Vector3( FLT_MAX, FLT_MAX, FLT_MAX ) ){ // direct
extrudeFaces.set0( point_on_plane( plane, test.getVolume().GetViewMatrix(), 0, 0 ), plane );
}
else{ // indirect
test.BeginMesh( g_matrix4_identity );
/* may introduce some screen space offset in manipulatable to handle far-from-edge clicks perfectly; thought clicking not so far isn't too nasty, right? */
extrudeFaces.set0( vector4_projected( matrix4_transformed_vector4( test.getScreen2world(), Vector4( intersectionPoint, 1 ) ) ), plane );
}
extrudeFaces.m_extrudeSources.clear();
auto gatherExtrude = [plane, &extrudeFaces]( BrushInstance& brushInstance ){
if( brushInstance.isSelected() || brushInstance.isSelectedComponents() ){
bool m_pushed = false;
auto gatherFaceInstances = [plane, &extrudeFaces, &brushInstance, &m_pushed]( FaceInstance& face ){
if( face.isSelected() || plane3_equal( plane, face.getFace().plane3() ) ){
if( !m_pushed ){
extrudeFaces.m_extrudeSources.emplace_back();
extrudeFaces.m_extrudeSources.back().m_brushInstance = &brushInstance;
m_pushed = true;
}
extrudeFaces.m_extrudeSources.back().m_faces.emplace_back();
extrudeFaces.m_extrudeSources.back().m_faces.back().m_face = &face.getFace();
planepts_assign( extrudeFaces.m_extrudeSources.back().m_faces.back().m_planepoints, face.getFace().getPlane().getPlanePoints() );
}
};
Brush_ForEachFaceInstance( brushInstance, gatherFaceInstances );
brushInstance.setSelectedComponents( false, SelectionSystem::eFace );
brushInstance.setSelected( false );
}
};
Scene_forEachVisibleBrush( GlobalSceneGraph(), gatherExtrude );
}
return plane3_valid( plane );
}
void Scene_Translate_Component_Selected( scene::Graph& graph, const Vector3& translation );
void Scene_Translate_Selected( scene::Graph& graph, const Vector3& translation );
void Scene_TestSelect_Primitive( Selector& selector, SelectionTest& test, const VolumeTest& volume );
void Scene_TestSelect_Component( Selector& selector, SelectionTest& test, const VolumeTest& volume, SelectionSystem::EComponentMode componentMode );
void Scene_TestSelect_Component_Selected( Selector& selector, SelectionTest& test, const VolumeTest& volume, SelectionSystem::EComponentMode componentMode );
void Scene_SelectAll_Component( bool select, SelectionSystem::EComponentMode componentMode );
class ResizeTranslatable : public Translatable
{
void translate( const Vector3& translation ){
Scene_Translate_Component_Selected( GlobalSceneGraph(), translation );
}
};
class SelectionVolume : public SelectionTest
{
Matrix4 m_local2view;
const View& m_view;
clipcull_t m_cull;
#if 0
Vector3 m_near;
Vector3 m_far;
#endif
Matrix4 m_screen2world;
public:
SelectionVolume( const View& view )
: m_view( view ){
}
const VolumeTest& getVolume() const {
return m_view;
}
#if 0
const Vector3& getNear() const {
return m_near;
}
const Vector3& getFar() const {
return m_far;
}
#endif
const Matrix4& getScreen2world() const {
return m_screen2world;
}
void BeginMesh( const Matrix4& localToWorld, bool twoSided ){
m_local2view = matrix4_multiplied_by_matrix4( m_view.GetViewMatrix(), localToWorld );
// Cull back-facing polygons based on winding being clockwise or counter-clockwise.
// Don't cull if the view is wireframe and the polygons are two-sided.
m_cull = twoSided && !m_view.fill() ? eClipCullNone : ( matrix4_handedness( localToWorld ) == MATRIX4_RIGHTHANDED ) ? eClipCullCW : eClipCullCCW;
{
m_screen2world = matrix4_full_inverse( m_local2view );
#if 0
m_near = vector4_projected(
matrix4_transformed_vector4(
m_screen2world,
Vector4( 0, 0, -1, 1 )
)
);
m_far = vector4_projected(
matrix4_transformed_vector4(
m_screen2world,
Vector4( 0, 0, 1, 1 )
)
);
#endif
}
#if defined( DEBUG_SELECTION )
g_render_clipped.construct( m_view.GetViewMatrix() );
#endif
}
void TestPoint( const Vector3& point, SelectionIntersection& best ){
Vector4 clipped;
if ( matrix4_clip_point( m_local2view, point, clipped ) == c_CLIP_PASS ) {
best = select_point_from_clipped( clipped );
}
}
void TestPolygon( const VertexPointer& vertices, std::size_t count, SelectionIntersection& best, const DoubleVector3 planepoints[3] ){
DoubleVector3 pts[3];
pts[0] = vector4_projected( matrix4_transformed_vector4( m_local2view, BasicVector4<double>( planepoints[0], 1 ) ) );
pts[1] = vector4_projected( matrix4_transformed_vector4( m_local2view, BasicVector4<double>( planepoints[1], 1 ) ) );
pts[2] = vector4_projected( matrix4_transformed_vector4( m_local2view, BasicVector4<double>( planepoints[2], 1 ) ) );
const Plane3 planeTransformed( plane3_for_points( pts ) );
Vector4 clipped[9];
for ( std::size_t i = 0; i + 2 < count; ++i )
{
BestPoint(
matrix4_clip_triangle(
m_local2view,
reinterpret_cast<const Vector3&>( vertices[0] ),
reinterpret_cast<const Vector3&>( vertices[i + 1] ),
reinterpret_cast<const Vector3&>( vertices[i + 2] ),
clipped
),
clipped,
best,
m_cull,
&planeTransformed
);
}
}
void TestLineLoop( const VertexPointer& vertices, std::size_t count, SelectionIntersection& best ){
if ( count == 0 ) {
return;
}
Vector4 clipped[9];
for ( VertexPointer::iterator i = vertices.begin(), end = i + count, prev = i + ( count - 1 ); i != end; prev = i, ++i )
{
BestPoint(
matrix4_clip_line(
m_local2view,
reinterpret_cast<const Vector3&>( ( *prev ) ),
reinterpret_cast<const Vector3&>( ( *i ) ),
clipped
),
clipped,
best,
m_cull
);
}
}
void TestLineStrip( const VertexPointer& vertices, std::size_t count, SelectionIntersection& best ){
if ( count == 0 ) {
return;
}
Vector4 clipped[9];
for ( VertexPointer::iterator i = vertices.begin(), end = i + count, next = i + 1; next != end; i = next, ++next )
{
BestPoint(
matrix4_clip_line(
m_local2view,
reinterpret_cast<const Vector3&>( ( *i ) ),
reinterpret_cast<const Vector3&>( ( *next ) ),
clipped
),
clipped,
best,
m_cull
);
}
}
void TestLines( const VertexPointer& vertices, std::size_t count, SelectionIntersection& best ){
if ( count == 0 ) {
return;
}
Vector4 clipped[9];
for ( VertexPointer::iterator i = vertices.begin(), end = i + count; i != end; i += 2 )
{
BestPoint(
matrix4_clip_line(
m_local2view,
reinterpret_cast<const Vector3&>( ( *i ) ),
reinterpret_cast<const Vector3&>( ( *( i + 1 ) ) ),
clipped
),
clipped,
best,
m_cull
);
}
}
void TestTriangles( const VertexPointer& vertices, const IndexPointer& indices, SelectionIntersection& best ){
Vector4 clipped[9];
for ( IndexPointer::iterator i( indices.begin() ); i != indices.end(); i += 3 )
{
BestPoint(
matrix4_clip_triangle(
m_local2view,
reinterpret_cast<const Vector3&>( vertices[*i] ),
reinterpret_cast<const Vector3&>( vertices[*( i + 1 )] ),
reinterpret_cast<const Vector3&>( vertices[*( i + 2 )] ),
clipped
),
clipped,
best,
m_cull
);
}
}
void TestQuads( const VertexPointer& vertices, const IndexPointer& indices, SelectionIntersection& best ){
Vector4 clipped[9];
for ( IndexPointer::iterator i( indices.begin() ); i != indices.end(); i += 4 )
{
BestPoint(
matrix4_clip_triangle(
m_local2view,
reinterpret_cast<const Vector3&>( vertices[*i] ),
reinterpret_cast<const Vector3&>( vertices[*( i + 1 )] ),
reinterpret_cast<const Vector3&>( vertices[*( i + 3 )] ),
clipped
),
clipped,
best,
m_cull
);
BestPoint(
matrix4_clip_triangle(
m_local2view,
reinterpret_cast<const Vector3&>( vertices[*( i + 1 )] ),
reinterpret_cast<const Vector3&>( vertices[*( i + 2 )] ),
reinterpret_cast<const Vector3&>( vertices[*( i + 3 )] ),
clipped
),
clipped,
best,
m_cull
);
}
}
void TestQuadStrip( const VertexPointer& vertices, const IndexPointer& indices, SelectionIntersection& best ){
Vector4 clipped[9];
for ( IndexPointer::iterator i( indices.begin() ); i + 2 != indices.end(); i += 2 )
{
BestPoint(
matrix4_clip_triangle(
m_local2view,
reinterpret_cast<const Vector3&>( vertices[*i] ),
reinterpret_cast<const Vector3&>( vertices[*( i + 1 )] ),
reinterpret_cast<const Vector3&>( vertices[*( i + 2 )] ),
clipped
),
clipped,
best,
m_cull
);
BestPoint(
matrix4_clip_triangle(
m_local2view,
reinterpret_cast<const Vector3&>( vertices[*( i + 2 )] ),
reinterpret_cast<const Vector3&>( vertices[*( i + 1 )] ),
reinterpret_cast<const Vector3&>( vertices[*( i + 3 )] ),
clipped
),
clipped,
best,
m_cull
);
}
}
};
class SelectionCounter
{
public:
typedef const Selectable& first_argument_type;
SelectionCounter( const SelectionChangeCallback& onchanged )
: m_count( 0 ), m_onchanged( onchanged ){
}
void operator()( const Selectable& selectable ){
if ( selectable.isSelected() ) {
++m_count;
}
else
{
ASSERT_MESSAGE( m_count != 0, "selection counter underflow" );
--m_count;
}
m_onchanged( selectable );
}
bool empty() const {
return m_count == 0;
}
std::size_t size() const {
return m_count;
}
private:
std::size_t m_count;
SelectionChangeCallback m_onchanged;
};
class SelectedStuffCounter
{
public:
std::size_t m_brushcount;
std::size_t m_patchcount;
std::size_t m_entitycount;
SelectedStuffCounter() : m_brushcount( 0 ), m_patchcount( 0 ), m_entitycount( 0 ){
}
void increment( scene::Node& node ) {
if( Node_isBrush( node ) )
++m_brushcount;
else if( Node_isPatch( node ) )
++m_patchcount;
else if( Node_isEntity( node ) )
++m_entitycount;
}
void decrement( scene::Node& node ) {
if( Node_isBrush( node ) )
--m_brushcount;
else if( Node_isPatch( node ) )
--m_patchcount;
else if( Node_isEntity( node ) )
--m_entitycount;
}
void get( std::size_t& brushes, std::size_t& patches, std::size_t& entities ) const {
brushes = m_brushcount;
patches = m_patchcount;
entities = m_entitycount;
}
};
inline void ConstructSelectionTest( View& view, const rect_t selection_box ){
view.EnableScissor( selection_box.min[0], selection_box.max[0], selection_box.min[1], selection_box.max[1] );
}
inline const rect_t SelectionBoxForPoint( const float device_point[2], const float device_epsilon[2] ){
rect_t selection_box;
selection_box.min[0] = device_point[0] - device_epsilon[0];
selection_box.min[1] = device_point[1] - device_epsilon[1];
selection_box.max[0] = device_point[0] + device_epsilon[0];
selection_box.max[1] = device_point[1] + device_epsilon[1];
return selection_box;
}
inline const rect_t SelectionBoxForArea( const float device_point[2], const float device_delta[2] ){
rect_t selection_box;
selection_box.min[0] = ( device_delta[0] < 0 ) ? ( device_point[0] + device_delta[0] ) : ( device_point[0] );
selection_box.min[1] = ( device_delta[1] < 0 ) ? ( device_point[1] + device_delta[1] ) : ( device_point[1] );
selection_box.max[0] = ( device_delta[0] > 0 ) ? ( device_point[0] + device_delta[0] ) : ( device_point[0] );
selection_box.max[1] = ( device_delta[1] > 0 ) ? ( device_point[1] + device_delta[1] ) : ( device_point[1] );
selection_box.modifier = device_delta[0] * device_delta[1] < 0?
rect_t::eToggle
: device_delta[0] < 0 ?
rect_t::eDeselect
: rect_t::eSelect;
return selection_box;
}
#if 0
Quaternion construct_local_rotation( const Quaternion& world, const Quaternion& localToWorld ){
return quaternion_normalised( quaternion_multiplied_by_quaternion(
quaternion_normalised( quaternion_multiplied_by_quaternion(
quaternion_inverse( localToWorld ),
world
) ),
localToWorld
) );
}
#endif
inline void matrix4_assign_rotation( Matrix4& matrix, const Matrix4& other ){
matrix[0] = other[0];
matrix[1] = other[1];
matrix[2] = other[2];
matrix[4] = other[4];
matrix[5] = other[5];
matrix[6] = other[6];
matrix[8] = other[8];
matrix[9] = other[9];
matrix[10] = other[10];
}
#define SELECTIONSYSTEM_AXIAL_PIVOTS
void matrix4_assign_rotation_for_pivot( Matrix4& matrix, scene::Instance& instance ){
#ifndef SELECTIONSYSTEM_AXIAL_PIVOTS
Editable* editable = Node_getEditable( instance.path().top() );
if ( editable != 0 ) {
matrix4_assign_rotation( matrix, matrix4_multiplied_by_matrix4( instance.localToWorld(), editable->getLocalPivot() ) );
}
else
{
matrix4_assign_rotation( matrix, instance.localToWorld() );
}
#endif
}
class TranslateSelected : public SelectionSystem::Visitor
{
const Vector3& m_translate;
public:
TranslateSelected( const Vector3& translate )
: m_translate( translate ){
}
void visit( scene::Instance& instance ) const {
Transformable* transform = Instance_getTransformable( instance );
if ( transform != 0 ) {
transform->setType( TRANSFORM_PRIMITIVE );
transform->setTranslation( m_translate );
}
}
};
void Scene_Translate_Selected( scene::Graph& graph, const Vector3& translation ){
if ( GlobalSelectionSystem().countSelected() != 0 ) {
GlobalSelectionSystem().foreachSelected( TranslateSelected( translation ) );
}
}
Vector3 get_local_pivot( const Vector3& world_pivot, const Matrix4& localToWorld ){
return matrix4_transformed_point(
matrix4_full_inverse( localToWorld ),
world_pivot
);
}
void translation_for_pivoted_matrix_transform( Vector3& parent_translation, const Matrix4& local_transform, const Vector3& world_pivot, const Matrix4& localToWorld, const Matrix4& localToParent ){
// we need a translation inside the parent system to move the origin of this object to the right place
// mathematically, it must fulfill:
//
// local_translation local_transform local_pivot = local_pivot
// local_translation = local_pivot - local_transform local_pivot
//
// or maybe?
// local_transform local_translation local_pivot = local_pivot
// local_translation local_pivot = local_transform^-1 local_pivot
// local_translation + local_pivot = local_transform^-1 local_pivot
// local_translation = local_transform^-1 local_pivot - local_pivot
Vector3 local_pivot( get_local_pivot( world_pivot, localToWorld ) );
Vector3 local_translation(
vector3_subtracted(
local_pivot,
matrix4_transformed_point(
local_transform,
local_pivot
)
/*
matrix4_transformed_point(
matrix4_full_inverse(local_transform),
local_pivot
),
local_pivot
*/
)
);
parent_translation = translation_local2object( local_translation, localToParent );
/*
// verify it!
globalOutputStream() << "World pivot is at " << world_pivot << "\n";
globalOutputStream() << "Local pivot is at " << local_pivot << "\n";
globalOutputStream() << "Transformation " << local_transform << " moves it to: " << matrix4_transformed_point(local_transform, local_pivot) << "\n";
globalOutputStream() << "Must move by " << local_translation << " in the local system" << "\n";
globalOutputStream() << "Must move by " << parent_translation << " in the parent system" << "\n";
*/
}
void translation_for_pivoted_rotation( Vector3& parent_translation, const Quaternion& local_rotation, const Vector3& world_pivot, const Matrix4& localToWorld, const Matrix4& localToParent ){
translation_for_pivoted_matrix_transform( parent_translation, matrix4_rotation_for_quaternion_quantised( local_rotation ), world_pivot, localToWorld, localToParent );
}
void translation_for_pivoted_scale( Vector3& parent_translation, const Vector3& world_scale, const Vector3& world_pivot, const Matrix4& localToWorld, const Matrix4& localToParent ){
Matrix4 local_transform(
matrix4_multiplied_by_matrix4(
matrix4_full_inverse( localToWorld ),
matrix4_multiplied_by_matrix4(
matrix4_scale_for_vec3( world_scale ),
localToWorld
)
)
);
local_transform.tx() = local_transform.ty() = local_transform.tz() = 0; // cancel translation parts
translation_for_pivoted_matrix_transform( parent_translation, local_transform, world_pivot, localToWorld, localToParent );
}
void translation_for_pivoted_skew( Vector3& parent_translation, const Skew& local_skew, const Vector3& world_pivot, const Matrix4& localToWorld, const Matrix4& localToParent ){
Matrix4 local_transform( g_matrix4_identity );
local_transform[local_skew.index] = local_skew.amount;
translation_for_pivoted_matrix_transform( parent_translation, local_transform, world_pivot, localToWorld, localToParent );
}
class rotate_selected : public SelectionSystem::Visitor
{
const Quaternion& m_rotate;
const Vector3& m_world_pivot;
public:
rotate_selected( const Quaternion& rotation, const Vector3& world_pivot )
: m_rotate( rotation ), m_world_pivot( world_pivot ){
}
void visit( scene::Instance& instance ) const {
TransformNode* transformNode = Node_getTransformNode( instance.path().top() );
if ( transformNode != 0 ) {
Transformable* transform = Instance_getTransformable( instance );
if ( transform != 0 ) {
transform->setType( TRANSFORM_PRIMITIVE );
transform->setScale( c_scale_identity );
transform->setTranslation( c_translation_identity );
transform->setType( TRANSFORM_PRIMITIVE );
transform->setRotation( m_rotate );
{
Editable* editable = Node_getEditable( instance.path().top() );
const Matrix4& localPivot = editable != 0 ? editable->getLocalPivot() : g_matrix4_identity;
Vector3 parent_translation;
translation_for_pivoted_rotation(
parent_translation,
m_rotate,
m_world_pivot,
#ifdef SELECTIONSYSTEM_AXIAL_PIVOTS
matrix4_multiplied_by_matrix4( matrix4_translation_for_vec3( matrix4_get_translation_vec3( instance.localToWorld() ) ), localPivot ),
matrix4_multiplied_by_matrix4( matrix4_translation_for_vec3( matrix4_get_translation_vec3( transformNode->localToParent() ) ), localPivot )
#else
matrix4_multiplied_by_matrix4( instance.localToWorld(), localPivot ),
matrix4_multiplied_by_matrix4( transformNode->localToParent(), localPivot )
#endif
);
transform->setTranslation( parent_translation );
}
}
}
}
};
void Scene_Rotate_Selected( scene::Graph& graph, const Quaternion& rotation, const Vector3& world_pivot ){
if ( GlobalSelectionSystem().countSelected() != 0 ) {
GlobalSelectionSystem().foreachSelected( rotate_selected( rotation, world_pivot ) );
}
}
class scale_selected : public SelectionSystem::Visitor
{
const Vector3& m_scale;
const Vector3& m_world_pivot;
public:
scale_selected( const Vector3& scaling, const Vector3& world_pivot )
: m_scale( scaling ), m_world_pivot( world_pivot ){
}
void visit( scene::Instance& instance ) const {
TransformNode* transformNode = Node_getTransformNode( instance.path().top() );
if ( transformNode != 0 ) {
Transformable* transform = Instance_getTransformable( instance );
if ( transform != 0 ) {
transform->setType( TRANSFORM_PRIMITIVE );
transform->setScale( c_scale_identity );
transform->setTranslation( c_translation_identity );
transform->setType( TRANSFORM_PRIMITIVE );
transform->setScale( m_scale );
{
Editable* editable = Node_getEditable( instance.path().top() );
const Matrix4& localPivot = editable != 0 ? editable->getLocalPivot() : g_matrix4_identity;
Vector3 parent_translation;
translation_for_pivoted_scale(
parent_translation,
m_scale,
m_world_pivot,
matrix4_multiplied_by_matrix4( instance.localToWorld(), localPivot ),
matrix4_multiplied_by_matrix4( transformNode->localToParent(), localPivot )
);
transform->setTranslation( parent_translation );
}
}
}
}
};
void Scene_Scale_Selected( scene::Graph& graph, const Vector3& scaling, const Vector3& world_pivot ){
if ( GlobalSelectionSystem().countSelected() != 0 ) {
GlobalSelectionSystem().foreachSelected( scale_selected( scaling, world_pivot ) );
}
}
class skew_selected : public SelectionSystem::Visitor
{
const Skew& m_skew;
const Vector3& m_world_pivot;
public:
skew_selected( const Skew& skew, const Vector3& world_pivot )
: m_skew( skew ), m_world_pivot( world_pivot ){
}
void visit( scene::Instance& instance ) const {
TransformNode* transformNode = Node_getTransformNode( instance.path().top() );
if ( transformNode != 0 ) {
Transformable* transform = Instance_getTransformable( instance );
if ( transform != 0 ) {
transform->setType( TRANSFORM_PRIMITIVE );
transform->setScale( c_scale_identity );
transform->setTranslation( c_translation_identity );
transform->setType( TRANSFORM_PRIMITIVE );
transform->setSkew( m_skew );
{
Editable* editable = Node_getEditable( instance.path().top() );
const Matrix4& localPivot = editable != 0 ? editable->getLocalPivot() : g_matrix4_identity;
Vector3 parent_translation;
translation_for_pivoted_skew(
parent_translation,
m_skew,
m_world_pivot,
matrix4_multiplied_by_matrix4( matrix4_translation_for_vec3( matrix4_get_translation_vec3( instance.localToWorld() ) ), localPivot ),
matrix4_multiplied_by_matrix4( matrix4_translation_for_vec3( matrix4_get_translation_vec3( transformNode->localToParent() ) ), localPivot )
);
transform->setTranslation( parent_translation );
}
}
}
}
};
void Scene_Skew_Selected( scene::Graph& graph, const Skew& skew, const Vector3& world_pivot ){
if ( GlobalSelectionSystem().countSelected() != 0 ) {
GlobalSelectionSystem().foreachSelected( skew_selected( skew, world_pivot ) );
}
}
class RepeatableTransforms
{
public:
Translation m_translation;
Rotation m_rotation;
Scale m_scale;
Skew m_skew;
/* next aren't used; TODO: think if unique origin per transform is needed, and how to implement this correctly for entities, having transform keys */
Vector3 m_rotationOrigin;
Vector3 m_scaleOrigin;
Vector3 m_skewOrigin;
bool m_rotationOriginSet;
bool m_scaleOriginSet;
bool m_skewOriginSet;
RepeatableTransforms(){
setIdentity();
}
bool isIdentity() const {
return m_translation == c_translation_identity
&& m_rotation == c_rotation_identity
&& m_scale == c_scale_identity
&& m_skew == c_skew_identity;
}
void setIdentity(){
m_translation = c_translation_identity;
m_rotation = c_quaternion_identity;
m_scale = c_scale_identity;
m_skew = c_skew_identity;
m_rotationOrigin =
m_scaleOrigin =
m_skewOrigin = g_vector3_identity;
m_rotationOriginSet =
m_scaleOriginSet =
m_skewOriginSet = false;
}
};
class transform_selected : public SelectionSystem::Visitor
{
const RepeatableTransforms& m_transforms;
const Vector3& m_world_pivot;
public:
transform_selected( const RepeatableTransforms& transforms, const Vector3& world_pivot )
: m_transforms( transforms ), m_world_pivot( world_pivot ){
}
void visit( scene::Instance& instance ) const {
TransformNode* transformNode = Node_getTransformNode( instance.path().top() );
if ( transformNode != 0 ) {
Transformable* transform = Instance_getTransformable( instance );
if ( transform != 0 ) {
transform->setType( TRANSFORM_PRIMITIVE );
transform->setRotation( m_transforms.m_rotation );
transform->setScale( m_transforms.m_scale );
transform->setSkew( m_transforms.m_skew );
{
Editable* editable = Node_getEditable( instance.path().top() );
const Matrix4& localPivot = editable != 0 ? editable->getLocalPivot() : g_matrix4_identity;
const Matrix4 local_transform = matrix4_transform_for_components( c_translation_identity, m_transforms.m_rotation, m_transforms.m_scale, m_transforms.m_skew );
Vector3 parent_translation;
translation_for_pivoted_matrix_transform(
parent_translation,
local_transform,
m_world_pivot,
matrix4_multiplied_by_matrix4( matrix4_translation_for_vec3( matrix4_get_translation_vec3( instance.localToWorld() ) ), localPivot ),
matrix4_multiplied_by_matrix4( matrix4_translation_for_vec3( matrix4_get_translation_vec3( transformNode->localToParent() ) ), localPivot )
);
transform->setTranslation( parent_translation + m_transforms.m_translation );
}
}
}
}
};
class translate_component_selected : public SelectionSystem::Visitor
{
const Vector3& m_translate;
public:
translate_component_selected( const Vector3& translate )
: m_translate( translate ){
}
void visit( scene::Instance& instance ) const {
Transformable* transform = Instance_getTransformable( instance );
if ( transform != 0 ) {
transform->setType( TRANSFORM_COMPONENT );
transform->setTranslation( m_translate );
}
}
};
void Scene_Translate_Component_Selected( scene::Graph& graph, const Vector3& translation ){
if ( GlobalSelectionSystem().countSelected() != 0 ) {
GlobalSelectionSystem().foreachSelectedComponent( translate_component_selected( translation ) );
}
}
class rotate_component_selected : public SelectionSystem::Visitor
{
const Quaternion& m_rotate;
const Vector3& m_world_pivot;
public:
rotate_component_selected( const Quaternion& rotation, const Vector3& world_pivot )
: m_rotate( rotation ), m_world_pivot( world_pivot ){
}
void visit( scene::Instance& instance ) const {
Transformable* transform = Instance_getTransformable( instance );
if ( transform != 0 ) {
Vector3 parent_translation;
translation_for_pivoted_rotation( parent_translation, m_rotate, m_world_pivot, instance.localToWorld(), Node_getTransformNode( instance.path().top() )->localToParent() );
transform->setType( TRANSFORM_COMPONENT );
transform->setRotation( m_rotate );
transform->setTranslation( parent_translation );
}
}
};
void Scene_Rotate_Component_Selected( scene::Graph& graph, const Quaternion& rotation, const Vector3& world_pivot ){
if ( GlobalSelectionSystem().countSelectedComponents() != 0 ) {
GlobalSelectionSystem().foreachSelectedComponent( rotate_component_selected( rotation, world_pivot ) );
}
}
class scale_component_selected : public SelectionSystem::Visitor
{
const Vector3& m_scale;
const Vector3& m_world_pivot;
public:
scale_component_selected( const Vector3& scaling, const Vector3& world_pivot )
: m_scale( scaling ), m_world_pivot( world_pivot ){
}
void visit( scene::Instance& instance ) const {
Transformable* transform = Instance_getTransformable( instance );
if ( transform != 0 ) {
Vector3 parent_translation;
translation_for_pivoted_scale( parent_translation, m_scale, m_world_pivot, instance.localToWorld(), Node_getTransformNode( instance.path().top() )->localToParent() );
transform->setType( TRANSFORM_COMPONENT );
transform->setScale( m_scale );
transform->setTranslation( parent_translation );
}
}
};
void Scene_Scale_Component_Selected( scene::Graph& graph, const Vector3& scaling, const Vector3& world_pivot ){
if ( GlobalSelectionSystem().countSelectedComponents() != 0 ) {
GlobalSelectionSystem().foreachSelectedComponent( scale_component_selected( scaling, world_pivot ) );
}
}
class skew_component_selected : public SelectionSystem::Visitor
{
const Skew& m_skew;
const Vector3& m_world_pivot;
public:
skew_component_selected( const Skew& skew, const Vector3& world_pivot )
: m_skew( skew ), m_world_pivot( world_pivot ){
}
void visit( scene::Instance& instance ) const {
Transformable* transform = Instance_getTransformable( instance );
if ( transform != 0 ) {
Vector3 parent_translation;
translation_for_pivoted_skew( parent_translation, m_skew, m_world_pivot, instance.localToWorld(), Node_getTransformNode( instance.path().top() )->localToParent() );
transform->setType( TRANSFORM_COMPONENT );
transform->setSkew( m_skew );
transform->setTranslation( parent_translation );
}
}
};
void Scene_Skew_Component_Selected( scene::Graph& graph, const Skew& skew, const Vector3& world_pivot ){
if ( GlobalSelectionSystem().countSelectedComponents() != 0 ) {
GlobalSelectionSystem().foreachSelectedComponent( skew_component_selected( skew, world_pivot ) );
}
}
class transform_component_selected : public SelectionSystem::Visitor
{
const RepeatableTransforms& m_transforms;
const Vector3& m_world_pivot;
public:
transform_component_selected( const RepeatableTransforms& transforms, const Vector3& world_pivot )
: m_transforms( transforms ), m_world_pivot( world_pivot ){
}
void visit( scene::Instance& instance ) const {
Transformable* transform = Instance_getTransformable( instance );
if ( transform != 0 ) {
const Matrix4 local_transform = matrix4_transform_for_components( c_translation_identity, m_transforms.m_rotation, m_transforms.m_scale, m_transforms.m_skew );
Vector3 parent_translation;
translation_for_pivoted_matrix_transform( parent_translation, local_transform, m_world_pivot, instance.localToWorld(), Node_getTransformNode( instance.path().top() )->localToParent() );
transform->setType( TRANSFORM_COMPONENT );
transform->setRotation( m_transforms.m_rotation );
transform->setScale( m_transforms.m_scale );
transform->setSkew( m_transforms.m_skew );
transform->setTranslation( parent_translation + m_transforms.m_translation );
}
}
};
class BooleanSelector : public Selector
{
SelectionIntersection m_bestIntersection;
Selectable* m_selectable;
public:
BooleanSelector() : m_bestIntersection( SelectionIntersection() ){
}
void pushSelectable( Selectable& selectable ){
m_selectable = &selectable;
}
void popSelectable(){
}
void addIntersection( const SelectionIntersection& intersection ){
if ( m_selectable->isSelected() ) {
assign_if_closer( m_bestIntersection, intersection );
}
}
bool isSelected(){
return m_bestIntersection.valid();
}
const SelectionIntersection& bestIntersection() const {
return m_bestIntersection;
}
};
class BestSelector : public Selector
{
protected:
SelectionIntersection m_intersection;
Selectable* m_selectable;
SelectionIntersection m_bestIntersection;
std::list<Selectable*> m_bestSelectable;
public:
BestSelector() : m_bestIntersection( SelectionIntersection() ), m_bestSelectable( 0 ){
}
void pushSelectable( Selectable& selectable ){
m_intersection = SelectionIntersection();
m_selectable = &selectable;
}
void popSelectable(){
if ( m_intersection.equalEpsilon( m_bestIntersection, 0.25f, 2e-6f ) ) {
m_bestSelectable.push_back( m_selectable );
m_bestIntersection = m_intersection;
}
else if ( m_intersection < m_bestIntersection ) {
m_bestSelectable.clear();
m_bestSelectable.push_back( m_selectable );
m_bestIntersection = m_intersection;
}
m_intersection = SelectionIntersection();
}
void addIntersection( const SelectionIntersection& intersection ){
assign_if_closer( m_intersection, intersection );
}
std::list<Selectable*>& best(){
return m_bestSelectable;
}
const SelectionIntersection& bestIntersection() const {
return m_bestIntersection;
}
};
class DeepBestSelector : public BestSelector // copy of class BestSelector with 2.f depthEpsilon
{
public:
void popSelectable(){
if ( m_intersection.equalEpsilon( m_bestIntersection, 0.25f, 2.f ) ) {
m_bestSelectable.push_back( m_selectable );
m_bestIntersection = m_intersection;
}
else if ( m_intersection < m_bestIntersection ) {
m_bestSelectable.clear();
m_bestSelectable.push_back( m_selectable );
m_bestIntersection = m_intersection;
}
m_intersection = SelectionIntersection();
}
};
class BestPointSelector : public Selector
{
SelectionIntersection m_bestIntersection;
public:
BestPointSelector() : m_bestIntersection( SelectionIntersection() ){
}
void pushSelectable( Selectable& selectable ){
}
void popSelectable(){
}
void addIntersection( const SelectionIntersection& intersection ){
assign_if_closer( m_bestIntersection, intersection );
}
bool isSelected(){
return m_bestIntersection.valid();
}
const SelectionIntersection& best() const {
return m_bestIntersection;
}
};
class ClipperSelector : public Selector {
SelectionIntersection m_bestIntersection;
Face* m_face;
public:
ClipperSelector() : m_bestIntersection( SelectionIntersection() ), m_face( 0 ) {
}
void pushSelectable( Selectable& selectable ) {
}
void popSelectable() {
}
void addIntersection( const SelectionIntersection& intersection ) {
if( SelectionIntersection_closer( intersection, m_bestIntersection ) ) {
m_bestIntersection = intersection;
m_face = 0;
}
}
void addIntersection( const SelectionIntersection& intersection, Face* face ) {
if( SelectionIntersection_closer( intersection, m_bestIntersection ) ) {
m_bestIntersection = intersection;
m_face = face;
}
}
bool isSelected() {
return m_bestIntersection.valid();
}
const SelectionIntersection& best() {
return m_bestIntersection;
}
const Face* face() {
return m_face;
}
};
class testselect_scene_4clipper : public scene::Graph::Walker {
ClipperSelector& m_clipperSelector;
SelectionTest& m_test;
public:
testselect_scene_4clipper( ClipperSelector& clipperSelector, SelectionTest& test ) : m_clipperSelector( clipperSelector ), m_test( test ) {
}
bool pre( const scene::Path& path, scene::Instance& instance ) const {
BrushInstance* brush = Instance_getBrush( instance );
if( brush != 0 ) {
m_test.BeginMesh( brush->localToWorld() );
for( Brush::const_iterator i = brush->getBrush().begin(); i != brush->getBrush().end(); ++i ) {
Face* face = *i;
if( !face->isFiltered() ) {
SelectionIntersection intersection;
face->testSelect( m_test, intersection );
m_clipperSelector.addIntersection( intersection, face );
}
}
}
else {
SelectionTestable* selectionTestable = Instance_getSelectionTestable( instance );
if( selectionTestable ) {
selectionTestable->testSelect( m_clipperSelector, m_test );
}
}
return true;
}
};
class testselect_scene_4clipper_selected : public scene::Graph::Walker {
ClipperSelector& m_clipperSelector;
SelectionTest& m_test;
public:
testselect_scene_4clipper_selected( ClipperSelector& clipperSelector, SelectionTest& test ) : m_clipperSelector( clipperSelector ), m_test( test ) {
}
bool pre( const scene::Path& path, scene::Instance& instance ) const {
BrushInstance* brush = Instance_getBrush( instance );
if( brush != 0 && brush->isSelected() ) {
m_test.BeginMesh( brush->localToWorld() );
for( Brush::const_iterator i = brush->getBrush().begin(); i != brush->getBrush().end(); ++i ) {
Face* face = *i;
if( !face->isFiltered() ) {
SelectionIntersection intersection;
face->testSelect( m_test, intersection );
m_clipperSelector.addIntersection( intersection, face );
}
}
}
return true;
}
};
Vector3 testSelected_scene_snapped_point( const SelectionVolume& test, ClipperSelector& clipperSelector ){
Vector3 point = vector4_projected( matrix4_transformed_vector4( test.getScreen2world(), Vector4( 0, 0, clipperSelector.best().depth(), 1 ) ) );
if( clipperSelector.face() ){
const Face& face = *clipperSelector.face();
float bestDist = FLT_MAX;
Vector3 wannabePoint;
for ( Winding::const_iterator prev = face.getWinding().end() - 1, curr = face.getWinding().begin(); curr != face.getWinding().end(); prev = curr, ++curr ){
{ /* try vertices */
const float dist = vector3_length_squared( ( *curr ).vertex - point );
if( dist < bestDist ){
wannabePoint = ( *curr ).vertex;
bestDist = dist;
}
}
{ /* try edges */
Vector3 edgePoint = line_closest_point( Line( ( *prev ).vertex, ( *curr ).vertex ), point );
if( edgePoint != ( *prev ).vertex && edgePoint != ( *curr ).vertex ){
const Vector3 edgedir = vector3_normalised( ( *curr ).vertex - ( *prev ).vertex );
const std::size_t maxi = vector3_max_abs_component_index( edgedir );
// ( *prev ).vertex[maxi] + edgedir[maxi] * coef = float_snapped( point[maxi], GetSnapGridSize() )
const float coef = ( float_snapped( point[maxi], GetSnapGridSize() ) - ( *prev ).vertex[maxi] ) / edgedir[maxi];
edgePoint = ( *prev ).vertex + edgedir * coef;
const float dist = vector3_length_squared( edgePoint - point );
if( dist < bestDist ){
wannabePoint = edgePoint;
bestDist = dist;
}
}
}
}
if( clipperSelector.best().distance() == 0.f ){ /* try plane, if pointing inside of polygon */
const std::size_t maxi = vector3_max_abs_component_index( face.plane3().normal() );
Vector3 planePoint( vector3_snapped( point, GetSnapGridSize() ) );
// face.plane3().normal().dot( point snapped ) = face.plane3().dist()
planePoint[maxi] = ( face.plane3().dist()
- face.plane3().normal()[( maxi + 1 ) % 3] * planePoint[( maxi + 1 ) % 3]
- face.plane3().normal()[( maxi + 2 ) % 3] * planePoint[( maxi + 2 ) % 3] ) / face.plane3().normal()[maxi];
const float dist = vector3_length_squared( planePoint - point );
if( dist < bestDist ){
wannabePoint = planePoint;
bestDist = dist;
}
}
point = wannabePoint;
}
else{
vector3_snap( point, GetSnapGridSize() );
}
return point;
}
class Scene_insert_brush_vertices
{
const Brush::VertexModeVertices& m_vertexModeVertices;
public:
Scene_insert_brush_vertices( const Brush::VertexModeVertices& vertexModeVertices ) : m_vertexModeVertices( vertexModeVertices ) {
}
void operator()( BrushInstance& brush ) const {
brush.insert_vertices( m_vertexModeVertices );
}
};
bool scene_insert_brush_vertices( const View& view, TranslateFreeXY_Z& freeDragXY_Z ){
SelectionVolume test( view );
ClipperSelector clipperSelector;
if( view.fill() )
Scene_forEachVisible( GlobalSceneGraph(), view, testselect_scene_4clipper( clipperSelector, test ) );
else
Scene_forEachVisible( GlobalSceneGraph(), view, testselect_scene_4clipper_selected( clipperSelector, test ) );
test.BeginMesh( g_matrix4_identity, true );
if( clipperSelector.isSelected() ){
freeDragXY_Z.set0( vector4_projected( matrix4_transformed_vector4( test.getScreen2world(), Vector4( 0, 0, clipperSelector.best().depth(), 1 ) ) ) );
Vector3 point = testSelected_scene_snapped_point( test, clipperSelector );
if( !view.fill() ){
point -= view.getViewDir() * GetGridSize();
}
Brush::VertexModeVertices vertexModeVertices;
vertexModeVertices.push_back( Brush::VertexModeVertex( point, true ) );
if( clipperSelector.face() )
vertexModeVertices.back().m_faces.push_back( clipperSelector.face() );
UndoableCommand undo( "InsertBrushVertices" );
Scene_forEachSelectedBrush( Scene_insert_brush_vertices( vertexModeVertices ) );
return true;
}
else if( !view.fill() ){ //+two points
freeDragXY_Z.set0( g_vector3_identity );
const AABB bounds = GlobalSelectionSystem().getBoundsSelected();
if( aabb_valid( bounds ) ){
Vector3 xy = vector4_projected( matrix4_transformed_vector4( test.getScreen2world(), Vector4( 0, 0, 0, 1 ) ) );
vector3_snap( xy, GetSnapGridSize() );
Vector3 a( xy ), b( xy );
const std::size_t max = vector3_max_abs_component_index( view.getViewDir() );
a[max] = bounds.origin[max] + bounds.extents[max];
b[max] = bounds.origin[max] - bounds.extents[max];
Brush::VertexModeVertices vertexModeVertices;
vertexModeVertices.push_back( Brush::VertexModeVertex( a, true ) );
vertexModeVertices.push_back( Brush::VertexModeVertex( b, true ) );
UndoableCommand undo( "InsertBrushVertices" );
Scene_forEachSelectedBrush( Scene_insert_brush_vertices( vertexModeVertices ) );
return true;
}
}
return false;
}
bool selection_selectVerticesOrFaceVertices( SelectionTest& test ){
{ /* try to hit vertices */
DeepBestSelector deepSelector;
Scene_TestSelect_Component_Selected( deepSelector, test, test.getVolume(), SelectionSystem::eVertex );
if( !deepSelector.best().empty() ){
for ( Selectable* s : deepSelector.best() )
s->setSelected( true );
return true;
}
}
/* otherwise select vertices of brush faces, which lay on best plane */
Plane3 plane( 0, 0, 0, 0 );
Vector3 intersectionPoint( FLT_MAX, FLT_MAX, FLT_MAX );
Scene_forEachSelectedBrush_bestPlane( test, plane, intersectionPoint );
if( plane3_valid( plane ) ){
auto selectVerticesOnPlane = [&plane]( BrushInstance& brushInstance ){
brushInstance.selectVerticesOnPlane( plane );
};
Scene_forEachVisibleSelectedBrush( selectVerticesOnPlane );
}
return plane3_valid( plane );
}
template<typename Functor>
class ComponentSelectionTestableVisibleSelectedVisitor : public SelectionSystem::Visitor
{
const Functor& m_functor;
public:
ComponentSelectionTestableVisibleSelectedVisitor( const Functor& functor ) : m_functor( functor ){
}
void visit( scene::Instance& instance ) const {
ComponentSelectionTestable* componentSelectionTestable = Instance_getComponentSelectionTestable( instance );
if ( componentSelectionTestable != 0
&& instance.path().top().get().visible() ) {
m_functor( *componentSelectionTestable );
}
}
};
template<typename Functor>
inline const Functor& Scene_forEachVisibleSelectedComponentSelectionTestable( const Functor& functor ){
GlobalSelectionSystem().foreachSelected( ComponentSelectionTestableVisibleSelectedVisitor<Functor>( functor ) );
return functor;
}
static ModifierFlags g_modifiers = c_modifierNone; //AltDragManipulatorResize, extrude, uvtool skew, select primitives in component modes
static bool g_bTmpComponentMode = false;
class DragManipulator : public Manipulator
{
TranslateFree m_freeResize;
TranslateAxis2 m_axisResize;
TranslateFreeXY_Z m_freeDragXY_Z;
ResizeTranslatable m_resize;
DragNewBrush m_dragNewBrush;
DragExtrudeFaces m_dragExtrudeFaces;
bool m_dragSelected; //drag selected primitives or components
bool m_selected; //components selected temporally for drag
bool m_selected2; //planeselectables in cam with alt
bool m_newBrush;
bool m_extrudeFaces;
public:
static Shader* m_state_wire;
DragManipulator( Translatable& translatable ) : m_freeResize( m_resize ), m_axisResize( m_resize ), m_freeDragXY_Z( translatable ), m_renderCircle( 2 << 3 ){
setSelected( false );
draw_circle( m_renderCircle.m_vertices.size() >> 3, 5, m_renderCircle.m_vertices.data(), RemapXYZ() );
}
Manipulatable* GetManipulatable(){
if( m_newBrush )
return &m_dragNewBrush;
else if( m_extrudeFaces )
return &m_dragExtrudeFaces;
else if( m_selected )
return &m_freeResize;
else if( m_selected2 )
return &m_axisResize;
else
return &m_freeDragXY_Z;
}
void testSelect( const View& view, const Matrix4& pivot2world ){
SelectionPool selector;
SelectionVolume test( view );
if( g_modifiers == ( c_modifierAlt | c_modifierControl )
&& GlobalSelectionSystem().Mode() == SelectionSystem::ePrimitive
&& ( GlobalSelectionSystem().countSelected() != 0 || !g_SelectedFaceInstances.empty() ) ){ // extrude
m_extrudeFaces = Scene_forEachBrush_setupExtrude( test, m_dragExtrudeFaces );
}
else if( GlobalSelectionSystem().countSelected() != 0 ){
if ( GlobalSelectionSystem().Mode() == SelectionSystem::ePrimitive ){
if( g_modifiers == c_modifierAlt ){
if( view.fill() ){ // alt resize
m_selected2 = Scene_forEachPlaneSelectable_selectPlanes2( test, m_axisResize );
}
else{ // alt vertices drag
m_selected = selection_selectVerticesOrFaceVertices( test );
}
}
else{
BooleanSelector booleanSelector;
Scene_TestSelect_Primitive( booleanSelector, test, view );
if ( booleanSelector.isSelected() ) { /* hit a primitive */
m_dragSelected = true; /* drag a primitive */
test.BeginMesh( g_matrix4_identity, true );
m_freeDragXY_Z.set0( vector4_projected( matrix4_transformed_vector4( test.getScreen2world(), Vector4( 0, 0, booleanSelector.bestIntersection().depth(), 1 ) ) ) );
}
else{ /* haven't hit a primitive */
m_selected = Scene_forEachPlaneSelectable_selectPlanes( GlobalSceneGraph(), selector, test ); /* select faces on planeSelectables */
}
}
}
else{ // components
BestSelector bestSelector;
Scene_TestSelect_Component_Selected( bestSelector, test, view, GlobalSelectionSystem().ComponentMode() ); /* drag components */
for ( Selectable* s : bestSelector.best() ){
if ( !s->isSelected() )
GlobalSelectionSystem().setSelectedAllComponents( false );
selector.addSelectable( SelectionIntersection( 0, 0 ), s );
m_dragSelected = true;
}
if( bestSelector.bestIntersection().valid() ){
test.BeginMesh( g_matrix4_identity, true );
m_freeDragXY_Z.set0( vector4_projected( matrix4_transformed_vector4( test.getScreen2world(), Vector4( 0, 0, bestSelector.bestIntersection().depth(), 1 ) ) ) );
}
else{
if( GlobalSelectionSystem().countSelectedComponents() != 0 ){ /* drag, even if hit nothing, but got selected */
m_dragSelected = true;
m_freeDragXY_Z.set0( g_vector3_identity );
}
else if( GlobalSelectionSystem().ComponentMode() == SelectionSystem::eVertex ){ /* otherwise insert */
m_dragSelected = g_bTmpComponentMode = scene_insert_brush_vertices( view, m_freeDragXY_Z ); //hack: indicating not a tmp mode
return;
}
}
}
for ( SelectableSortedSet::value_type& value : selector )
value.second->setSelected( true );
g_bTmpComponentMode = m_selected | m_selected2;
}
else if( GlobalSelectionSystem().Mode() == SelectionSystem::ePrimitive ){
m_newBrush = true;
BestPointSelector bestPointSelector;
Scene_TestSelect_Primitive( bestPointSelector, test, view );
Vector3 start;
test.BeginMesh( g_matrix4_identity, true );
if( bestPointSelector.isSelected() ){
start = vector4_projected( matrix4_transformed_vector4( test.getScreen2world(), Vector4( 0, 0, bestPointSelector.best().depth(), 1 ) ) );
}
else{
const Vector3 near = vector4_projected( matrix4_transformed_vector4( test.getScreen2world(), Vector4( 0, 0, -1, 1 ) ) );
const Vector3 far = vector4_projected( matrix4_transformed_vector4( test.getScreen2world(), Vector4( 0, 0, 1, 1 ) ) );
start = vector3_normalised( far - near ) * ( 256.f + GetGridSize() * sqrt( 3.0 ) ) + near;
}
vector3_snap( start, GetSnapGridSize() );
m_dragNewBrush.set0( start );
}
}
void setSelected( bool select ){
m_dragSelected = select;
m_selected = select;
m_selected2 = select;
m_newBrush = select;
m_extrudeFaces = select;
}
bool isSelected() const {
return m_dragSelected || m_selected || m_selected2 || m_newBrush || m_extrudeFaces;
}
void render( Renderer& renderer, const VolumeTest& volume, const Matrix4& pivot2world ){
if( !m_polygons.empty() ){
renderer.SetState( m_state_wire, Renderer::eWireframeOnly );
renderer.SetState( m_state_wire, Renderer::eFullMaterials );
if( m_polygons.back().size() == 1 ){
Pivot2World_viewplaneSpace( m_renderCircle.m_viewplaneSpace, matrix4_translation_for_vec3( m_polygons.back()[0] ), volume.GetModelview(), volume.GetProjection(), volume.GetViewport() );
renderer.addRenderable( m_renderCircle, m_renderCircle.m_viewplaneSpace );
}
else{
renderer.addRenderable( m_renderPoly, g_matrix4_identity );
}
}
}
void highlight( const View& view ){
SelectionVolume test( view );
std::vector<std::vector<Vector3>> polygons;
/* conditions structure respects one in testSelect() */
if( g_modifiers == ( c_modifierAlt | c_modifierControl )
&& GlobalSelectionSystem().Mode() == SelectionSystem::ePrimitive
&& ( GlobalSelectionSystem().countSelected() != 0 || !g_SelectedFaceInstances.empty() ) ){ // extrude
Plane3 plane( 0, 0, 0, 0 );
Vector3 intersectionPoint( FLT_MAX, FLT_MAX, FLT_MAX );
Scene_forEachBrush_bestPlane( test, plane, intersectionPoint );
if( plane3_valid( plane ) ){
auto gatherPolygonsByPlane = [plane, &polygons]( BrushInstance& brushInstance ){
if( brushInstance.isSelected() || brushInstance.isSelectedComponents() )
brushInstance.gatherPolygonsByPlane( plane, polygons, false );
};
Scene_forEachVisibleBrush( GlobalSceneGraph(), gatherPolygonsByPlane );
}
}
else if( GlobalSelectionSystem().countSelected() != 0 ){
if ( GlobalSelectionSystem().Mode() == SelectionSystem::ePrimitive ){
if( g_modifiers == c_modifierAlt ){
if( view.fill() ){ // alt resize
Plane3 plane( 0, 0, 0, 0 );
Vector3 intersectionPoint( FLT_MAX, FLT_MAX, FLT_MAX );
Scene_forEachPlaneSelectable_bestPlane( test, plane, intersectionPoint );
if( plane3_valid( plane ) ){
auto gatherPolygonsByPlane = [plane, &polygons]( PlaneSelectable& planeSelectable ){
planeSelectable.gatherPolygonsByPlane( plane, polygons );
};
Scene_forEachVisibleSelectedPlaneselectable( gatherPolygonsByPlane );
}
}
else{ // alt vertices drag
SelectionIntersection intersection;
const SelectionSystem::EComponentMode mode = SelectionSystem::eVertex;
auto gatherComponentsHighlight = [&polygons, &intersection, &test, mode]( const ComponentSelectionTestable& componentSelectionTestable ){
componentSelectionTestable.gatherComponentsHighlight( polygons, intersection, test, mode );
};
Scene_forEachVisibleSelectedComponentSelectionTestable( gatherComponentsHighlight );
if( polygons.empty() ){
Plane3 plane( 0, 0, 0, 0 );
Vector3 intersectionPoint( FLT_MAX, FLT_MAX, FLT_MAX );
Scene_forEachSelectedBrush_bestPlane( test, plane, intersectionPoint );
if( plane3_valid( plane ) ){
auto gatherPolygonsByPlane = [plane, &polygons]( BrushInstance& brushInstance ){
brushInstance.gatherPolygonsByPlane( plane, polygons );
};
Scene_forEachVisibleSelectedBrush( gatherPolygonsByPlane );
}
}
}
}
}
else{ // components
SelectionIntersection intersection;
const SelectionSystem::EComponentMode mode = GlobalSelectionSystem().ComponentMode();
auto gatherComponentsHighlight = [&polygons, &intersection, &test, mode]( const ComponentSelectionTestable& componentSelectionTestable ){
componentSelectionTestable.gatherComponentsHighlight( polygons, intersection, test, mode );
};
Scene_forEachVisibleSelectedComponentSelectionTestable( gatherComponentsHighlight );
}
}
if( m_polygons != polygons ){
m_polygons.swap( polygons );
SceneChangeNotify();
}
}
private:
std::vector<std::vector<Vector3>> m_polygons;
struct RenderablePoly: public OpenGLRenderable
{
const std::vector<std::vector<Vector3>>& m_polygons;
RenderablePoly( const std::vector<std::vector<Vector3>>& polygons ) : m_polygons( polygons ){
}
void render( RenderStateFlags state ) const {
glPolygonOffset( -2, -2 );
for( const auto& poly : m_polygons ){
glVertexPointer( 3, GL_FLOAT, sizeof( m_polygons[0][0] ), poly[0].data() );
glDrawArrays( GL_POLYGON, 0, GLsizei( poly.size() ) );
}
glPolygonOffset( -1, 1 ); // restore default
}
};
RenderablePoly m_renderPoly{ m_polygons };
struct RenderableCircle : public OpenGLRenderable
{
Array<PointVertex> m_vertices;
Matrix4 m_viewplaneSpace;
RenderableCircle( std::size_t size ) : m_vertices( size ){
}
void render( RenderStateFlags state ) const {
glVertexPointer( 3, GL_FLOAT, sizeof( PointVertex ), &m_vertices.data()->vertex );
glDrawArrays( GL_LINE_LOOP, 0, GLsizei( m_vertices.size() ) );
}
};
RenderableCircle m_renderCircle;
};
Shader* DragManipulator::m_state_wire;
#include "clippertool.h"
class ClipManipulator : public Manipulator, public ManipulatorSelectionChangeable, public Translatable, public Manipulatable
{
struct ClipperPoint : public OpenGLRenderable, public SelectableBool
{
PointVertex m_p; //for render
ClipperPoint():
m_p( vertex3f_identity ), m_set( false ) {
}
void render( RenderStateFlags state ) const {
glColorPointer( 4, GL_UNSIGNED_BYTE, sizeof( PointVertex ), &m_p.colour );
glVertexPointer( 3, GL_FLOAT, sizeof( PointVertex ), &m_p.vertex );
glDrawArrays( GL_POINTS, 0, 1 );
glColor4ub( m_p.colour.r, m_p.colour.g, m_p.colour.b, m_p.colour.a ); ///?
glRasterPos3f( m_namePos.x(), m_namePos.y(), m_namePos.z() );
GlobalOpenGL().drawChar( m_name );
}
void setColour( const Colour4b& colour ) {
m_p.colour = colour;
}
bool m_set;
Vector3 m_point;
Vector3 m_pointNonTransformed;
char m_name;
Vector3 m_namePos;
};
Matrix4& m_pivot2world;
ClipperPoint m_points[3];
TranslateFreeXY_Z m_dragXY_Z;
const AABB& m_bounds;
Vector3 m_viewdir;
public:
static Shader* m_state;
ClipManipulator( Matrix4& pivot2world, const AABB& bounds ) : m_pivot2world( pivot2world ), m_dragXY_Z( *this ), m_bounds( bounds ){
m_points[0].m_name = '1';
m_points[1].m_name = '2';
m_points[2].m_name = '3';
}
void UpdateColours() {
for( std::size_t i = 0; i < 3; ++i )
m_points[i].setColour( colourSelected( g_colour_screen, m_points[i].isSelected() ) );
}
void render( Renderer& renderer, const VolumeTest& volume, const Matrix4& pivot2world ) {
// temp hack
UpdateColours();
renderer.SetState( m_state, Renderer::eWireframeOnly );
renderer.SetState( m_state, Renderer::eFullMaterials );
const Matrix4 proj( matrix4_multiplied_by_matrix4( volume.GetViewport(), volume.GetViewMatrix() ) );
const Matrix4 proj_inv( matrix4_full_inverse( proj ) );
for( std::size_t i = 0; i < 3; ++i )
if( m_points[i].m_set ){
m_points[i].m_p.vertex = vertex3f_for_vector3( m_points[i].m_point );
renderer.addRenderable( m_points[i], g_matrix4_identity );
const Vector3 pos = vector4_projected( matrix4_transformed_vector4( proj, Vector4( m_points[i].m_point, 1 ) ) ) + Vector3( 2, 0, 0 );
m_points[i].m_namePos = vector4_projected( matrix4_transformed_vector4( proj_inv, Vector4( pos, 1 ) ) );
}
}
/* these three functions and m_viewdir for 2 points only */
void viewdir_set( const Vector3 viewdir ){
const std::size_t maxi = vector3_max_abs_component_index( viewdir );
m_viewdir = ( viewdir[maxi] > 0 )? g_vector3_axes[maxi] : -g_vector3_axes[maxi];
}
void viewdir_fixup(){
if( fabs( vector3_length( m_points[1].m_point - m_points[0].m_point ) ) > 1e-3 //two non coincident points
&& fabs( vector3_dot( m_viewdir, vector3_normalised( m_points[1].m_point - m_points[0].m_point ) ) ) > 0.999 ){ //on axis = m_viewdir
viewdir_set( m_view->getViewDir() );
if( fabs( vector3_dot( m_viewdir, vector3_normalised( m_points[1].m_point - m_points[0].m_point ) ) ) > 0.999 ){
const Matrix4 screen2world( matrix4_full_inverse( m_view->GetViewMatrix() ) );
Vector3 p[2];
for( std::size_t i = 0; i < 2; ++i ){
p[i] = vector4_projected( matrix4_transformed_vector4( m_view->GetViewMatrix(), Vector4( m_points[i].m_point, 1 ) ) );
}
const float depthdir = p[1].z() > p[0].z()? -1 : 1;
for( std::size_t i = 0; i < 2; ++i ){
p[i].z() = -1;
p[i] = vector4_projected( matrix4_transformed_vector4( screen2world, Vector4( p[i], 1 ) ) );
}
viewdir_set( ( p[1] - p[0] ) * depthdir );
}
}
}
void viewdir_make_cut_worthy( const Plane3& plane ){
const std::size_t maxi = vector3_max_abs_component_index( plane.normal() );
if( plane3_valid( plane )
&& aabb_valid( m_bounds )
&& fabs( plane.normal()[maxi] ) > 0.999 ){ //axial plane
const double anchor = plane.normal()[maxi] * plane.dist();
if( anchor > m_bounds.origin[maxi] ){
if( ( anchor - ( m_bounds.origin[maxi] + m_bounds.extents[maxi] ) ) > -0.1 )
viewdir_set( -g_vector3_axes[maxi] );
}
else{
if( ( -anchor + ( m_bounds.origin[maxi] - m_bounds.extents[maxi] ) ) > -0.1 )
viewdir_set( g_vector3_axes[maxi] );
}
}
}
void updatePlane(){
std::size_t npoints = 0;
for(; npoints < 3; )
if( m_points[npoints].m_set )
++npoints;
else
break;
switch ( npoints )
{
case 1:
Clipper_setPlanePoints( ClipperPoints( m_points[0].m_point, m_points[0].m_point, m_points[0].m_point, npoints ) );
break;
case 2:
{
if( m_view->fill() ){ //3d
viewdir_fixup();
m_points[2].m_point = m_points[0].m_point - m_viewdir * vector3_length( m_points[0].m_point - m_points[1].m_point );
viewdir_make_cut_worthy( plane3_for_points( m_points[0].m_point, m_points[1].m_point, m_points[2].m_point ) );
}
m_points[2].m_point = m_points[0].m_point - m_viewdir * vector3_length( m_points[0].m_point - m_points[1].m_point );
} // fall through
case 3:
Clipper_setPlanePoints( ClipperPoints( m_points[0].m_point, m_points[1].m_point, m_points[2].m_point, npoints ) );
break;
default:
Clipper_setPlanePoints( ClipperPoints() );
break;
}
}
std::size_t newPointIndex( bool viewfill ) const {
const std::size_t maxi = ( !viewfill && Clipper_get2pointsIn2d() )? 2 : 3;
std::size_t i;
for( i = 0; i < maxi; ++i )
if( !m_points[i].m_set )
break;
return i % maxi;
}
void newPoint( const Vector3& point, const View& view ){
const std::size_t i = newPointIndex( view.fill() );
if( i == 0 )
m_points[1].m_set = m_points[2].m_set = false;
m_points[i].m_set = true;
m_points[i].m_point = point;
SelectionPool selector;
selector.addSelectable( SelectionIntersection( 0, 0 ), &m_points[i] );
selectionChange( selector );
if( i == 1 )
viewdir_set( m_view->getViewDir() );
updatePlane();
}
bool testSelect_scene( const View& view, Vector3& point ){
SelectionVolume test( view );
ClipperSelector clipperSelector;
Scene_forEachVisible( GlobalSceneGraph(), view, testselect_scene_4clipper( clipperSelector, test ) );
test.BeginMesh( g_matrix4_identity, true );
if( clipperSelector.isSelected() ){
point = testSelected_scene_snapped_point( test, clipperSelector );
return true;
}
return false;
}
void testSelect( const View& view, const Matrix4& pivot2world ) {
testSelect_points( view );
if( !isSelected() ){
if( view.fill() ){
Vector3 point;
if( testSelect_scene( view, point ) )
newPoint( point, view );
}
else{
Vector3 point = vector4_projected( matrix4_transformed_vector4( matrix4_full_inverse( view.GetViewMatrix() ), Vector4( 0, 0, 0, 1 ) ) );
vector3_snap( point, GetSnapGridSize() );
{
const std::size_t maxi = vector3_max_abs_component_index( view.getViewDir() );
const std::size_t i = newPointIndex( false );
point[maxi] = m_bounds.origin[maxi] + ( i == 2? -1 : 1 ) * m_bounds.extents[maxi];
}
newPoint( point, view );
}
}
for( std::size_t i = 0; i < 3; ++i )
if( m_points[i].isSelected() ){
m_points[i].m_pointNonTransformed = m_points[i].m_point;
m_pivot2world = matrix4_translation_for_vec3( m_points[i].m_pointNonTransformed );
break;
}
}
void testSelect_points( const View& view ) {
SelectionPool selector;
{
const Matrix4 local2view( view.GetViewMatrix() );
for( std::size_t i = 0; i < 3; ++i ){
if( m_points[i].m_set ){
SelectionIntersection best;
Point_BestPoint( local2view, PointVertex( vertex3f_for_vector3( m_points[i].m_point ) ), best );
selector.addSelectable( best, &m_points[i] );
}
}
}
selectionChange( selector );
}
void reset( bool initFromFace ){
for( std::size_t i = 0; i < 3; ++i ){
m_points[i].m_set = false;
m_points[i].setSelected( false ); ///?
}
if( initFromFace && !g_SelectedFaceInstances.empty() ){
const Winding& w = g_SelectedFaceInstances.last().getFace().getWinding();
for( std::size_t i = 0; i < 3; ++i ){
m_points[i].m_set = true;
m_points[i].m_point = w[i].vertex;
}
}
updatePlane();
}
/* Translatable */
void translate( const Vector3& translation ){ //in 2d and ( 3d + m_dragXY_Z )
for( std::size_t i = 0; i < 3; ++i )
if( m_points[i].isSelected() ){
m_points[i].m_point = m_points[i].m_pointNonTransformed + translation;
updatePlane();
break;
}
}
/* Manipulatable */
void Construct( const Matrix4& device2manip, const float x, const float y, const AABB& bounds, const Vector3& transform_origin ){
m_dragXY_Z.set0( transform_origin );
m_dragXY_Z.Construct( device2manip, x, y, AABB( transform_origin, g_vector3_identity ), transform_origin );
}
void Transform( const Matrix4& manip2object, const Matrix4& device2manip, const float x, const float y, const bool snap, const bool snapbbox, const bool alt ){
if( snap || snapbbox || alt || !m_view->fill() )
return m_dragXY_Z.Transform( manip2object, device2manip, x, y, snap, snapbbox, alt );
View scissored( *m_view );
const float device_point[2] = { x, y };
ConstructSelectionTest( scissored, SelectionBoxForPoint( device_point, m_device_epsilon ) );
Vector3 point;
if( testSelect_scene( scissored, point ) )
for( std::size_t i = 0; i < 3; ++i )
if( m_points[i].isSelected() ){
m_points[i].m_point = point;
updatePlane();
break;
}
}
Manipulatable* GetManipulatable() {
return this;
}
void setSelected( bool select ) {
for( std::size_t i = 0; i < 3; ++i )
m_points[i].setSelected( select );
}
bool isSelected() const {
return m_points[0].isSelected() || m_points[1].isSelected() || m_points[2].isSelected();
}
};
Shader* ClipManipulator::m_state;
class BuildManipulator : public Manipulator, public Manipulatable
{
struct RenderableLine : public OpenGLRenderable {
PointVertex m_line[2];
RenderableLine() {
}
void render( RenderStateFlags state ) const {
glColorPointer( 4, GL_UNSIGNED_BYTE, sizeof( PointVertex ), &m_line[0].colour );
glVertexPointer( 3, GL_FLOAT, sizeof( PointVertex ), &m_line[0].vertex );
glDrawArrays( GL_LINES, 0, 2 );
}
void setColour( const Colour4b& colour ) {
m_line[0].colour = colour;
m_line[1].colour = colour;
}
};
struct RenderablePoint : public OpenGLRenderable
{
PointVertex m_point;
RenderablePoint():
m_point( vertex3f_identity ) {
}
void render( RenderStateFlags state ) const {
glColorPointer( 4, GL_UNSIGNED_BYTE, sizeof( PointVertex ), &m_point.colour );
glVertexPointer( 3, GL_FLOAT, sizeof( PointVertex ), &m_point.vertex );
glDrawArrays( GL_POINTS, 0, 1 );
}
void setColour( const Colour4b & colour ) {
m_point.colour = colour;
}
};
bool m_isSelected;
bool m_isInitialised;
RenderablePoint m_point;
RenderableLine m_line;
RenderableLine m_midline;
public:
static Shader* m_state_point;
static Shader* m_state_line;
BuildManipulator() : m_isSelected( false ), m_isInitialised( false ) {
m_point.setColour( g_colour_selected );
m_line.setColour( g_colour_selected );
m_midline.setColour( g_colour_screen );
}
void render( Renderer& renderer, const VolumeTest& volume, const Matrix4& pivot2world ) {
renderer.SetState( m_state_point, Renderer::eWireframeOnly );
renderer.SetState( m_state_point, Renderer::eFullMaterials );
renderer.addRenderable( m_point, g_matrix4_identity );
renderer.SetState( m_state_line, Renderer::eWireframeOnly );
renderer.SetState( m_state_line, Renderer::eFullMaterials );
renderer.addRenderable( m_line, g_matrix4_identity );
renderer.addRenderable( m_midline, g_matrix4_identity );
}
void initialise(){
}
void highlight( const View& view ){
SceneChangeNotify();
}
void testSelect( const View& view, const Matrix4& pivot2world ) {
m_isSelected = true;
}
/* Manipulatable */
void Construct( const Matrix4& device2manip, const float x, const float y, const AABB& bounds, const Vector3& transform_origin ){
//do things with undo
}
void Transform( const Matrix4& manip2object, const Matrix4& device2manip, const float x, const float y, const bool snap, const bool snapbbox, const bool alt ){
}
Manipulatable* GetManipulatable() {
m_isSelected = false; //don't handle the manipulator move part void MoveSelected()
return this;
}
void setSelected( bool select ) {
m_isSelected = select;
}
bool isSelected() const {
return m_isSelected;
}
};
Shader* BuildManipulator::m_state_point;
Shader* BuildManipulator::m_state_line;
#include "patch.h"
#include "iglrender.h"
class UVManipulator : public Manipulator, public Manipulatable
{
struct RenderablePoint : public OpenGLRenderable
{
PointVertex m_point;
RenderablePoint():
m_point( vertex3f_identity ) {
}
void render( RenderStateFlags state ) const {
glColorPointer( 4, GL_UNSIGNED_BYTE, sizeof( PointVertex ), &m_point.colour );
glVertexPointer( 3, GL_FLOAT, sizeof( PointVertex ), &m_point.vertex );
glDrawArrays( GL_POINTS, 0, 1 );
}
void setColour( const Colour4b & colour ) {
m_point.colour = colour;
}
};
struct RenderablePoints : public OpenGLRenderable
{
std::vector<PointVertex> m_points;
RenderablePoints(){
}
void render( RenderStateFlags state ) const {
glColorPointer( 4, GL_UNSIGNED_BYTE, sizeof( PointVertex ), &m_points[0].colour );
glVertexPointer( 3, GL_FLOAT, sizeof( PointVertex ), &m_points[0].vertex );
glDrawArrays( GL_POINTS, 0, m_points.size() );
}
};
struct RenderableLines : public OpenGLRenderable
{
std::vector<PointVertex> m_lines;
RenderableLines(){
}
void render( RenderStateFlags state ) const {
if( m_lines.size() != 0 ){
glColorPointer( 4, GL_UNSIGNED_BYTE, sizeof( PointVertex ), &m_lines[0].colour );
glVertexPointer( 3, GL_FLOAT, sizeof( PointVertex ), &m_lines[0].vertex );
glDrawArrays( GL_LINES, 0, m_lines.size() );
}
}
};
struct RenderableCircle : public OpenGLRenderable
{
Array<PointVertex> m_vertices;
RenderableCircle( std::size_t size ) : m_vertices( size ){
}
void render( RenderStateFlags state ) const {
glColorPointer( 4, GL_UNSIGNED_BYTE, sizeof( PointVertex ), &m_vertices.data()->colour );
glVertexPointer( 3, GL_FLOAT, sizeof( PointVertex ), &m_vertices.data()->vertex );
glDrawArrays( GL_LINE_LOOP, 0, GLsizei( m_vertices.size() ) );
}
void setColour( const Colour4b& colour ){
for ( Array<PointVertex>::iterator i = m_vertices.begin(); i != m_vertices.end(); ++i )
{
( *i ).colour = colour;
}
}
};
typedef Array<PatchControl> PatchControlArray;
struct RenderablePatchTexture : public OpenGLRenderable
{
std::vector<RenderIndex> m_trianglesIndices;
const PatchControlArray* m_patchControlArray;
RenderablePatchTexture(){
}
void render( RenderStateFlags state ) const {
if( state & RENDER_FILL ){
const std::vector<Vector3> normals( m_patchControlArray->size(), g_vector3_axis_z );
glNormalPointer( GL_FLOAT, sizeof( Vector3 ), normals.data() );
glVertexPointer( 2, GL_FLOAT, sizeof( PatchControl ), &m_patchControlArray->data()->m_texcoord );
glTexCoordPointer( 2, GL_FLOAT, sizeof( PatchControl ), &m_patchControlArray->data()->m_texcoord );
glDrawElements( GL_TRIANGLES, GLsizei( m_trianglesIndices.size() ), RenderIndexTypeID, m_trianglesIndices.data() );
}
}
};
const Colour4b m_cWhite{ 255, 255, 255, 255 };
const Colour4b m_cGray{ 255, 255, 255, 125 };
const Colour4b m_cGrayer{ 100, 100, 100, 150 };
const Colour4b m_cRed{ 255, 0, 0, 255 };
const Colour4b m_cGreen{ 0, 255, 0, 255 };
const Colour4b m_cGree{ 0, 150, 0, 255 };
const Colour4b m_cPink{ 255, 0, 255, 255 };
const Colour4b m_cPin{ 150, 0, 150, 255 };
const Colour4b m_cOrange{ 255, 125, 0, 255 };
const Colour4b m_cOrang{ 255, 125, 0, 125 };
enum EUVSelection{
eNone,
ePivot,
eGridU,
eGridV,
ePatchPoint,
ePatchRow,
ePatchColumn,
eCircle,
ePivotU,
ePivotV,
eU,
eV,
eUV,
eSkewU,
eSkewV,
eTex,
} m_selection;
PointVertex* m_selectedU = 0; // must nullify this on m_Ulines, m_Vlines change
PointVertex* m_selectedV = 0;
int m_selectedPatchIndex = -1;
bool m_isSelected = false;
class UVSelector : public Selector {
SelectionIntersection m_bestIntersection;
public:
EUVSelection m_selection = eNone;
int m_index = -1;
UVSelector() : m_bestIntersection( SelectionIntersection() ) {
}
void pushSelectable( Selectable& selectable ) {
}
void popSelectable() {
m_bestIntersection = SelectionIntersection();
}
void addIntersection( const SelectionIntersection& intersection ) {
if( SelectionIntersection_closer( intersection, m_bestIntersection ) ) {
m_bestIntersection = intersection;
}
}
void addIntersection( const SelectionIntersection& intersection, EUVSelection selection, int index ) {
if( SelectionIntersection_closer( intersection, m_bestIntersection ) ) {
m_bestIntersection = intersection;
m_selection = selection;
m_index = index;
}
}
void addIntersection( const SelectionIntersection& intersection, EUVSelection selection ) {
if( SelectionIntersection_closer( intersection, m_bestIntersection ) ) {
m_bestIntersection = intersection;
m_selection = selection;
}
}
bool isSelected() {
return m_bestIntersection.valid();
}
};
Face* m_face = 0;
Plane3 m_plane;
std::size_t m_width, m_height;
TextureProjection m_projection;
Matrix4 m_local2tex; //real projection
Matrix4 m_tex2local; //real unprojection aka projection space basis aka texture axes
Matrix4 m_faceLocal2tex; //x,y projected to the face for z = const
Matrix4 m_faceTex2local;
Vector3 m_origin;
RenderablePivot m_pivot;
Matrix4 m_pivot2world0; // original
Matrix4 m_pivot2world; // transformed during transformation
RenderablePoint m_pivotPoint;
RenderableLines m_pivotLines;
Matrix4 m_pivotLines2world;
/* lines in uv space */
RenderableLines m_Ulines;
RenderableLines m_Vlines;
Matrix4 m_lines2world; // line * ( transform during transformation ) * m_faceTex2local = world
unsigned int m_gridU = 1; // n - 1 of U directed sub lines, 1-16
unsigned int m_gridV = 1;
RenderablePoint m_gridPointU; // control of U grid lines density, rendered on V axis
RenderablePoint m_gridPointV;
Vector2 m_gridSign; // orientation of controls relative to origin
RenderableCircle m_circle;
Matrix4 m_circle2world;
Patch* m_patch = 0; //tracking face/patch mode by only nonzero pointer
std::size_t m_patchWidth;
std::size_t m_patchHeight;
PatchControlArray m_patchCtrl;
RenderablePoints m_patchRenderPoints;
RenderableLines m_patchRenderLattice;
RenderablePatchTexture m_patchRenderTex;
const Shader* m_state_patch_raw = 0; // original patch texture shader
Shader* m_state_patch = 0; // local patch texture overlay
const char* m_state_patch_name = "$uvtool/patchtexture";
public:
static Shader* m_state_line;
static Shader* m_state_point;
UVManipulator() : m_pivot( 32 ), m_circle( 8 << 3 ) {
draw_circle( 8, 1, m_circle.m_vertices.data(), RemapXYZ() );
m_circle.setColour( m_cGray );
m_pivotPoint.setColour( m_cWhite );
m_gridPointU.setColour( m_cWhite );
m_gridPointV.setColour( m_cWhite );
m_pivotLines.m_lines.resize( 4, PointVertex( vertex3f_identity, m_cWhite ) );
}
~UVManipulator() {
patchShaderDestroy();
}
private:
void patchShaderConstruct(){
patchShaderDestroy();
OpenGLState state;
GlobalOpenGLStateLibrary().getDefaultState( state );
state.m_state = RENDER_FILL /*| RENDER_CULLFACE*/ | RENDER_TEXTURE | RENDER_COLOURWRITE | RENDER_LIGHTING | RENDER_SMOOTH;
state.m_sort = OpenGLState::eSortOverlayLast;
state.m_texture = m_patch->getShader()->getTexture().texture_number;
GlobalOpenGLStateLibrary().insert( m_state_patch_name, state );
m_state_patch = GlobalShaderCache().capture( m_state_patch_name );
}
void patchShaderDestroy(){
if( m_state_patch ){
m_state_patch = 0;
GlobalShaderCache().release( m_state_patch_name );
GlobalOpenGLStateLibrary().erase( m_state_patch_name );
}
}
bool patchCtrl_isInside( std::size_t i ) const {
return ( i % 2 || ( i / m_patchWidth ) % 2 );
}
template<typename Functor>
void forEachEdge( const Functor& functor ) const {
if( m_face ){
const Winding& winding = m_face->getWinding();
for( Winding::const_iterator next = winding.begin(), i = winding.end() - 1; next != winding.end(); i = next, ++next )
functor( ( *i ).vertex, ( *next ).vertex );
}
else if( m_patch ){
for( std::vector<PointVertex>::const_iterator i = m_patchRenderLattice.m_lines.begin(); i != m_patchRenderLattice.m_lines.end(); ++++i ){
const Vector3 p0( matrix4_transformed_point( m_faceTex2local, ( *i ).vertex ) );
const Vector3 p1( matrix4_transformed_point( m_faceTex2local, ( *( i + 1 ) ).vertex ) );
if( vector3_length_squared( p1 - p0 ) > 0.1 )
functor( p0, p1 );
}
}
}
template<typename Functor>
void forEachPoint( const Functor& functor ) const {
if( m_face ){
const Winding& winding = m_face->getWinding();
for( const auto& v : winding )
functor( v.vertex );
}
else if( m_patch ){
for( const auto& v : m_patchCtrl )
functor( matrix4_transformed_point( m_faceTex2local, Vector3( v.m_texcoord ) ) );
}
}
template<typename Functor>
void forEachUVPoint( const Functor& functor ) const {
if( m_face ){
const Winding& winding = m_face->getWinding();
for( const auto& v : winding )
functor( matrix4_transformed_point( m_faceLocal2tex, v.vertex ) );
}
else if( m_patch ){
for( const auto& v : m_patchCtrl )
functor( Vector3( v.m_texcoord ) );
}
}
bool projection_valid() const {
return !( !std::isfinite( m_local2tex[0] ) //nan
|| fabs( vector3_dot( m_plane.normal(), vector4_to_vector3( m_tex2local.z() ) ) ) < 1e-6 //projected along face
|| vector3_length_squared( vector4_to_vector3( m_tex2local.x() ) ) < .01 //srsly scaled down, limit at max 10 textures per world unit
|| vector3_length_squared( vector4_to_vector3( m_tex2local.y() ) ) < .01 );
}
void UpdateFaceData( bool updateOrigin, bool updateLines = true ) {
//!? todo fewer outer quads for large textures
//!? todo auto subdivisions num, based on tex size and world scale
//! todo update on undo/redo, when face stays the same, but transformed
//! todo update on nudgeSelectedLeft and the rest, qe tool move w/o projection change or with tex lock off
//+ todo put default origin to winding's UV aabb corner
//+ todo disable 3d workzone in this manipulator mode
if( m_face ){
m_plane = m_face->getPlane().plane3();
m_width = m_face->getShader().width();
m_height = m_face->getShader().height();
// m_face->GetTexdef( m_projection );
m_projection = m_face->getTexdef().m_projection;
Texdef_Construct_local2tex( m_projection, m_width, m_height, m_plane.normal(), m_local2tex );
m_tex2local = matrix4_affine_inverse( m_local2tex );
}
else if( m_patch ){
m_plane.normal() = m_patch->Calculate_AvgNormal();
m_plane.dist() = vector3_dot( m_plane.normal(), m_patch->localAABB().origin );
m_patchWidth = m_patch->getWidth();
m_patchHeight = m_patch->getHeight();
m_patchCtrl = m_patch->getControlPoints();
m_state_patch_raw = m_patch->getShader();
patchShaderConstruct();
{ //! todo force or deduce orthogonal uv axes for convenience
Vector3 wDir, hDir;
m_patch->Calculate_AvgAxes( wDir, hDir );
vector3_normalise( wDir );
vector3_normalise( hDir );
// globalOutputStream() << wDir << " wDir\n";
// globalOutputStream() << hDir << " hDir\n";
// globalOutputStream() << m_plane.normal() << " m_plane.normal()\n";
/* find longest row and column */
float wLength = 0, hLength = 0; //!? todo break, if some of these is 0
std::size_t row = 0, col = 0;
for ( std::size_t r = 0; r < m_patchHeight; ++r ){
float length = 0;
for ( std::size_t c = 0; c < m_patchWidth - 1; ++c ){
length += vector3_length( m_patch->ctrlAt( r, c + 1 ).m_vertex - m_patch->ctrlAt( r, c ).m_vertex );
}
if( length - wLength > .1f || ( ( r == 0 || r == m_patchHeight - 1 ) && float_equal_epsilon( length, wLength, .1f ) ) ){ // prioritize first and last rows
wLength = length;
row = r;
}
}
for ( std::size_t c = 0; c < m_patchWidth; ++c ){
float length = 0;
for ( std::size_t r = 0; r < m_patchHeight - 1; ++r ){
length += vector3_length( m_patch->ctrlAt( r + 1, c ).m_vertex - m_patch->ctrlAt( r, c ).m_vertex );
}
if( length - hLength > .1f || ( ( c == 0 || c == m_patchWidth - 1 ) && float_equal_epsilon( length, hLength, .1f ) ) ){
hLength = length;
col = c;
}
}
//! todo handle case, when uv start = end, like projection to cylinder
//! todo consider max uv length to have manipulator size according to patch size
/* pick 3 points at the found row and column */
const PatchControl* p0, *p1, *p2;
Vector3 v0, v1, v2;
{
float distW0 = 0, distW1 = 0;
for ( std::size_t c = 0; c < col; ++c ){
distW0 += vector3_length( m_patch->ctrlAt( row, c + 1 ).m_vertex - m_patch->ctrlAt( row, c ).m_vertex );
}
for ( std::size_t c = col; c < m_patchWidth - 1; ++c ){
distW1 += vector3_length( m_patch->ctrlAt( row, c + 1 ).m_vertex - m_patch->ctrlAt( row, c ).m_vertex );
}
float distH0 = 0, distH1 = 0;
for ( std::size_t r = 0; r < row; ++r ){
distH0 += vector3_length( m_patch->ctrlAt( r + 1, col ).m_vertex - m_patch->ctrlAt( r, col ).m_vertex );
}
for ( std::size_t r = row; r < m_patchHeight - 1; ++r ){
distH1 += vector3_length( m_patch->ctrlAt( r + 1, col ).m_vertex - m_patch->ctrlAt( r, col ).m_vertex );
}
if( ( distW0 > distH0 && distW0 > distH1 ) || ( distW1 > distH0 && distW1 > distH1 ) ){
p0 = &m_patch->ctrlAt( 0, col );
p1 = &m_patch->ctrlAt( m_patchHeight - 1, col );
p2 = distW0 > distW1? &m_patch->ctrlAt( row, 0 ) : &m_patch->ctrlAt( row, m_patchWidth - 1 );
v0 = m_patch->localAABB().origin
+ hDir * vector3_dot( m_patch->localAABB().extents, Vector3( fabs( hDir.x() ), fabs( hDir.y() ), fabs( hDir.z() ) ) ) * 1.1
+ wDir * ( distW0 - wLength / 2 );
v1 = v0 + hDir * hLength;
v2 = v0 + hDir * distH0 + ( distW0 > distW1? ( wDir * -distW0 ) : ( wDir * distW1 ) );
}
else{
p0 = &m_patch->ctrlAt( row, 0 );
p1 = &m_patch->ctrlAt( row, m_patchWidth - 1 );
p2 = distH0 > distH1? &m_patch->ctrlAt( 0, col ) : &m_patch->ctrlAt( m_patchHeight - 1, col );
v0 = m_patch->localAABB().origin
+ wDir * vector3_dot( m_patch->localAABB().extents, Vector3( fabs( wDir.x() ), fabs( wDir.y() ), fabs( wDir.z() ) ) ) * 1.1
+ hDir * ( distH0 - hLength / 2 );
v1 = v0 + wDir * wLength;
v2 = v0 + wDir * distW0 + ( distH0 > distH1? ( hDir * -distH0 ) : ( hDir * distH1 ) );
}
if( vector3_dot( plane3_for_points( v0, v1, v2 ).normal(), m_plane.normal() ) < 0 ){
std::swap( p0, p1 );
std::swap( v0, v1 );
}
}
const DoubleVector3 vertices[3]{ v0, v1, v2 };
const DoubleVector3 sts[3]{ DoubleVector3( p0->m_texcoord ),
DoubleVector3( p1->m_texcoord ),
DoubleVector3( p2->m_texcoord ) };
Texdef_Construct_local2tex_from_ST( vertices, sts, m_local2tex );
m_tex2local = matrix4_affine_inverse( m_local2tex );
}
}
// globalOutputStream() << m_local2tex << " m_local2tex\n";
// globalOutputStream() << m_tex2local << " m_tex2local\n";
/* error checking */
if( !projection_valid() ){
m_selectedU = m_selectedV = 0;
m_Ulines.m_lines.clear();
m_Vlines.m_lines.clear();
m_selectedPatchIndex = -1;
return;
}
m_faceTex2local = m_tex2local;
vector4_to_vector3( m_faceTex2local.x() ) = plane3_project_point( Plane3( m_plane.normal(), 0 ), vector4_to_vector3( m_tex2local.x() ), vector4_to_vector3( m_tex2local.z() ) );
vector4_to_vector3( m_faceTex2local.y() ) = plane3_project_point( Plane3( m_plane.normal(), 0 ), vector4_to_vector3( m_tex2local.y() ), vector4_to_vector3( m_tex2local.z() ) );
m_faceTex2local = matrix4_multiplied_by_matrix4( // adjust to have UV's z = 0: move the plane along m_tex2local.z() so that plane.dist() = 0
matrix4_translation_for_vec3(
vector4_to_vector3( m_tex2local.z() ) * ( m_plane.dist() - vector3_dot( m_plane.normal(), vector4_to_vector3( m_tex2local.t() ) ) )
/ vector3_dot( m_plane.normal(), vector4_to_vector3( m_tex2local.z() ) )
),
m_faceTex2local );
m_faceLocal2tex = matrix4_affine_inverse( m_faceTex2local );
if( m_patch ){
m_patchRenderPoints.m_points.clear();
m_patchRenderPoints.m_points.reserve( m_patchWidth * m_patchHeight );
for( std::size_t i = 0; i < m_patchCtrl.size(); ++i ){
m_patchRenderPoints.m_points.emplace_back( vertex3f_for_vector3( Vector3( m_patchCtrl[i].m_texcoord ) ), patchCtrl_isInside( i )? m_cPin : m_cGree );
}
m_patchRenderLattice.m_lines.clear();
m_patchRenderLattice.m_lines.reserve( ( ( m_patchWidth - 1 ) * m_patchHeight + ( m_patchHeight - 1 ) * m_patchWidth ) * 2 );
for ( std::size_t r = 0; r < m_patchHeight; ++r ){
for ( std::size_t c = 0; c < m_patchWidth - 1; ++c ){
const Vector2& a = m_patch->ctrlAt( r, c ).m_texcoord;
const Vector2& b = m_patch->ctrlAt( r, c + 1 ).m_texcoord;
m_patchRenderLattice.m_lines.emplace_back( vertex3f_for_vector3( Vector3( a ) ), m_cOrang );
m_patchRenderLattice.m_lines.emplace_back( vertex3f_for_vector3( Vector3( b ) ), m_cOrang );
}
}
for ( std::size_t c = 0; c < m_patchWidth; ++c ){
for ( std::size_t r = 0; r < m_patchHeight - 1; ++r ){
const Vector2& a = m_patch->ctrlAt( r, c ).m_texcoord;
const Vector2& b = m_patch->ctrlAt( r + 1, c ).m_texcoord;
m_patchRenderLattice.m_lines.emplace_back( vertex3f_for_vector3( Vector3( a ) ), m_cOrang );
m_patchRenderLattice.m_lines.emplace_back( vertex3f_for_vector3( Vector3( b ) ), m_cOrang );
}
}
m_patchRenderTex.m_trianglesIndices.clear();
m_patchRenderTex.m_trianglesIndices.reserve( ( m_patchHeight - 1 ) * ( m_patchWidth - 1 ) * 2 * 3 );
const PatchControlArray& pc = m_patch->getControlPointsTransformed();
m_patchRenderTex.m_patchControlArray = &pc;
const double degenerate_epsilon = 1e-5;
for ( std::size_t r = 0; r < m_patchHeight - 1; ++r ){
for ( std::size_t c = 0; c < m_patchWidth - 1; ++c ){
const RenderIndex i0 = m_patchWidth * r + c;
const RenderIndex i1 = m_patchWidth * ( r + 1 ) + c;
const RenderIndex i2 = m_patchWidth * ( r + 1 ) + c + 1;
const RenderIndex i3 = m_patchWidth * r + c + 1;
double cross = vector2_cross( pc[i2].m_texcoord - pc[i0].m_texcoord, pc[i1].m_texcoord - pc[i0].m_texcoord );
if( !float_equal_epsilon( cross, 0, degenerate_epsilon ) ){
m_patchRenderTex.m_trianglesIndices.push_back( i0 );
m_patchRenderTex.m_trianglesIndices.push_back( i1 );
m_patchRenderTex.m_trianglesIndices.push_back( i2 );
if( cross < 0 )
std::swap( *( m_patchRenderTex.m_trianglesIndices.end() - 1 ), *( m_patchRenderTex.m_trianglesIndices.end() - 2 ) );
}
cross = vector2_cross( pc[i3].m_texcoord - pc[i0].m_texcoord, pc[i2].m_texcoord - pc[i0].m_texcoord );
if( !float_equal_epsilon( cross, 0, degenerate_epsilon ) ){
m_patchRenderTex.m_trianglesIndices.push_back( i0 );
m_patchRenderTex.m_trianglesIndices.push_back( i2 );
m_patchRenderTex.m_trianglesIndices.push_back( i3 );
if( cross < 0 )
std::swap( *( m_patchRenderTex.m_trianglesIndices.end() - 1 ), *( m_patchRenderTex.m_trianglesIndices.end() - 2 ) );
}
}
}
if( m_patchRenderTex.m_trianglesIndices.size() == 0 ){ // try to make at least one triangle or more
RenderIndex i0 = 0, i1 = 1, i2;
for( ; i1 < pc.size(); ++i1 ){
if( vector2_length( pc[i1].m_texcoord - pc[i0].m_texcoord ) > degenerate_epsilon ){
i2 = i1 + 1;
for( ; i2 < pc.size(); ++i2 ){
const double cross = vector2_cross( pc[i2].m_texcoord - pc[i0].m_texcoord, pc[i1].m_texcoord - pc[i0].m_texcoord );
if( !float_equal_epsilon( cross, 0, degenerate_epsilon ) ){
m_patchRenderTex.m_trianglesIndices.push_back( i0 );
m_patchRenderTex.m_trianglesIndices.push_back( i1 );
m_patchRenderTex.m_trianglesIndices.push_back( i2 );
if( cross < 0 )
std::swap( *( m_patchRenderTex.m_trianglesIndices.end() - 1 ), *( m_patchRenderTex.m_trianglesIndices.end() - 2 ) );
break;
}
}
}
}
}
}
Vector2 min( FLT_MAX, FLT_MAX );
Vector2 max( -FLT_MAX, -FLT_MAX );
forEachUVPoint( [&]( const Vector3& point ){
min.x() = std::min( min.x(), point.x() );
max.x() = std::max( max.x(), point.x() );
min.y() = std::min( min.y(), point.y() );
max.y() = std::max( max.y(), point.y() );
} );
if( updateOrigin )
m_origin = matrix4_transformed_point( m_faceTex2local, Vector3( min ) );
const Vector3 uv_origin = matrix4_transformed_point( m_faceLocal2tex, m_origin );
{ // grid grain controls, on the polygon side of origin
m_gridSign.x() = max.y() - uv_origin.y() >= uv_origin.y() - min.y()? 1 : -1;
m_gridSign.y() = max.x() - uv_origin.x() >= uv_origin.x() - min.x()? 1 : -1;
m_gridPointU.m_point.vertex = Vertex3f( uv_origin.x(),
float_to_integer( uv_origin.y() + m_gridSign.x() * .25 ) + m_gridSign.x() * ( 1 - 1.0 / std::max( float( m_gridU ), 1.8f ) ),
0 );
m_gridPointV.m_point.vertex = Vertex3f( float_to_integer( uv_origin.x() + m_gridSign.y() * .25 ) + m_gridSign.y() * ( 1 - 1.0 / std::max( float( m_gridV ), 1.8f ) ),
uv_origin.y(),
0 );
}
m_pivot2world = m_tex2local;
vector3_normalise( vector4_to_vector3( m_pivot2world.x() ) );
vector3_normalise( vector4_to_vector3( m_pivot2world.y() ) );
vector4_to_vector3( m_pivot2world.t() ) = m_origin;
m_pivot2world0 = m_pivot2world;
{
float bestDist = 0;
forEachPoint( [&]( const Vector3& point ){
const float dist = vector3_length_squared( point - m_origin );
if( dist > bestDist ){
bestDist = dist;
}
} );
bestDist = sqrt( bestDist );
m_circle2world = g_matrix4_identity;
ComputeAxisBase( m_plane.normal(), vector4_to_vector3( m_circle2world.x() ), vector4_to_vector3( m_circle2world.y() ) );
vector4_to_vector3( m_circle2world.x() ) *= bestDist;
vector4_to_vector3( m_circle2world.y() ) *= bestDist;
vector4_to_vector3( m_circle2world.z() ) = m_plane.normal();
vector4_to_vector3( m_circle2world.t() ) = m_origin;
}
min -= Vector2( 5, 5 );
max += Vector2( 5, 5 );
min.x() = float_to_integer( min.x() );
min.y() = float_to_integer( min.y() );
max.x() = float_to_integer( max.x() );
max.y() = float_to_integer( max.y() );
m_selectedU = m_selectedV = 0;
m_selectedPatchIndex = -1;
m_lines2world = m_faceTex2local;
m_pivotLines2world = m_faceTex2local;
if( updateLines ){
const int imax = float_to_integer( max.y() - min.y() ) + 1;
m_Ulines.m_lines.clear();
m_Ulines.m_lines.reserve( ( imax + ( m_gridU - 1 ) * ( imax - 1 ) ) * 2 );
for( int i = 0; i < imax; ++i ){
if( i != 0 ){
for( std::size_t j = m_gridU - 1; j != 0; --j ){ //subgrid lines
m_Ulines.m_lines.emplace_back( Vertex3f( min.x(), min.y() + i - static_cast<float>( j ) / m_gridU, 0 ), m_cGrayer );
m_Ulines.m_lines.emplace_back( Vertex3f( max.x(), min.y() + i - static_cast<float>( j ) / m_gridU, 0 ), m_cGrayer );
}
}
m_Ulines.m_lines.emplace_back( Vertex3f( min.x(), min.y() + i, 0 ), m_cGray );
m_Ulines.m_lines.emplace_back( Vertex3f( max.x(), min.y() + i, 0 ), m_cGray );
}
}
if( updateLines ){
const int imax = float_to_integer( max.x() - min.x() ) + 1;
m_Vlines.m_lines.clear();
m_Vlines.m_lines.reserve( ( imax + ( m_gridV - 1 ) * ( imax - 1 ) ) * 2 );
for( int i = 0; i < imax; ++i ){
if( i != 0 ){
for( std::size_t j = m_gridV - 1; j != 0; --j ){
m_Vlines.m_lines.emplace_back( Vertex3f( min.x() + i - static_cast<float>( j ) / m_gridV, min.y(), 0 ), m_cGrayer );
m_Vlines.m_lines.emplace_back( Vertex3f( min.x() + i - static_cast<float>( j ) / m_gridV, max.y(), 0 ), m_cGrayer );
}
}
m_Vlines.m_lines.emplace_back( Vertex3f( min.x() + i, min.y(), 0 ), m_cGray );
m_Vlines.m_lines.emplace_back( Vertex3f( min.x() + i, max.y(), 0 ), m_cGray );
}
}
{
{ // u pivot line
m_pivotLines.m_lines[0].vertex = Vertex3f( min.x(), uv_origin.y(), 0 );
m_pivotLines.m_lines[1].vertex = Vertex3f( max.x(), uv_origin.y(), 0 );
}
{ // v pivot line
m_pivotLines.m_lines[2].vertex = Vertex3f( uv_origin.x(), min.y(), 0 );
m_pivotLines.m_lines[3].vertex = Vertex3f( uv_origin.x(), max.y(), 0 );
}
}
}
bool UpdateData() {
if( !g_SelectedFaceInstances.empty() ){
Face* face = &g_SelectedFaceInstances.last().getFace();
if( m_face != face ){
m_face = face;
m_patch = 0;
UpdateFaceData( true );
}
else if( memcmp( &m_projection, &m_face->getTexdef().m_projection, sizeof( TextureProjection ) ) != 0
|| m_width != m_face->getShader().width()
|| m_height != m_face->getShader().height() ) {
UpdateFaceData( false );
}
return projection_valid();
}
else if( GlobalSelectionSystem().countSelected() != 0 ){
Patch* patch = Node_getPatch( GlobalSelectionSystem().ultimateSelected().path().top() );
if( patch ){
if( m_patch != patch ){
m_patch = patch;
m_face = 0;
UpdateFaceData( true );
}
else if( m_patchWidth != m_patch->getWidth()
|| m_patchHeight != m_patch->getHeight()
|| memcmp( m_patchCtrl.data(), m_patch->getControlPoints().data(), sizeof( *m_patchCtrl.data() ) * m_patchCtrl.size() ) != 0
|| m_state_patch_raw != m_patch->getShader() ){
UpdateFaceData( false );
}
return projection_valid();
}
}
return false;
}
public:
void render( Renderer& renderer, const VolumeTest& volume, const Matrix4& pivot2world ) {
if( volume.fill() && UpdateData() ){
if( m_patch ){
renderer.SetState( const_cast<Shader*>( m_state_patch ), Renderer::eFullMaterials );
renderer.addRenderable( m_patchRenderTex, m_lines2world );
}
renderer.SetState( m_state_line, Renderer::eFullMaterials );
renderer.addRenderable( m_Ulines, m_lines2world );
renderer.addRenderable( m_Vlines, m_lines2world );
renderer.addRenderable( m_pivotLines, m_pivotLines2world );
if( m_patch )
renderer.addRenderable( m_patchRenderLattice, m_faceTex2local );
//fix pivot position for better visibility
m_pivot.render( renderer, volume, matrix4_multiplied_by_matrix4( matrix4_translation_for_vec3( vector3_normalised( volume.getViewer() - m_origin ) ), m_pivot2world ) );
renderer.addRenderable( m_circle, m_circle2world );
renderer.SetState( m_state_point, Renderer::eFullMaterials );
if( m_patch )
renderer.addRenderable( m_patchRenderPoints, m_faceTex2local );
renderer.addRenderable( m_pivotPoint, m_pivot2world );
renderer.addRenderable( m_gridPointU, m_pivotLines2world );
renderer.addRenderable( m_gridPointV, m_pivotLines2world );
}
}
void testSelect( const View& view, const Matrix4& pivot2world ) {
//!? todo fix: eUV selection possibility may be blocked by the circle
if( !view.fill() || !UpdateData() ){
m_isSelected = false;
return;
}
UVSelector selector;
{ // try pivot point
const Matrix4 local2view( matrix4_multiplied_by_matrix4( view.GetViewMatrix(), m_pivot2world ) );
SelectionIntersection best;
Point_BestPoint( local2view, m_pivotPoint.m_point.vertex, best );
selector.addIntersection( best, ePivot );
}
if( !selector.isSelected() ){ // try grid control points
const Matrix4 local2view( matrix4_multiplied_by_matrix4( view.GetViewMatrix(), m_faceTex2local ) );
SelectionIntersection best;
Point_BestPoint( local2view, m_gridPointU.m_point.vertex, best );
selector.addIntersection( best, eGridU );
Point_BestPoint( local2view, m_gridPointV.m_point.vertex, best );
selector.addIntersection( best, eGridV );
}
if( !selector.isSelected() && m_patch ){ // try patch points
const Matrix4 local2view( matrix4_multiplied_by_matrix4( view.GetViewMatrix(), m_faceTex2local ) );
SelectionIntersection best;
for( std::size_t i = 0; i < m_patchRenderPoints.m_points.size(); ++i ){
Point_BestPoint( local2view, m_patchRenderPoints.m_points[i], best );
selector.addIntersection( best, ePatchPoint, i );
}
}
if( !selector.isSelected() && m_patch ){ // try patch rows, columns
const Matrix4 local2view( matrix4_multiplied_by_matrix4( view.GetViewMatrix(), m_faceTex2local ) );
SelectionIntersection best;
for ( std::size_t r = 0; r < m_patchHeight; ++r ){
for ( std::size_t c = 0; c < m_patchWidth - 1; ++c ){
Line_BestPoint( local2view, &m_patchRenderLattice.m_lines[( r * ( m_patchWidth - 1 ) + c ) * 2], best );
selector.addIntersection( best, ePatchRow, r );
}
}
for ( std::size_t c = 0; c < m_patchWidth; ++c ){
for ( std::size_t r = 0; r < m_patchHeight - 1; ++r ){
Line_BestPoint( local2view, &m_patchRenderLattice.m_lines[( m_patchWidth - 1 ) * m_patchHeight * 2 + ( c * ( m_patchHeight - 1 ) + r ) * 2], best );
selector.addIntersection( best, ePatchColumn, c );
}
}
}
if( !selector.isSelected() ){ // try circle
const Matrix4 local2view( matrix4_multiplied_by_matrix4( view.GetViewMatrix(), m_circle2world ) );
SelectionIntersection best;
LineLoop_BestPoint( local2view, m_circle.m_vertices.data(), m_circle.m_vertices.size(), best );
selector.addIntersection( best, eCircle );
}
if( !selector.isSelected() ){ // try pivot lines
const Matrix4 local2view( matrix4_multiplied_by_matrix4( view.GetViewMatrix(), m_faceTex2local ) );
SelectionIntersection best;
Line_BestPoint( local2view, &m_pivotLines.m_lines[0], best );
selector.addIntersection( best, ePivotU );
Line_BestPoint( local2view, &m_pivotLines.m_lines[2], best );
selector.addIntersection( best, ePivotV );
}
PointVertex* selectedU = 0;
PointVertex* selectedV = 0;
EUVSelection& selection = selector.m_selection;
if( !selector.isSelected() ){ // try UV lines
/*
-|------
|
|
V line center| - - tex U center - -
| tex
| V
-cross-|-----U line center-----|
|
*/
// special fuckage with the grid for better distinguishing of user's intentions
// better picking of tex, only line for skew or scale with dense grid
const Matrix4 screen2world( matrix4_full_inverse( view.GetViewMatrix() ) );
const DoubleRay ray = ray_for_points( vector4_projected( matrix4_transformed_vector4( screen2world, BasicVector4<double>( 0, 0, -1, 1 ) ) ),
vector4_projected( matrix4_transformed_vector4( screen2world, BasicVector4<double>( 0, 0, 1, 1 ) ) ) );
const DoubleVector3 hit = ray_intersect_plane( ray, m_plane );
const Vector3 uvhit = matrix4_transformed_point( m_faceLocal2tex, hit );
if( fabs( vector3_dot( ray.direction, m_plane.normal() ) ) > 1e-6
&& !m_Ulines.m_lines.empty()
&& !m_Vlines.m_lines.empty()
&& matrix4_transformed_vector4( view.GetViewMatrix(), Vector4( hit, 1 ) ).w() > 0 ){
PointVertex* closestU = &m_Ulines.m_lines[std::min( m_Ulines.m_lines.size() - 2,
static_cast<std::size_t>( float_to_integer( std::max( 0.f, uvhit.y() - m_Ulines.m_lines.front().vertex.y() ) * m_gridU ) * 2 ) )];
PointVertex* closestV = &m_Vlines.m_lines[std::min( m_Vlines.m_lines.size() - 2,
static_cast<std::size_t>( float_to_integer( std::max( 0.f, uvhit.x() - m_Vlines.m_lines.front().vertex.x() ) * m_gridV ) * 2 ) )];
const Vector2 sign( uvhit.y() > closestU->vertex.y()? 1 : -1, uvhit.x() > closestV->vertex.x()? 1 : -1 ); //hit in positive or negative part of lines u, v
const PointVertex pCross( Vertex3f( closestV->vertex.x(), closestU->vertex.y(), 0 ) );
const PointVertex pUcenter( Vertex3f( closestV->vertex.x() + sign.y() / ( m_gridV * 2 ), closestU->vertex.y(), 0 ) );
const PointVertex pVcenter( Vertex3f( closestV->vertex.x(), closestU->vertex.y() + sign.x() / ( m_gridU * 2 ), 0 ) );
PointVertex pTexUcenter[2]{ *closestU, *( closestU + 1 ) };
pTexUcenter[0].vertex.y() = pTexUcenter[1].vertex.y() = pVcenter.vertex.y();
PointVertex pTexVcenter[2]{ *closestV, *( closestV + 1 ) };
pTexVcenter[0].vertex.x() = pTexVcenter[1].vertex.x() = pUcenter.vertex.x();
SelectionIntersection iCross, iUcenter, iVcenter, iTexUcenter, iTexVcenter, iU, iV, iNull;
const Matrix4 local2view( matrix4_multiplied_by_matrix4( view.GetViewMatrix(), m_faceTex2local ) );
#if defined( DEBUG_SELECTION )
g_render_clipped.construct( view.GetViewMatrix() );
#endif
Line_BestPoint( local2view, closestU, iU );
Line_BestPoint( local2view, closestV, iV );
Line_BestPoint( local2view, pTexUcenter, iTexUcenter );
Line_BestPoint( local2view, pTexVcenter, iTexVcenter );
const bool uselected = iU < iNull;
const bool vselected = iV < iNull;
if( !uselected && !vselected ){ //no lines hit, definitely tex
selection = eTex;
}
else if( ( !uselected || iTexUcenter < iU ) && ( !vselected || iTexVcenter < iV ) ){ //yes lines, but tex ones are closer
selection = eTex;
}
else if( uselected != vselected ){ //only line selected
if( uselected ){
selection = g_modifiers == c_modifierAlt? eSkewU : eU;
selectedU = closestU;
}
else{
selection = g_modifiers == c_modifierAlt? eSkewV : eV;
selectedV = closestV;
}
}
else{ //two lines hit
if( g_modifiers == c_modifierAlt ){ //pick only line for skew
if( iU < iV ){
selection = eSkewU;
selectedU = closestU;
}
else{
selection = eSkewV;
selectedV = closestV;
}
}
else{
Point_BestPoint( local2view, pUcenter, iUcenter );
Point_BestPoint( local2view, pVcenter, iVcenter );
Point_BestPoint( local2view, pCross, iCross );
const bool ucenter = iUcenter < iNull;
const bool vcenter = iVcenter < iNull;
if( !ucenter && !vcenter ){ // no centers, definitely two lines
selection = eUV;
selectedU = closestU;
selectedV = closestV;
}
else if( iCross < iUcenter && iCross < iVcenter ){ // some center(s), cross is closer = two lines
selection = eUV;
selectedU = closestU;
selectedV = closestV;
}
else{ // some center(s), pick closest line
if( iUcenter < iVcenter ){
selection = eU;
selectedU = closestU;
}
else{
selection = eV;
selectedV = closestV;
}
}
}
}
}
}
applySelection( selector.m_selection, selectedU, selectedV, selector.m_index );
}
private:
void applySelection( EUVSelection selection, PointVertex* selectedU, PointVertex* selectedV, int selectedPatchIndex ){
if( m_selection != selection
|| m_selectedU != selectedU
|| m_selectedV != selectedV
|| m_selectedPatchIndex != selectedPatchIndex ){
if( m_selection != selection ){
switch ( m_selection )
{
case ePivot:
m_pivotPoint.m_point.colour = m_cWhite;
break;
case eGridU:
m_gridPointU.m_point.colour = m_cWhite;
break;
case eGridV:
m_gridPointV.m_point.colour = m_cWhite;
break;
case eCircle:
m_circle.setColour( m_cGray );
break;
case ePivotU:
m_pivotLines.m_lines[0].colour = m_cWhite;
m_pivotLines.m_lines[1].colour = m_cWhite;
break;
case ePivotV:
m_pivotLines.m_lines[2].colour = m_cWhite;
m_pivotLines.m_lines[3].colour = m_cWhite;
break;
default:
break;
}
switch ( selection )
{
case ePivot:
m_pivotPoint.m_point.colour = m_cRed;
break;
case eGridU:
m_gridPointU.m_point.colour = m_cRed;
break;
case eGridV:
m_gridPointV.m_point.colour = m_cRed;
break;
case eCircle:
m_circle.setColour( g_colour_selected );
break;
case ePivotU:
m_pivotLines.m_lines[0].colour = m_cRed;
m_pivotLines.m_lines[1].colour = m_cRed;
break;
case ePivotV:
m_pivotLines.m_lines[2].colour = m_cRed;
m_pivotLines.m_lines[3].colour = m_cRed;
break;
default:
break;
}
}
const Colour4b colour_selected = g_modifiers == c_modifierAlt? m_cGreen : g_colour_selected;
if( m_selectedU != selectedU || m_selection != selection ){ // selected line changed or not, but scale<->skew modes exchanged
if( m_selectedU )
m_selectedU->colour =
( m_selectedU + 1 )->colour = ( ( m_selectedU - &m_Ulines.m_lines[0] ) / 2 ) % m_gridU == 0? m_cGray : m_cGrayer;
if( selectedU )
selectedU->colour =
( selectedU + 1 )->colour = colour_selected;
}
if( m_selectedV != selectedV || m_selection != selection ){
if( m_selectedV )
m_selectedV->colour =
( m_selectedV + 1 )->colour = ( ( m_selectedV - &m_Vlines.m_lines[0] ) / 2 ) % m_gridV == 0? m_cGray : m_cGrayer;
if( selectedV )
selectedV->colour =
( selectedV + 1 )->colour = colour_selected;
}
if( m_selectedPatchIndex != selectedPatchIndex || m_selection != selection ){
if( m_selectedPatchIndex >= 0 ){
switch ( m_selection )
{
case ePatchPoint:
m_patchRenderPoints.m_points[m_selectedPatchIndex].colour = patchCtrl_isInside( m_selectedPatchIndex )? m_cPin : m_cGree;
break;
case ePatchRow:
for ( std::size_t c = 0; c < m_patchWidth - 1; ++c ){
const std::size_t i = ( m_selectedPatchIndex * ( m_patchWidth - 1 ) + c ) * 2;
m_patchRenderLattice.m_lines[i].colour =
m_patchRenderLattice.m_lines[i + 1].colour = m_cOrang;
}
for ( std::size_t c = 0; c < m_patchWidth; ++c ){
const std::size_t i = m_selectedPatchIndex * m_patchWidth + c;
m_patchRenderPoints.m_points[i].colour = patchCtrl_isInside( i )? m_cPin : m_cGree;
}
break;
case ePatchColumn:
for ( std::size_t r = 0; r < m_patchHeight - 1; ++r ){
const std::size_t i = ( m_patchWidth - 1 ) * m_patchHeight * 2 + ( m_selectedPatchIndex * ( m_patchHeight - 1 ) + r ) * 2;
m_patchRenderLattice.m_lines[i].colour =
m_patchRenderLattice.m_lines[i + 1].colour = m_cOrang;
}
for ( std::size_t r = 0; r < m_patchHeight; ++r ){
const std::size_t i = r * m_patchWidth + m_selectedPatchIndex;
m_patchRenderPoints.m_points[i].colour = patchCtrl_isInside( i )? m_cPin : m_cGree;
}
break;
default:
break;
}
}
if( selectedPatchIndex >= 0 ){
switch ( selection )
{
case ePatchPoint:
m_patchRenderPoints.m_points[selectedPatchIndex].colour = patchCtrl_isInside( selectedPatchIndex )? m_cPink : m_cGreen;
break;
case ePatchRow:
for ( std::size_t c = 0; c < m_patchWidth - 1; ++c ){
const std::size_t i = ( selectedPatchIndex * ( m_patchWidth - 1 ) + c ) * 2;
m_patchRenderLattice.m_lines[i].colour =
m_patchRenderLattice.m_lines[i + 1].colour = m_cOrange;
}
for ( std::size_t c = 0; c < m_patchWidth; ++c ){
const std::size_t i = selectedPatchIndex * m_patchWidth + c;
m_patchRenderPoints.m_points[i].colour = patchCtrl_isInside( i )? m_cPink : m_cGreen;
}
break;
case ePatchColumn:
for ( std::size_t r = 0; r < m_patchHeight - 1; ++r ){
const std::size_t i = ( m_patchWidth - 1 ) * m_patchHeight * 2 + ( selectedPatchIndex * ( m_patchHeight - 1 ) + r ) * 2;
m_patchRenderLattice.m_lines[i].colour =
m_patchRenderLattice.m_lines[i + 1].colour = m_cOrange;
}
for ( std::size_t r = 0; r < m_patchHeight; ++r ){
const std::size_t i = r * m_patchWidth + selectedPatchIndex;
m_patchRenderPoints.m_points[i].colour = patchCtrl_isInside( i )? m_cPink : m_cGreen;
}
break;
default:
break;
}
}
}
m_selection = selection;
m_selectedU = selectedU;
m_selectedV = selectedV;
m_selectedPatchIndex = selectedPatchIndex;
SceneChangeNotify();
}
m_isSelected = ( selection != eNone );
}
void commitTransform( const Matrix4& transform ) const {
if( m_face ){
m_face->transform_texdef( transform, m_origin ); //! todo make SI update after Brush_textureChanged(); same problem after brush moved with tex lock
}
else if( m_patch ){
const Matrix4 uvTransform = transform_local2object( matrix4_affine_inverse( transform ), m_faceLocal2tex, m_faceTex2local );
for( std::size_t i = 0; i < m_patchCtrl.size(); ++i ){
const Vector3 uv = matrix4_transformed_point( uvTransform, Vector3( m_patchCtrl[i].m_texcoord ) );
m_patch->getControlPointsTransformed()[i].m_texcoord.x() = uv.x();
m_patch->getControlPointsTransformed()[i].m_texcoord.y() = uv.y();
}
// m_patch->controlPointsChanged();
m_patch->UpdateCachedData();
}
SceneChangeNotify();
}
/* Manipulatable */
Vector3 m_start;
public:
void Construct( const Matrix4& device2manip, const float x, const float y, const AABB& bounds, const Vector3& transform_origin ){
m_start = point_on_plane( m_plane, m_view->GetViewMatrix(), x, y );
}
//!? todo change snap dist measurement from world to screenspace
//!? fix meaningless undo on grid/origin change, then click tex or lines
//!? todo no snap mode with alt modifier
void Transform( const Matrix4& manip2object, const Matrix4& device2manip, const float x, const float y, const bool snap, const bool snapHard, const bool alt ){
const Vector3 current = point_on_plane( m_plane, m_view->GetViewMatrix(), x, y );
switch ( m_selection )
{
case ePivot:
{
const Vector3 uv_origin_start = matrix4_transformed_point( m_faceLocal2tex, m_origin );
const Vector3 uv_origin = matrix4_transformed_point( m_faceLocal2tex, current );
float bestDistU = FLT_MAX;
float bestDistV = FLT_MAX;
float snapToU = 0;
float snapToV = 0;
for( std::vector<PointVertex>::const_iterator i = m_Ulines.m_lines.begin(); i != m_Ulines.m_lines.end(); ++++i ){
const float dist = fabs( ( *i ).vertex.y() - uv_origin.y() );
if( dist < bestDistU ){
bestDistU = dist;
snapToU = ( *i ).vertex.y();
}
}
for( std::vector<PointVertex>::const_iterator i = m_Vlines.m_lines.begin(); i != m_Vlines.m_lines.end(); ++++i ){
const float dist = fabs( ( *i ).vertex.x() - uv_origin.x() );
if( dist < bestDistV ){
bestDistV = dist;
snapToV = ( *i ).vertex.x();
}
}
forEachUVPoint( [&]( const Vector3& point ){
const float distU = fabs( point.y() - uv_origin.y() );
if( distU < bestDistU ){
bestDistU = distU;
snapToU = point.y();
}
const float distV = fabs( point.x() - uv_origin.x() );
if( distV < bestDistV ){
bestDistV = distV;
snapToV = point.x();
}
} );
Vector3 result( uv_origin_start );
if( bestDistU * vector3_length( vector4_to_vector3( m_faceTex2local.y() ) ) < 3 || snapHard ){
result.y() = snapToU;
}
else{
result.y() = uv_origin.y();
}
if( bestDistV * vector3_length( vector4_to_vector3( m_faceTex2local.x() ) ) < 3 || snapHard ){
result.x() = snapToV;
}
else{
result.x() = uv_origin.x();
}
m_origin = matrix4_transformed_point( m_faceTex2local, result );
UpdateFaceData( false, false );
SceneChangeNotify();
}
break;
case ePivotU:
{
const Vector3 uv_origin_start = matrix4_transformed_point( m_faceLocal2tex, m_origin );
const Vector3 uv_origin = matrix4_transformed_point( m_faceLocal2tex, current );
float bestDist = FLT_MAX;
float snapTo = 0;
for( std::vector<PointVertex>::const_iterator i = m_Ulines.m_lines.begin(); i != m_Ulines.m_lines.end(); ++++i ){
const float dist = fabs( ( *i ).vertex.y() - uv_origin.y() );
if( dist < bestDist ){
bestDist = dist;
snapTo = ( *i ).vertex.y();
}
}
forEachUVPoint( [&]( const Vector3& point ){
const float dist = fabs( point.y() - uv_origin.y() );
if( dist < bestDist ){
bestDist = dist;
snapTo = point.y();
}
} );
Vector3 result( uv_origin_start );
if( bestDist * vector3_length( vector4_to_vector3( m_faceTex2local.y() ) ) < 3 || snapHard ){
result.y() = snapTo;
}
else{
result.y() = uv_origin.y();
}
m_origin = matrix4_transformed_point( m_faceTex2local, result );
UpdateFaceData( false, false );
SceneChangeNotify();
}
break;
case ePivotV:
{
const Vector3 uv_origin_start = matrix4_transformed_point( m_faceLocal2tex, m_origin );
const Vector3 uv_origin = matrix4_transformed_point( m_faceLocal2tex, current );
float bestDist = FLT_MAX;
float snapTo = 0;
for( std::vector<PointVertex>::const_iterator i = m_Vlines.m_lines.begin(); i != m_Vlines.m_lines.end(); ++++i ){
const float dist = fabs( ( *i ).vertex.x() - uv_origin.x() );
if( dist < bestDist ){
bestDist = dist;
snapTo = ( *i ).vertex.x();
}
}
forEachUVPoint( [&]( const Vector3& point ){
const float dist = fabs( point.x() - uv_origin.x() );
if( dist < bestDist ){
bestDist = dist;
snapTo = point.x();
}
} );
Vector3 result( uv_origin_start );
if( bestDist * vector3_length( vector4_to_vector3( m_faceTex2local.x() ) ) < 3 || snapHard ){
result.x() = snapTo;
}
else{
result.x() = uv_origin.x();
}
m_origin = matrix4_transformed_point( m_faceTex2local, result );
UpdateFaceData( false, false );
SceneChangeNotify();
}
break;
case eGridU:
{
const Vector3 uv_origin = matrix4_transformed_point( m_faceLocal2tex, m_origin );
const Vector3 uv_current = matrix4_transformed_point( m_faceLocal2tex, current );
const float dist = std::max( ( float_to_integer( uv_origin.y() + m_gridSign.x() * .25 ) + m_gridSign.x() - uv_current.y() ) * m_gridSign.x(), .01f );
unsigned int grid = std::max( 1, std::min( 16, int( 1 / dist ) ) );
if( snapHard ){ // http://graphics.stanford.edu/~seander/bithacks.html#RoundUpPowerOf2
grid--;
grid |= grid >> 1;
grid |= grid >> 2;
grid |= grid >> 4;
grid |= grid >> 8;
grid |= grid >> 16;
grid++;
}
if( m_gridU != grid || ( snap && m_gridV != grid ) ){
m_gridU = grid;
if( snap )
m_gridV = grid;
UpdateFaceData( false );
SceneChangeNotify();
}
}
break;
case eGridV:
{
const Vector3 uv_origin = matrix4_transformed_point( m_faceLocal2tex, m_origin );
const Vector3 uv_current = matrix4_transformed_point( m_faceLocal2tex, current );
const float dist = std::max( ( float_to_integer( uv_origin.x() + m_gridSign.y() * .25 ) + m_gridSign.y() - uv_current.x() ) * m_gridSign.y(), .01f );
unsigned int grid = std::max( 1, std::min( 16, int( 1 / dist ) ) );
if( snapHard ){ // http://graphics.stanford.edu/~seander/bithacks.html#RoundUpPowerOf2
grid--;
grid |= grid >> 1;
grid |= grid >> 2;
grid |= grid >> 4;
grid |= grid >> 8;
grid |= grid >> 16;
grid++;
}
if( m_gridV != grid || ( snap && m_gridU != grid ) ){
m_gridV = grid;
if( snap )
m_gridU = grid;
UpdateFaceData( false );
SceneChangeNotify();
}
}
break;
case eCircle:
{
Vector3 from = m_start - m_origin;
constrain_to_axis( from, vector4_to_vector3( m_tex2local.z() ) );
Vector3 to = current - m_origin;
constrain_to_axis( to, vector4_to_vector3( m_tex2local.z() ) );
Matrix4 rot = g_matrix4_identity;
if( snap ){
matrix4_pivoted_rotate_by_axisangle( rot,
vector4_to_vector3( m_tex2local.z() ),
float_snapped( angle_for_axis( from, to, vector4_to_vector3( m_tex2local.z() ) ), static_cast<float>( c_pi / 12.0 ) ),
m_origin );
}
else{
matrix4_pivoted_rotate_by_axisangle( rot,
vector4_to_vector3( m_tex2local.z() ),
angle_for_axis( from, to, vector4_to_vector3( m_tex2local.z() ) ),
m_origin );
}
{ // snap
const Vector3 uvec = vector3_normalised( matrix4_transformed_direction( rot, vector4_to_vector3( m_tex2local.x() ) ) );
const Vector3 vvec = vector3_normalised( matrix4_transformed_direction( rot, vector4_to_vector3( m_tex2local.y() ) ) );
float bestDot = 0;
Vector3 bestTo;
bool V = false;
forEachEdge( [&]( const Vector3& point0, const Vector3& point1 ){
Vector3 vec( point1 - point0 );
constrain_to_axis( vec, vector4_to_vector3( m_tex2local.z() ) );
const float dotU = fabs( vector3_dot( uvec, vec ) );
if( dotU > bestDot ){
bestDot = dotU;
bestTo = vector3_dot( uvec, vec ) > 0? vec : -vec;
V = false;
}
const float dotV = fabs( vector3_dot( vvec, vec ) );
if( dotV > bestDot ){
bestDot = dotV;
bestTo = vector3_dot( vvec, vec ) > 0? vec : -vec;
V = true;
}
} );
if( bestDot > 0.9994f || snapHard ){
const Vector3 bestFrom = vector3_normalised( vector4_to_vector3( V? m_tex2local.y() : m_tex2local.x() ) );
rot = g_matrix4_identity;
matrix4_pivoted_rotate_by_axisangle( rot,
vector4_to_vector3( m_tex2local.z() ),
angle_for_axis( bestFrom, bestTo, vector4_to_vector3( m_tex2local.z() ) ),
m_origin );
}
}
Matrix4 faceTex2local = matrix4_multiplied_by_matrix4( rot, m_tex2local );
vector4_to_vector3( faceTex2local.x() ) = plane3_project_point( Plane3( m_plane.normal(), 0 ), vector4_to_vector3( faceTex2local.x() ), vector4_to_vector3( m_tex2local.z() ) );
vector4_to_vector3( faceTex2local.y() ) = plane3_project_point( Plane3( m_plane.normal(), 0 ), vector4_to_vector3( faceTex2local.y() ), vector4_to_vector3( m_tex2local.z() ) );
faceTex2local = matrix4_multiplied_by_matrix4( // adjust to have UV's z = 0: move the plane along m_tex2local.z() so that plane.dist() = 0
matrix4_translation_for_vec3(
vector4_to_vector3( m_tex2local.z() ) * ( m_plane.dist() - vector3_dot( m_plane.normal(), vector4_to_vector3( faceTex2local.t() ) ) )
/ vector3_dot( m_plane.normal(), vector4_to_vector3( m_tex2local.z() ) )
),
faceTex2local );
m_lines2world = m_pivotLines2world = faceTex2local;
m_pivot2world = matrix4_multiplied_by_matrix4( rot, m_pivot2world0 );
commitTransform( rot );
}
break;
case eU: //!? todo modifier or default snap to set scale u = scale v
{
const Vector3 uv_origin = matrix4_transformed_point( m_local2tex, m_origin );
const Vector3 uv_start = m_selectedU->vertex;
const Vector3 uv_current = m_selectedU->vertex + matrix4_transformed_point( m_local2tex, current ) - matrix4_transformed_point( m_local2tex, m_start );
float bestDist = FLT_MAX;
float snapTo = 0;
forEachUVPoint( [&]( const Vector3& point ){
const float dist = fabs( point.y() - uv_current.y() );
if( dist < bestDist ){
bestDist = dist;
snapTo = point.y();
}
} );
Vector3 result( 1, uv_current.y(), 1 );
if( bestDist * vector3_length( vector4_to_vector3( m_faceTex2local.y() ) ) < 3 || snapHard ){
result.y() = snapTo;
}
result.y() = ( result.y() - uv_origin.y() ) / ( uv_start.y() - uv_origin.y() );
if( snap )
result.x() = fabs( result.y() );
/* prevent scaling to 0, limit at max 10 textures per world unit */
if( vector3_length_squared( vector4_to_vector3( m_tex2local.y() ) * result.y() ) < .01 )
return;
Matrix4 scale = g_matrix4_identity;
matrix4_pivoted_scale_by_vec3( scale, result, uv_origin );
scale = transform_local2object( scale, m_tex2local, m_local2tex );
{
Matrix4 linescale = g_matrix4_identity;
matrix4_pivoted_scale_by_vec3( linescale, result, matrix4_transformed_point( m_faceLocal2tex, m_origin ) );
m_lines2world = m_pivotLines2world = matrix4_multiplied_by_matrix4( m_faceTex2local, linescale );
m_pivot2world = matrix4_multiplied_by_matrix4( m_pivot2world0, matrix4_scale_for_vec3( result ) );
}
commitTransform( scale );
}
break;
case eV:
{
const Vector3 uv_origin = matrix4_transformed_point( m_local2tex, m_origin );
const Vector3 uv_start = m_selectedV->vertex;
const Vector3 uv_current = m_selectedV->vertex + matrix4_transformed_point( m_local2tex, current ) - matrix4_transformed_point( m_local2tex, m_start );
float bestDist = FLT_MAX;
float snapTo = 0;
forEachUVPoint( [&]( const Vector3& point ){
const float dist = fabs( point.x() - uv_current.x() );
if( dist < bestDist ){
bestDist = dist;
snapTo = point.x();
}
} );
Vector3 result( uv_current.x(), 1, 1 );
if( bestDist * vector3_length( vector4_to_vector3( m_faceTex2local.x() ) ) < 3 || snapHard ){
result.x() = snapTo;
}
result.x() = ( result.x() - uv_origin.x() ) / ( uv_start.x() - uv_origin.x() );
if( snap )
result.y() = fabs( result.x() );
/* prevent scaling to 0, limit at max 10 textures per world unit */
if( vector3_length_squared( vector4_to_vector3( m_tex2local.x() ) * result.x() ) < .01 )
return;
Matrix4 scale = g_matrix4_identity;
matrix4_pivoted_scale_by_vec3( scale, result, uv_origin );
scale = transform_local2object( scale, m_tex2local, m_local2tex );
{
Matrix4 linescale = g_matrix4_identity;
matrix4_pivoted_scale_by_vec3( linescale, result, matrix4_transformed_point( m_faceLocal2tex, m_origin ) );
m_lines2world = m_pivotLines2world = matrix4_multiplied_by_matrix4( m_faceTex2local, linescale );
m_pivot2world = matrix4_multiplied_by_matrix4( m_pivot2world0, matrix4_scale_for_vec3( result ) );
}
commitTransform( scale );
}
break;
case eUV:
{
const Vector3 uv_origin = matrix4_transformed_point( m_local2tex, m_origin );
const Vector3 uv_start{ m_selectedV->vertex.x(), m_selectedU->vertex.y(), 0 } ;
const Vector3 uv_current{ ( m_selectedV->vertex + matrix4_transformed_point( m_local2tex, current ) - matrix4_transformed_point( m_local2tex, m_start ) ).x(),
( m_selectedU->vertex + matrix4_transformed_point( m_local2tex, current ) - matrix4_transformed_point( m_local2tex, m_start ) ).y(),
0 };
float bestDistU = FLT_MAX;
float snapToU = 0;
float bestDistV = FLT_MAX;
float snapToV = 0;
forEachUVPoint( [&]( const Vector3& point ){
const float distU = fabs( point.y() - uv_current.y() );
if( distU < bestDistU ){
bestDistU = distU;
snapToU = point.y();
}
const float distV = fabs( point.x() - uv_current.x() );
if( distV < bestDistV ){
bestDistV = distV;
snapToV = point.x();
}
} );
Vector3 result( uv_current.x(), uv_current.y(), 1 );
if( bestDistU * vector3_length( vector4_to_vector3( m_faceTex2local.y() ) ) < 3 || snapHard ){
result.y() = snapToU;
}
result.y() = ( result.y() - uv_origin.y() ) / ( uv_start.y() - uv_origin.y() );
if( bestDistV * vector3_length( vector4_to_vector3( m_faceTex2local.x() ) ) < 3 || snapHard ){
result.x() = snapToV;
}
result.x() = ( result.x() - uv_origin.x() ) / ( uv_start.x() - uv_origin.x() );
if( snap ){
const std::size_t best = fabs( result.x() ) > fabs( result.y() )? 0 : 1;
result[( best + 1 ) % 2] = std::copysign( result[best], result[( best + 1 ) % 2] );
}
/* prevent scaling to 0, limit at max 10 textures per world unit */
if( vector3_length_squared( vector4_to_vector3( m_tex2local.x() ) * result.x() ) < .01 ||
vector3_length_squared( vector4_to_vector3( m_tex2local.y() ) * result.y() ) < .01 )
return;
Matrix4 scale = g_matrix4_identity;
matrix4_pivoted_scale_by_vec3( scale, result, uv_origin );
scale = transform_local2object( scale, m_tex2local, m_local2tex );
{
Matrix4 linescale = g_matrix4_identity;
matrix4_pivoted_scale_by_vec3( linescale, result, matrix4_transformed_point( m_faceLocal2tex, m_origin ) );
m_lines2world = m_pivotLines2world = matrix4_multiplied_by_matrix4( m_faceTex2local, linescale );
m_pivot2world = matrix4_multiplied_by_matrix4( m_pivot2world0, matrix4_scale_for_vec3( result ) );
}
commitTransform( scale );
}
break;
case eSkewU:
{
const Vector3 uv_origin = matrix4_transformed_point( m_faceLocal2tex, m_origin );
const Vector3 uv_move = matrix4_transformed_point( m_faceLocal2tex, current ) - matrix4_transformed_point( m_faceLocal2tex, m_start );
Matrix4 skew( g_matrix4_identity );
skew[4] = uv_move.x() / ( m_selectedU->vertex - uv_origin ).y();
Matrix4 scale = matrix4_scale_for_vec3( // scale snap measurement space so that x/y = 1
Vector3( vector3_length( vector4_to_vector3( m_faceTex2local.x() ) ) / vector3_length( vector4_to_vector3( m_faceTex2local.y() ) ),
1, 1 ) );
const Vector3 skewed = vector3_normalised( matrix4_transformed_direction( matrix4_multiplied_by_matrix4( scale, skew ), g_vector3_axis_y ) );
matrix4_multiply_by_matrix4( scale, m_faceLocal2tex );
float bestDot = 0;
Vector3 bestTo;
forEachEdge( [&]( const Vector3& point0, const Vector3& point1 ){
const Vector3 vec( vector3_normalised( matrix4_transformed_point( scale, point1 ) -
matrix4_transformed_point( scale, point0 ) ) );
const float dot = fabs( vector3_dot( skewed, vec ) );
if( dot > bestDot
&& fabs( vector3_dot( vec, g_vector3_axis_x ) ) < 0.99999 ){ // don't snap so, that one axis = the other
bestDot = dot;
const Vector3 vecTo( vector3_normalised( matrix4_transformed_point( m_faceLocal2tex, point1 ) -
matrix4_transformed_point( m_faceLocal2tex, point0 ) ) );
bestTo = vector3_dot( skewed, vec ) > 0? vecTo : -vecTo;
}
} );
if( bestDot > 0.9994f || snapHard ){ //!? todo add snap: make manipulated axis orthogonal to the other
skew[4] = bestTo.x() / bestTo.y();
}
{
Matrix4 mat( g_matrix4_identity );
matrix4_translate_by_vec3( mat, uv_origin );
matrix4_multiply_by_matrix4( mat, skew );
matrix4_translate_by_vec3( mat, -uv_origin );
skew = mat;
}
m_lines2world = m_pivotLines2world = matrix4_multiplied_by_matrix4( m_faceTex2local, skew );
m_pivot2world = transform_local2object( skew, m_tex2local, m_local2tex );
matrix4_multiply_by_matrix4( m_pivot2world, m_pivot2world0 );
skew = transform_local2object( skew, m_faceTex2local, m_faceLocal2tex );
commitTransform( skew );
}
break;
case eSkewV:
{
const Vector3 uv_origin = matrix4_transformed_point( m_faceLocal2tex, m_origin );
const Vector3 uv_move = matrix4_transformed_point( m_faceLocal2tex, current ) - matrix4_transformed_point( m_faceLocal2tex, m_start );
Matrix4 skew( g_matrix4_identity );
skew[1] = uv_move.y() / ( m_selectedV->vertex - uv_origin ).x();
Matrix4 scale = matrix4_scale_for_vec3( // scale snap measurement space so that x/y = 1
Vector3( vector3_length( vector4_to_vector3( m_faceTex2local.x() ) ) / vector3_length( vector4_to_vector3( m_faceTex2local.y() ) ),
1, 1 ) );
const Vector3 skewed = vector3_normalised( matrix4_transformed_direction( matrix4_multiplied_by_matrix4( scale, skew ), g_vector3_axis_x ) );
matrix4_multiply_by_matrix4( scale, m_faceLocal2tex );
float bestDot = 0;
Vector3 bestTo;
forEachEdge( [&]( const Vector3& point0, const Vector3& point1 ){
const Vector3 vec( vector3_normalised( matrix4_transformed_point( scale, point1 ) -
matrix4_transformed_point( scale, point0 ) ) );
const float dot = fabs( vector3_dot( skewed, vec ) );
if( dot > bestDot
&& fabs( vector3_dot( vec, g_vector3_axis_y ) ) < 0.99999 ){ // don't snap so, that one axis = the other
bestDot = dot;
const Vector3 vecTo( vector3_normalised( matrix4_transformed_point( m_faceLocal2tex, point1 ) -
matrix4_transformed_point( m_faceLocal2tex, point0 ) ) );
bestTo = vector3_dot( skewed, vec ) > 0? vecTo : -vecTo;
}
} );
if( bestDot > 0.9994f || snapHard ){
skew[1] = bestTo.y() / bestTo.x();
}
{
Matrix4 mat( g_matrix4_identity );
matrix4_translate_by_vec3( mat, uv_origin );
matrix4_multiply_by_matrix4( mat, skew );
matrix4_translate_by_vec3( mat, -uv_origin );
skew = mat;
}
m_lines2world = m_pivotLines2world = matrix4_multiplied_by_matrix4( m_faceTex2local, skew );
m_pivot2world = transform_local2object( skew, m_tex2local, m_local2tex );
matrix4_multiply_by_matrix4( m_pivot2world, m_pivot2world0 );
skew = transform_local2object( skew, m_faceTex2local, m_faceLocal2tex );
commitTransform( skew );
}
break;
case eTex:
{
const Vector3 uvstart = matrix4_transformed_point( m_faceLocal2tex, m_start );
const Vector3 uvcurrent = matrix4_transformed_point( m_faceLocal2tex, current );
const Vector3 uvmove = uvcurrent - uvstart;
float bestDistU = FLT_MAX;
float bestDistV = FLT_MAX;
float snapMoveU = 0;
float snapMoveV = 0;
// snap uvmove
const auto functor = [&]( const Vector3& point ){
for( std::vector<PointVertex>::const_iterator i = m_Ulines.m_lines.begin(); i != m_Ulines.m_lines.end(); ++++i ){
const float dist = point.y() - ( ( *i ).vertex.y() + uvmove.y() );
if( fabs( dist ) < bestDistU ){
bestDistU = fabs( dist );
snapMoveU = uvmove.y() + dist;
}
}
for( std::vector<PointVertex>::const_iterator i = m_Vlines.m_lines.begin(); i != m_Vlines.m_lines.end(); ++++i ){
const float dist = point.x() - ( ( *i ).vertex.x() + uvmove.x() );
if( fabs( dist ) < bestDistV ){
bestDistV = fabs( dist );
snapMoveV = uvmove.x() + dist;
}
}
};
forEachUVPoint( functor );
functor( matrix4_transformed_point( m_faceLocal2tex, m_origin ) );
Vector3 result( uvmove );
if( bestDistU * vector3_length( vector4_to_vector3( m_faceTex2local.y() ) ) < 3 || snapHard ){
result.y() = snapMoveU;
}
if( bestDistV * vector3_length( vector4_to_vector3( m_faceTex2local.x() ) ) < 3 || snapHard ){
result.x() = snapMoveV;
}
if( snap ){
auto& smaller = fabs( uvmove.x() * vector3_length( vector4_to_vector3( m_faceTex2local.x() ) ) ) <
fabs( uvmove.y() * vector3_length( vector4_to_vector3( m_faceTex2local.y() ) ) )? result.x() : result.y();
smaller = 0;
}
result = translation_local2object( result, m_faceTex2local, m_faceLocal2tex );
const Matrix4 translation = matrix4_translation_for_vec3( result );
m_lines2world = matrix4_multiplied_by_matrix4( translation, m_faceTex2local );
commitTransform( translation );
}
break;
case ePatchPoint:
case ePatchRow:
case ePatchColumn:
{
std::vector<std::size_t> indices;
if( m_selection == ePatchPoint )
indices.push_back( m_selectedPatchIndex );
else if( m_selection == ePatchRow )
for ( std::size_t c = 0; c < m_patchWidth; ++c )
indices.push_back( m_selectedPatchIndex * m_patchWidth + c );
else if( m_selection == ePatchColumn )
for ( std::size_t r = 0; r < m_patchHeight; ++r )
indices.push_back( r * m_patchWidth + m_selectedPatchIndex );
const Vector3 uvstart = matrix4_transformed_point( m_faceLocal2tex, m_start );
const Vector3 uvcurrent = matrix4_transformed_point( m_faceLocal2tex, current );
const Vector3 uvmove = uvcurrent - uvstart;
float bestDistU = FLT_MAX;
float bestDistV = FLT_MAX;
float snapMoveU = 0;
float snapMoveV = 0;
// snap uvmove
for( std::size_t index : indices ){
for( std::vector<PointVertex>::const_iterator i = m_Ulines.m_lines.begin(); i != m_Ulines.m_lines.end(); ++++i ){
const float dist = m_patchCtrl[index].m_texcoord.y() + uvmove.y() - ( *i ).vertex.y();
if( fabs( dist ) < bestDistU ){
bestDistU = fabs( dist );
snapMoveU = uvmove.y() - dist;
}
}
for( std::vector<PointVertex>::const_iterator i = m_Vlines.m_lines.begin(); i != m_Vlines.m_lines.end(); ++++i ){
const float dist = m_patchCtrl[index].m_texcoord.x() + uvmove.x() - ( *i ).vertex.x();
if( fabs( dist ) < bestDistV ){
bestDistV = fabs( dist );
snapMoveV = uvmove.x() - dist;
}
}
const Vector3 origin = matrix4_transformed_point( m_faceLocal2tex, m_origin );
{
const float dist = m_patchCtrl[index].m_texcoord.y() + uvmove.y() - origin.y();
if( fabs( dist ) < bestDistU ){
bestDistU = fabs( dist );
snapMoveU = uvmove.y() - dist;
}
}
{
const float dist = m_patchCtrl[index].m_texcoord.x() + uvmove.x() - origin.x();
if( fabs( dist ) < bestDistV ){
bestDistV = fabs( dist );
snapMoveV = uvmove.x() - dist;
}
}
}
Vector3 result( uvmove );
if( bestDistU * vector3_length( vector4_to_vector3( m_faceTex2local.y() ) ) < 3 || snapHard ){
result.y() = snapMoveU;
}
if( bestDistV * vector3_length( vector4_to_vector3( m_faceTex2local.x() ) ) < 3 || snapHard ){
result.x() = snapMoveV;
}
if( snap ){
auto& smaller = fabs( uvmove.x() * vector3_length( vector4_to_vector3( m_faceTex2local.x() ) ) ) <
fabs( uvmove.y() * vector3_length( vector4_to_vector3( m_faceTex2local.y() ) ) )? result.x() : result.y();
smaller = 0;
}
const Matrix4 translation = matrix4_translation_for_vec3( result );
for( std::size_t i : indices ){
const Vector3 uv = matrix4_transformed_point( translation, Vector3( m_patchCtrl[i].m_texcoord ) );
m_patch->getControlPointsTransformed()[i].m_texcoord.x() = uv.x();
m_patch->getControlPointsTransformed()[i].m_texcoord.y() = uv.y();
m_patchRenderPoints.m_points[i].vertex = vertex3f_for_vector3( uv );
}
// update lattice renderable entirely
for ( std::size_t r = 0; r < m_patchHeight; ++r ){
for ( std::size_t c = 0; c < m_patchWidth - 1; ++c ){
const Vector2& a = m_patch->getControlPointsTransformed()[r * m_patchWidth + c].m_texcoord;
const Vector2& b = m_patch->getControlPointsTransformed()[r * m_patchWidth + c + 1].m_texcoord;
m_patchRenderLattice.m_lines[( r * ( m_patchWidth - 1 ) + c ) * 2].vertex = vertex3f_for_vector3( Vector3( a ) );
m_patchRenderLattice.m_lines[( r * ( m_patchWidth - 1 ) + c ) * 2 + 1].vertex = vertex3f_for_vector3( Vector3( b ) );
}
}
for ( std::size_t c = 0; c < m_patchWidth; ++c ){
for ( std::size_t r = 0; r < m_patchHeight - 1; ++r ){
const Vector2& a = m_patch->getControlPointsTransformed()[r * m_patchWidth + c].m_texcoord;
const Vector2& b = m_patch->getControlPointsTransformed()[( r + 1 ) * m_patchWidth + c].m_texcoord;
m_patchRenderLattice.m_lines[( m_patchWidth - 1 ) * m_patchHeight * 2 + ( c * ( m_patchHeight - 1 ) + r ) * 2].vertex = vertex3f_for_vector3( Vector3( a ) );
m_patchRenderLattice.m_lines[( m_patchWidth - 1 ) * m_patchHeight * 2 + ( c * ( m_patchHeight - 1 ) + r ) * 2 + 1].vertex = vertex3f_for_vector3( Vector3( b ) );
}
}
m_patch->UpdateCachedData();
SceneChangeNotify();
}
default:
break;
}
}
void freezeTransform(){
if( m_selection == eCircle
|| m_selection == eU
|| m_selection == eV
|| m_selection == eUV
|| m_selection == eSkewU
|| m_selection == eSkewV
|| m_selection == eTex
|| m_selection == ePatchPoint
|| m_selection == ePatchRow
|| m_selection == ePatchColumn )
{
if( m_face )
m_face->freezeTransform();
else if( m_patch )
m_patch->freezeTransform();
}
}
Manipulatable* GetManipulatable() {
return this;
}
void setSelected( bool select ) {
m_isSelected = select;
}
bool isSelected() const {
return m_isSelected;
}
};
Shader* UVManipulator::m_state_line;
Shader* UVManipulator::m_state_point;
class TransformOriginTranslatable
{
public:
virtual void transformOriginTranslate( const Vector3& translation, const bool set[3] ) = 0;
};
class TransformOriginTranslate : public Manipulatable
{
private:
Vector3 m_start;
TransformOriginTranslatable& m_transformOriginTranslatable;
public:
TransformOriginTranslate( TransformOriginTranslatable& transformOriginTranslatable )
: m_transformOriginTranslatable( transformOriginTranslatable ){
}
void Construct( const Matrix4& device2manip, const float x, const float y, const AABB& bounds, const Vector3& transform_origin ){
m_start = point_on_plane( device2manip, x, y );
}
void Transform( const Matrix4& manip2object, const Matrix4& device2manip, const float x, const float y, const bool snap, const bool snapbbox, const bool alt ){
Vector3 current = point_on_plane( device2manip, x, y );
current = vector3_subtracted( current, m_start );
if( snap ){
for ( std::size_t i = 0; i < 3 ; ++i ){
if( fabs( current[i] ) >= fabs( current[(i + 1) % 3] ) ){
current[(i + 1) % 3] = 0.f;
}
else{
current[i] = 0.f;
}
}
}
bool set[3] = { true, true, true };
for ( std::size_t i = 0; i < 3 ; ++i ){
if( fabs( current[i] ) < 1e-3f ){
set[i] = false;
}
}
current = translation_local2object( current, manip2object );
m_transformOriginTranslatable.transformOriginTranslate( current, set );
}
};
class TransformOriginManipulator : public Manipulator, public ManipulatorSelectionChangeable
{
struct RenderablePoint : public OpenGLRenderable
{
PointVertex m_point;
RenderablePoint():
m_point( vertex3f_identity ) {
}
void render( RenderStateFlags state ) const {
glColorPointer( 4, GL_UNSIGNED_BYTE, sizeof( PointVertex ), &m_point.colour );
glVertexPointer( 3, GL_FLOAT, sizeof( PointVertex ), &m_point.vertex );
glDrawArrays( GL_POINTS, 0, 1 );
}
void setColour( const Colour4b & colour ) {
m_point.colour = colour;
}
};
TransformOriginTranslate m_translate;
const bool& m_pivotIsCustom;
RenderablePoint m_point;
SelectableBool m_selectable;
Pivot2World m_pivot;
public:
static Shader* m_state;
TransformOriginManipulator( TransformOriginTranslatable& transformOriginTranslatable, const bool& pivotIsCustom ) :
m_translate( transformOriginTranslatable ),
m_pivotIsCustom( pivotIsCustom ){
}
void UpdateColours() {
m_point.setColour(
m_selectable.isSelected()?
m_pivotIsCustom? Colour4b( 255, 232, 0, 255 )
: g_colour_selected
: m_pivotIsCustom? Colour4b( 0, 125, 255, 255 )
: g_colour_screen );
}
void render( Renderer& renderer, const VolumeTest& volume, const Matrix4& pivot2world ) {
m_pivot.update( pivot2world, volume.GetModelview(), volume.GetProjection(), volume.GetViewport() );
// temp hack
UpdateColours();
renderer.SetState( m_state, Renderer::eWireframeOnly );
renderer.SetState( m_state, Renderer::eFullMaterials );
renderer.addRenderable( m_point, m_pivot.m_worldSpace );
}
void testSelect( const View& view, const Matrix4& pivot2world ) {
m_pivot.update( pivot2world, view.GetModelview(), view.GetProjection(), view.GetViewport() );
SelectionPool selector;
{
const Matrix4 local2view( matrix4_multiplied_by_matrix4( view.GetViewMatrix(), m_pivot.m_worldSpace ) );
#if defined( DEBUG_SELECTION )
g_render_clipped.construct( view.GetViewMatrix() );
#endif
{
SelectionIntersection best;
Point_BestPoint( local2view, m_point.m_point, best );
selector.addSelectable( best, &m_selectable );
}
}
selectionChange( selector );
}
Manipulatable* GetManipulatable() {
return &m_translate;
}
void setSelected( bool select ) {
m_selectable.setSelected( select );
}
bool isSelected() const {
return m_selectable.isSelected();
}
};
Shader* TransformOriginManipulator::m_state;
class select_all : public scene::Graph::Walker
{
bool m_select;
public:
select_all( bool select )
: m_select( select ){
}
bool pre( const scene::Path& path, scene::Instance& instance ) const {
Selectable* selectable = Instance_getSelectable( instance );
if ( selectable != 0 ) {
selectable->setSelected( m_select );
}
return true;
}
};
class select_all_component : public scene::Graph::Walker
{
bool m_select;
SelectionSystem::EComponentMode m_mode;
public:
select_all_component( bool select, SelectionSystem::EComponentMode mode )
: m_select( select ), m_mode( mode ){
}
bool pre( const scene::Path& path, scene::Instance& instance ) const {
ComponentSelectionTestable* componentSelectionTestable = Instance_getComponentSelectionTestable( instance );
if ( componentSelectionTestable ) {
componentSelectionTestable->setSelectedComponents( m_select, m_mode );
}
return true;
}
};
void Scene_SelectAll_Component( bool select, SelectionSystem::EComponentMode componentMode ){
GlobalSceneGraph().traverse( select_all_component( select, componentMode ) );
}
void Scene_BoundsSelected( scene::Graph& graph, AABB& bounds );
class LazyBounds
{
AABB m_bounds;
bool m_valid;
public:
LazyBounds() : m_valid( false ){
}
void setInvalid(){
m_valid = false;
}
const AABB& getBounds(){
if( !m_valid ){
Scene_BoundsSelected( GlobalSceneGraph(), m_bounds );
m_valid = true;
}
return m_bounds;
}
};
// RadiantSelectionSystem
class RadiantSelectionSystem final :
public SelectionSystem,
public Translatable,
public Rotatable,
public Scalable,
public Skewable,
public TransformOriginTranslatable,
public Renderable
{
mutable Matrix4 m_pivot2world;
mutable AABB m_bounds;
mutable LazyBounds m_lazy_bounds;
Matrix4 m_pivot2world_start;
Matrix4 m_manip2pivot_start;
Translation m_translation;
Rotation m_rotation;
Scale m_scale;
Skew m_skew;
public:
static Shader* m_state;
bool m_bPreferPointEntsIn2D;
private:
EManipulatorMode m_manipulator_mode;
Manipulator* m_manipulator;
// state
bool m_undo_begun;
EMode m_mode;
EComponentMode m_componentmode;
SelectionCounter m_count_primitive;
SelectionCounter m_count_component;
SelectedStuffCounter m_count_stuff;
TranslateManipulator m_translate_manipulator;
RotateManipulator m_rotate_manipulator;
ScaleManipulator m_scale_manipulator;
SkewManipulator m_skew_manipulator;
DragManipulator m_drag_manipulator;
ClipManipulator m_clip_manipulator;
BuildManipulator m_build_manipulator;
UVManipulator m_uv_manipulator;
mutable TransformOriginManipulator m_transformOrigin_manipulator;
typedef SelectionList<scene::Instance> selection_t;
selection_t m_selection;
selection_t m_component_selection;
Signal1<const Selectable&> m_selectionChanged_callbacks;
void ConstructPivot() const;
void ConstructPivotRotation() const;
void setCustomTransformOrigin( const Vector3& origin, const bool set[3] ) const;
AABB getSelectionAABB() const;
mutable bool m_pivotChanged;
bool m_pivot_moving;
mutable bool m_pivotIsCustom;
void Scene_TestSelect( Selector& selector, SelectionTest& test, const View& view, SelectionSystem::EMode mode, SelectionSystem::EComponentMode componentMode );
bool nothingSelected() const {
return ( Mode() == eComponent && m_count_component.empty() )
|| ( Mode() == ePrimitive && m_count_primitive.empty() );
}
public:
enum EModifier
{
eManipulator,
eReplace,
eCycle,
eSelect,
eDeselect,
};
RadiantSelectionSystem() :
m_bPreferPointEntsIn2D( true ),
m_undo_begun( false ),
m_mode( ePrimitive ),
m_componentmode( eDefault ),
m_count_primitive( SelectionChangedCaller( *this ) ),
m_count_component( SelectionChangedCaller( *this ) ),
m_translate_manipulator( *this, 2, 64 ),
m_rotate_manipulator( *this, 8, 64 ),
m_scale_manipulator( *this, 0, 64 ),
m_skew_manipulator( *this, *this, *this, *this, m_bounds, m_pivot2world, m_pivotIsCustom ),
m_drag_manipulator( *this ),
m_clip_manipulator( m_pivot2world, m_bounds ),
m_transformOrigin_manipulator( *this, m_pivotIsCustom ),
m_pivotChanged( false ),
m_pivot_moving( false ),
m_pivotIsCustom( false ){
SetManipulatorMode( eTranslate );
pivotChanged();
addSelectionChangeCallback( PivotChangedSelectionCaller( *this ) );
AddGridChangeCallback( PivotChangedCaller( *this ) );
}
void pivotChanged() const {
m_pivotChanged = true;
m_lazy_bounds.setInvalid();
SceneChangeNotify();
}
typedef ConstMemberCaller<RadiantSelectionSystem, &RadiantSelectionSystem::pivotChanged> PivotChangedCaller;
void pivotChangedSelection( const Selectable& selectable ){
pivotChanged();
}
typedef MemberCaller1<RadiantSelectionSystem, const Selectable&, &RadiantSelectionSystem::pivotChangedSelection> PivotChangedSelectionCaller;
const AABB& getBoundsSelected() const {
return m_lazy_bounds.getBounds();
}
void SetMode( EMode mode ){
if ( m_mode != mode ) {
m_mode = mode;
pivotChanged();
}
}
EMode Mode() const {
return m_mode;
}
void SetComponentMode( EComponentMode mode ){
m_componentmode = mode;
}
EComponentMode ComponentMode() const {
return m_componentmode;
}
void SetManipulatorMode( EManipulatorMode mode ){
if( ( mode == eClip ) || ( ManipulatorMode() == eClip ) ){
m_clip_manipulator.reset( ( mode == eClip ) && ( ManipulatorMode() != eClip ) );
if( ( mode == eClip ) != ( ManipulatorMode() == eClip ) )
Clipper_modeChanged( mode == eClip );
}
m_pivotIsCustom = false;
m_manipulator_mode = mode;
switch ( m_manipulator_mode )
{
case eTranslate: m_manipulator = &m_translate_manipulator; break;
case eRotate: m_manipulator = &m_rotate_manipulator; break;
case eScale: m_manipulator = &m_scale_manipulator; break;
case eSkew: m_manipulator = &m_skew_manipulator; break;
case eDrag: m_manipulator = &m_drag_manipulator; break;
case eClip: m_manipulator = &m_clip_manipulator; m_repeatableTransforms.setIdentity(); break;
case eBuild:
{
m_build_manipulator.initialise();
m_manipulator = &m_build_manipulator; break;
}
case eUV: m_manipulator = &m_uv_manipulator; break;
}
pivotChanged();
}
EManipulatorMode ManipulatorMode() const {
return m_manipulator_mode;
}
SelectionChangeCallback getObserver( EMode mode ){
if ( mode == ePrimitive ) {
return makeCallback1( m_count_primitive );
}
else
{
return makeCallback1( m_count_component );
}
}
std::size_t countSelected() const {
return m_count_primitive.size();
}
std::size_t countSelectedComponents() const {
return m_count_component.size();
}
void countSelectedStuff( std::size_t& brushes, std::size_t& patches, std::size_t& entities ) const {
m_count_stuff.get( brushes, patches, entities );
}
void onSelectedChanged( scene::Instance& instance, const Selectable& selectable ){
if ( selectable.isSelected() ) {
m_selection.append( instance );
m_count_stuff.increment( instance.path().top() );
}
else
{
m_selection.erase( instance );
m_count_stuff.decrement( instance.path().top() );
}
ASSERT_MESSAGE( m_selection.size() == m_count_primitive.size(), "selection-tracking error" );
}
void onComponentSelection( scene::Instance& instance, const Selectable& selectable ){
if ( selectable.isSelected() ) {
m_component_selection.append( instance );
}
else
{
m_component_selection.erase( instance );
}
ASSERT_MESSAGE( m_component_selection.size() == m_count_component.size(), "selection-tracking error" );
}
scene::Instance& firstSelected() const {
ASSERT_MESSAGE( m_selection.size() > 0, "no instance selected" );
return **m_selection.begin();
}
scene::Instance& ultimateSelected() const {
ASSERT_MESSAGE( m_selection.size() > 0, "no instance selected" );
return m_selection.back();
}
scene::Instance& penultimateSelected() const {
ASSERT_MESSAGE( m_selection.size() > 1, "only one instance selected" );
return *( *( --( --m_selection.end() ) ) );
}
void setSelectedAll( bool selected ){
GlobalSceneGraph().traverse( select_all( selected ) );
m_manipulator->setSelected( selected );
}
void setSelectedAllComponents( bool selected ){
Scene_SelectAll_Component( selected, SelectionSystem::eVertex );
Scene_SelectAll_Component( selected, SelectionSystem::eEdge );
Scene_SelectAll_Component( selected, SelectionSystem::eFace );
m_manipulator->setSelected( selected );
}
void foreachSelected( const Visitor& visitor ) const {
selection_t::const_iterator i = m_selection.begin();
while ( i != m_selection.end() )
{
visitor.visit( *( *( i++ ) ) );
}
}
void foreachSelectedComponent( const Visitor& visitor ) const {
selection_t::const_iterator i = m_component_selection.begin();
while ( i != m_component_selection.end() )
{
visitor.visit( *( *( i++ ) ) );
}
}
void addSelectionChangeCallback( const SelectionChangeHandler& handler ){
m_selectionChanged_callbacks.connectLast( handler );
}
void selectionChanged( const Selectable& selectable ){
m_selectionChanged_callbacks( selectable );
}
typedef MemberCaller1<RadiantSelectionSystem, const Selectable&, &RadiantSelectionSystem::selectionChanged> SelectionChangedCaller;
void startMove(){
m_pivot2world_start = GetPivot2World();
}
bool SelectManipulator( const View& view, const float device_point[2], const float device_epsilon[2] ){
bool movingOrigin = false;
if ( !nothingSelected() || ManipulatorMode() == eDrag || ManipulatorMode() == eClip || ManipulatorMode() == eBuild || ManipulatorMode() == eUV ) {
#if defined ( DEBUG_SELECTION )
g_render_clipped.destroy();
#endif
Manipulatable::assign_static( view, device_point, device_epsilon ); //this b4 m_manipulator calls!
m_transformOrigin_manipulator.setSelected( false );
m_manipulator->setSelected( false );
{
View scissored( view );
ConstructSelectionTest( scissored, SelectionBoxForPoint( device_point, device_epsilon ) );
if( transformOrigin_isTranslatable() ){
m_transformOrigin_manipulator.testSelect( scissored, GetPivot2World() );
movingOrigin = m_transformOrigin_manipulator.isSelected();
}
if( !movingOrigin )
m_manipulator->testSelect( scissored, GetPivot2World() );
}
startMove();
m_pivot_moving = m_manipulator->isSelected();
if ( m_pivot_moving || movingOrigin ) {
Pivot2World pivot;
pivot.update( GetPivot2World(), view.GetModelview(), view.GetProjection(), view.GetViewport() );
m_manip2pivot_start = matrix4_multiplied_by_matrix4( matrix4_full_inverse( m_pivot2world_start ), pivot.m_worldSpace );
Matrix4 device2manip;
ConstructDevice2Manip( device2manip, m_pivot2world_start, view.GetModelview(), view.GetProjection(), view.GetViewport() );
if( m_pivot_moving ){
m_manipulator->GetManipulatable()->Construct( device2manip, device_point[0], device_point[1], m_bounds, vector4_to_vector3( GetPivot2World().t() ) );
m_undo_begun = false;
}
else if( movingOrigin ){
m_transformOrigin_manipulator.GetManipulatable()->Construct( device2manip, device_point[0], device_point[1], m_bounds, vector4_to_vector3( GetPivot2World().t() ) );
}
}
SceneChangeNotify();
}
return m_pivot_moving || movingOrigin;
}
void HighlightManipulator( const View& view, const float device_point[2], const float device_epsilon[2] ){
Manipulatable::assign_static( view, device_point, device_epsilon ); //this b4 m_manipulator calls!
if ( ( !nothingSelected() && transformOrigin_isTranslatable() )
|| ManipulatorMode() == eClip
|| ManipulatorMode() == eBuild
|| ManipulatorMode() == eUV
|| ManipulatorMode() == eDrag ) {
#if defined ( DEBUG_SELECTION )
g_render_clipped.destroy();
#endif
m_transformOrigin_manipulator.setSelected( false );
m_manipulator->setSelected( false );
View scissored( view );
ConstructSelectionTest( scissored, SelectionBoxForPoint( device_point, device_epsilon ) );
if( transformOrigin_isTranslatable() ){
m_transformOrigin_manipulator.testSelect( scissored, GetPivot2World() );
if( !m_transformOrigin_manipulator.isSelected() )
m_manipulator->testSelect( scissored, GetPivot2World() );
}
else if( ManipulatorMode() == eClip ){
m_clip_manipulator.testSelect_points( scissored );
}
else if( ManipulatorMode() == eBuild ){
m_build_manipulator.highlight( scissored );
}
else if( ManipulatorMode() == eUV ){
m_manipulator->testSelect( scissored, GetPivot2World() );
}
else if( ManipulatorMode() == eDrag ){
m_drag_manipulator.highlight( scissored );
}
}
}
void deselectAll(){
if ( Mode() == eComponent ) {
setSelectedAllComponents( false );
}
else
{
setSelectedAll( false );
}
}
void deselectComponentsOrAll( bool components ){
if ( components ) {
setSelectedAllComponents( false );
}
else
{
deselectAll();
}
}
#define SELECT_MATCHING
#define SELECT_MATCHING_DEPTH 1e-6f
#define SELECT_MATCHING_DIST 1e-6f
#define SELECT_MATCHING_COMPONENTS_DIST .25f
void SelectionPool_Select( SelectionPool& pool, bool select, float dist_epsilon ){
SelectionPool::iterator best = pool.begin();
if( ( *best ).second->isSelected() != select ){
( *best ).second->setSelected( select );
}
#ifdef SELECT_MATCHING
SelectionPool::iterator i = best;
++i;
while ( i != pool.end() )
{
if( ( *i ).first.equalEpsilon( ( *best ).first, dist_epsilon, SELECT_MATCHING_DEPTH ) ){
//if( ( *i ).second->isSelected() != select ){
( *i ).second->setSelected( select );
//}
}
else{
break;
}
++i;
}
#endif // SELECT_MATCHING
}
void SelectPoint( const View& view, const float device_point[2], const float device_epsilon[2], RadiantSelectionSystem::EModifier modifier, bool face ){
//globalOutputStream() << device_point[0] << " " << device_point[1] << "\n";
ASSERT_MESSAGE( fabs( device_point[0] ) <= 1.f && fabs( device_point[1] ) <= 1.f, "point-selection error" );
if ( modifier == eReplace ) {
deselectComponentsOrAll( face );
}
/*
//nothingSelected() doesn't consider faces, selected in non-component mode, m
if ( modifier == eCycle && nothingSelected() ){
modifier = eReplace;
}
*/
#if defined ( DEBUG_SELECTION )
g_render_clipped.destroy();
#endif
{
View scissored( view );
ConstructSelectionTest( scissored, SelectionBoxForPoint( device_point, device_epsilon ) );
SelectionVolume volume( scissored );
SelectionPool selector;
SelectionPool selector_point_ents;
const bool prefer_point_ents = m_bPreferPointEntsIn2D && Mode() == ePrimitive && !view.fill() && !face
&& ( modifier == RadiantSelectionSystem::eReplace || modifier == RadiantSelectionSystem::eSelect || modifier == RadiantSelectionSystem::eDeselect );
if( prefer_point_ents ){
Scene_TestSelect( selector_point_ents, volume, scissored, eEntity, ComponentMode() );
}
if( prefer_point_ents && !selector_point_ents.failed() ){
switch ( modifier )
{
// if cycle mode not enabled, enable it
case RadiantSelectionSystem::eReplace:
{
// select closest
( *selector_point_ents.begin() ).second->setSelected( true );
}
break;
case RadiantSelectionSystem::eSelect:
{
SelectionPool_Select( selector_point_ents, true, SELECT_MATCHING_DIST );
}
break;
case RadiantSelectionSystem::eDeselect:
{
SelectionPool_Select( selector_point_ents, false, SELECT_MATCHING_DIST );
}
break;
default:
break;
}
}
else{
if ( face ){
Scene_TestSelect_Component( selector, volume, scissored, eFace );
}
else{
Scene_TestSelect( selector, volume, scissored, g_modifiers == c_modifierAlt? ePrimitive : Mode(), ComponentMode() );
}
if ( !selector.failed() ) {
switch ( modifier )
{
// if cycle mode not enabled, enable it
case RadiantSelectionSystem::eReplace:
{
// select closest
( *selector.begin() ).second->setSelected( true );
}
break;
// select the next object in the list from the one already selected
case RadiantSelectionSystem::eCycle:
{
bool cycleSelectionOccured = false;
SelectionPool::iterator i = selector.begin();
while ( i != selector.end() )
{
if ( ( *i ).second->isSelected() ) {
deselectComponentsOrAll( face );
++i;
if ( i != selector.end() ) {
i->second->setSelected( true );
}
else
{
selector.begin()->second->setSelected( true );
}
cycleSelectionOccured = true;
break;
}
++i;
}
if( !cycleSelectionOccured ){
deselectComponentsOrAll( face );
( *selector.begin() ).second->setSelected( true );
}
}
break;
case RadiantSelectionSystem::eSelect:
{
SelectionPool_Select( selector, true, ( Mode() == eComponent && g_modifiers != c_modifierAlt )? SELECT_MATCHING_COMPONENTS_DIST : SELECT_MATCHING_DIST );
}
break;
case RadiantSelectionSystem::eDeselect:
{
SelectionPool_Select( selector, false, ( Mode() == eComponent && g_modifiers != c_modifierAlt )? SELECT_MATCHING_COMPONENTS_DIST : SELECT_MATCHING_DIST );
}
break;
default:
break;
}
}
else if( modifier == eCycle ){
deselectComponentsOrAll( face );
}
}
}
}
bool SelectPoint_InitPaint( const View& view, const float device_point[2], const float device_epsilon[2], bool face ){
ASSERT_MESSAGE( fabs( device_point[0] ) <= 1.f && fabs( device_point[1] ) <= 1.f, "point-selection error" );
#if defined ( DEBUG_SELECTION )
g_render_clipped.destroy();
#endif
{
View scissored( view );
ConstructSelectionTest( scissored, SelectionBoxForPoint( device_point, device_epsilon ) );
SelectionVolume volume( scissored );
SelectionPool selector;
SelectionPool selector_point_ents;
const bool prefer_point_ents = m_bPreferPointEntsIn2D && Mode() == ePrimitive && !view.fill() && !face;
if( prefer_point_ents ){
Scene_TestSelect( selector_point_ents, volume, scissored, eEntity, ComponentMode() );
}
if( prefer_point_ents && !selector_point_ents.failed() ){
const bool wasSelected = ( *selector_point_ents.begin() ).second->isSelected();
SelectionPool_Select( selector_point_ents, !wasSelected, SELECT_MATCHING_DIST );
return !wasSelected;
}
else{//do primitives, if ents failed
if ( face ){
Scene_TestSelect_Component( selector, volume, scissored, eFace );
}
else{
Scene_TestSelect( selector, volume, scissored, g_modifiers == c_modifierAlt? ePrimitive : Mode(), ComponentMode() );
}
if ( !selector.failed() ){
const bool wasSelected = ( *selector.begin() ).second->isSelected();
SelectionPool_Select( selector, !wasSelected, ( Mode() == eComponent && g_modifiers != c_modifierAlt )? SELECT_MATCHING_COMPONENTS_DIST : SELECT_MATCHING_DIST );
#if 0
SelectionPool::iterator best = selector.begin();
SelectionPool::iterator i = best;
globalOutputStream() << "\n\n\n===========\n";
while ( i != selector.end() )
{
globalOutputStream() << "depth:" << ( *i ).first.m_depth << " dist:" << ( *i ).first.m_distance << " depth2:" << ( *i ).first.m_depth2 << "\n";
globalOutputStream() << "depth - best depth:" << ( *i ).first.m_depth - ( *best ).first.m_depth << "\n";
++i;
}
#endif
return !wasSelected;
}
else{
return true;
}
}
}
}
void SelectArea( const View& view, const rect_t rect, bool face ){
#if defined ( DEBUG_SELECTION )
g_render_clipped.destroy();
#endif
View scissored( view );
ConstructSelectionTest( scissored, rect );
SelectionVolume volume( scissored );
SelectionPool pool;
if ( face ) {
Scene_TestSelect_Component( pool, volume, scissored, eFace );
}
else
{
Scene_TestSelect( pool, volume, scissored, Mode(), ComponentMode() );
}
for ( SelectionPool::iterator i = pool.begin(); i != pool.end(); ++i )
{
( *i ).second->setSelected( rect.modifier == rect_t::eSelect? true : rect.modifier == rect_t::eDeselect? false : !( *i ).second->isSelected() );
}
}
void translate( const Vector3& translation ){
if ( !nothingSelected() ) {
//ASSERT_MESSAGE(!m_pivotChanged, "pivot is invalid");
m_translation = translation;
m_repeatableTransforms.m_translation = translation;
m_pivot2world = m_pivot2world_start;
matrix4_translate_by_vec3( m_pivot2world, translation );
if ( Mode() == eComponent ) {
Scene_Translate_Component_Selected( GlobalSceneGraph(), m_translation );
}
else
{
Scene_Translate_Selected( GlobalSceneGraph(), m_translation );
}
SceneChangeNotify();
}
}
void outputTranslation( TextOutputStream& ostream ){
ostream << " -xyz " << m_translation.x() << " " << m_translation.y() << " " << m_translation.z();
}
void rotate( const Quaternion& rotation ){
if ( !nothingSelected() ) {
//ASSERT_MESSAGE(!m_pivotChanged, "pivot is invalid");
m_rotation = rotation;
m_repeatableTransforms.m_rotation = rotation;
if( ( m_repeatableTransforms.m_rotationOriginSet = m_pivotIsCustom ) )
m_repeatableTransforms.m_rotationOrigin = vector4_to_vector3( m_pivot2world.t() );
if ( Mode() == eComponent ) {
Scene_Rotate_Component_Selected( GlobalSceneGraph(), m_rotation, vector4_to_vector3( m_pivot2world.t() ) );
matrix4_assign_rotation_for_pivot( m_pivot2world, m_component_selection.back() );
}
else
{
Scene_Rotate_Selected( GlobalSceneGraph(), m_rotation, vector4_to_vector3( m_pivot2world.t() ) );
matrix4_assign_rotation_for_pivot( m_pivot2world, m_selection.back() );
}
#ifdef SELECTIONSYSTEM_AXIAL_PIVOTS
matrix4_assign_rotation( m_pivot2world, matrix4_rotation_for_quaternion_quantised( m_rotation ) );
#endif
SceneChangeNotify();
}
}
void outputRotation( TextOutputStream& ostream ){
ostream << " -eulerXYZ " << m_rotation.x() << " " << m_rotation.y() << " " << m_rotation.z();
}
void scale( const Vector3& scaling ){
if ( !nothingSelected() ) {
m_scale = scaling;
m_repeatableTransforms.m_scale = scaling;
if( ( m_repeatableTransforms.m_scaleOriginSet = m_pivotIsCustom ) )
m_repeatableTransforms.m_scaleOrigin = vector4_to_vector3( m_pivot2world.t() );
if ( Mode() == eComponent ) {
Scene_Scale_Component_Selected( GlobalSceneGraph(), m_scale, vector4_to_vector3( m_pivot2world.t() ) );
}
else
{
Scene_Scale_Selected( GlobalSceneGraph(), m_scale, vector4_to_vector3( m_pivot2world.t() ) );
}
if( ManipulatorMode() == eSkew ){
m_pivot2world[0] = scaling[0];
m_pivot2world[5] = scaling[1];
m_pivot2world[10] = scaling[2];
}
SceneChangeNotify();
}
}
void outputScale( TextOutputStream& ostream ){
ostream << " -scale " << m_scale.x() << " " << m_scale.y() << " " << m_scale.z();
}
void skew( const Skew& skew ){
if ( !nothingSelected() ) {
m_skew = skew;
m_repeatableTransforms.m_skew = skew;
if( ( m_repeatableTransforms.m_skewOriginSet = m_pivotIsCustom ) )
m_repeatableTransforms.m_skewOrigin = vector4_to_vector3( m_pivot2world.t() );
if ( Mode() == eComponent ) {
Scene_Skew_Component_Selected( GlobalSceneGraph(), m_skew, vector4_to_vector3( m_pivot2world.t() ) );
}
else
{
Scene_Skew_Selected( GlobalSceneGraph(), m_skew, vector4_to_vector3( m_pivot2world.t() ) );
}
m_pivot2world[skew.index] = skew.amount;
SceneChangeNotify();
}
}
void rotateSelected( const Quaternion& rotation, bool snapOrigin = false ){
if( snapOrigin && !m_pivotIsCustom )
vector3_snap( vector4_to_vector3( m_pivot2world.t() ), GetSnapGridSize() );
startMove();
rotate( rotation );
freezeTransforms();
}
void translateSelected( const Vector3& translation ){
startMove();
translate( translation );
freezeTransforms();
}
void scaleSelected( const Vector3& scaling, bool snapOrigin = false ){
if( snapOrigin && !m_pivotIsCustom )
vector3_snap( vector4_to_vector3( m_pivot2world.t() ), GetSnapGridSize() );
startMove();
scale( scaling );
freezeTransforms();
}
RepeatableTransforms m_repeatableTransforms;
void repeatTransforms( const Callback& clone ){
if ( countSelected() != 0 && !m_repeatableTransforms.isIdentity() ) {
startMove();
UndoableCommand undo( "repeatTransforms" );
if( Mode() == ePrimitive )
clone();
if ( Mode() == eComponent ) {
GlobalSelectionSystem().foreachSelectedComponent( transform_component_selected( m_repeatableTransforms, vector4_to_vector3( m_pivot2world.t() ) ) );
}
else
{
GlobalSelectionSystem().foreachSelected( transform_selected( m_repeatableTransforms, vector4_to_vector3( m_pivot2world.t() ) ) );
}
freezeTransforms();
}
}
bool transformOrigin_isTranslatable() const{
return ManipulatorMode() == eScale
|| ManipulatorMode() == eSkew
|| ManipulatorMode() == eRotate
|| ManipulatorMode() == eTranslate;
}
void transformOriginTranslate( const Vector3& translation, const bool set[3] ){
m_pivot2world = m_pivot2world_start;
setCustomTransformOrigin( translation + vector4_to_vector3( m_pivot2world_start.t() ), set );
SceneChangeNotify();
}
void MoveSelected( const View& view, const float device_point[2], bool snap, bool snapbbox, bool alt ){
if ( m_manipulator->isSelected() ) {
if ( !m_undo_begun ) {
m_undo_begun = true;
GlobalUndoSystem().start();
}
Matrix4 device2manip;
ConstructDevice2Manip( device2manip, m_pivot2world_start, view.GetModelview(), view.GetProjection(), view.GetViewport() );
m_manipulator->GetManipulatable()->Transform( m_manip2pivot_start, device2manip, device_point[0], device_point[1], snap, snapbbox, alt );
}
else if( m_transformOrigin_manipulator.isSelected() ){
Matrix4 device2manip;
ConstructDevice2Manip( device2manip, m_pivot2world_start, view.GetModelview(), view.GetProjection(), view.GetViewport() );
m_transformOrigin_manipulator.GetManipulatable()->Transform( m_manip2pivot_start, device2manip, device_point[0], device_point[1], snap, snapbbox, alt );
}
}
/// \todo Support view-dependent nudge.
void NudgeManipulator( const Vector3& nudge, const Vector3& view ){
// if ( ManipulatorMode() == eTranslate || ManipulatorMode() == eDrag ) {
translateSelected( nudge );
// }
}
bool endMove();
void freezeTransforms();
void renderSolid( Renderer& renderer, const VolumeTest& volume ) const;
void renderWireframe( Renderer& renderer, const VolumeTest& volume ) const {
renderSolid( renderer, volume );
}
const Matrix4& GetPivot2World() const {
ConstructPivot();
return m_pivot2world;
}
static void constructStatic(){
#if defined( DEBUG_SELECTION )
g_state_clipped = GlobalShaderCache().capture( "$DEBUG_CLIPPED" );
#endif
m_state = GlobalShaderCache().capture( "$POINT" );
TranslateManipulator::m_state_wire =
RotateManipulator::m_state_outer =
SkewManipulator::m_state_wire =
BuildManipulator::m_state_line = GlobalShaderCache().capture( "$WIRE_OVERLAY" );
TranslateManipulator::m_state_fill =
SkewManipulator::m_state_fill = GlobalShaderCache().capture( "$FLATSHADE_OVERLAY" );
TransformOriginManipulator::m_state =
ClipManipulator::m_state =
SkewManipulator::m_state_point =
BuildManipulator::m_state_point =
UVManipulator::m_state_point = GlobalShaderCache().capture( "$BIGPOINT" );
RenderablePivot::StaticShader::instance() = GlobalShaderCache().capture( "$PIVOT" );
UVManipulator::m_state_line = GlobalShaderCache().capture( "$BLENDLINE" );
DragManipulator::m_state_wire = GlobalShaderCache().capture( "$PLANE_WIRE_OVERLAY" );
}
static void destroyStatic(){
#if defined( DEBUG_SELECTION )
GlobalShaderCache().release( "$DEBUG_CLIPPED" );
#endif
GlobalShaderCache().release( "$PLANE_WIRE_OVERLAY" );
GlobalShaderCache().release( "$BLENDLINE" );
GlobalShaderCache().release( "$PIVOT" );
GlobalShaderCache().release( "$BIGPOINT" );
GlobalShaderCache().release( "$FLATSHADE_OVERLAY" );
GlobalShaderCache().release( "$WIRE_OVERLAY" );
GlobalShaderCache().release( "$POINT" );
}
};
Shader* RadiantSelectionSystem::m_state = 0;
namespace
{
RadiantSelectionSystem* g_RadiantSelectionSystem;
inline RadiantSelectionSystem& getSelectionSystem(){
return *g_RadiantSelectionSystem;
}
}
#include "map.h"
class testselect_entity_visible : public scene::Graph::Walker
{
Selector& m_selector;
SelectionTest& m_test;
public:
testselect_entity_visible( Selector& selector, SelectionTest& test )
: m_selector( selector ), m_test( test ){
}
bool pre( const scene::Path& path, scene::Instance& instance ) const {
if( path.top().get_pointer() == Map_GetWorldspawn( g_map ) ||
node_is_group( path.top().get() ) ){
return false;
}
Selectable* selectable = Instance_getSelectable( instance );
if ( selectable != 0
&& Node_isEntity( path.top() ) ) {
m_selector.pushSelectable( *selectable );
}
SelectionTestable* selectionTestable = Instance_getSelectionTestable( instance );
if ( selectionTestable ) {
selectionTestable->testSelect( m_selector, m_test );
}
return true;
}
void post( const scene::Path& path, scene::Instance& instance ) const {
Selectable* selectable = Instance_getSelectable( instance );
if ( selectable != 0
&& Node_isEntity( path.top() ) ) {
m_selector.popSelectable();
}
}
};
class testselect_primitive_visible : public scene::Graph::Walker
{
Selector& m_selector;
SelectionTest& m_test;
public:
testselect_primitive_visible( Selector& selector, SelectionTest& test )
: m_selector( selector ), m_test( test ){
}
bool pre( const scene::Path& path, scene::Instance& instance ) const {
Selectable* selectable = Instance_getSelectable( instance );
if ( selectable != 0 ) {
m_selector.pushSelectable( *selectable );
}
SelectionTestable* selectionTestable = Instance_getSelectionTestable( instance );
if ( selectionTestable ) {
selectionTestable->testSelect( m_selector, m_test );
}
return true;
}
void post( const scene::Path& path, scene::Instance& instance ) const {
Selectable* selectable = Instance_getSelectable( instance );
if ( selectable != 0 ) {
m_selector.popSelectable();
}
}
};
class testselect_component_visible : public scene::Graph::Walker
{
Selector& m_selector;
SelectionTest& m_test;
SelectionSystem::EComponentMode m_mode;
public:
testselect_component_visible( Selector& selector, SelectionTest& test, SelectionSystem::EComponentMode mode )
: m_selector( selector ), m_test( test ), m_mode( mode ){
}
bool pre( const scene::Path& path, scene::Instance& instance ) const {
ComponentSelectionTestable* componentSelectionTestable = Instance_getComponentSelectionTestable( instance );
if ( componentSelectionTestable ) {
componentSelectionTestable->testSelectComponents( m_selector, m_test, m_mode );
}
return true;
}
};
class testselect_component_visible_selected : public scene::Graph::Walker
{
Selector& m_selector;
SelectionTest& m_test;
SelectionSystem::EComponentMode m_mode;
public:
testselect_component_visible_selected( Selector& selector, SelectionTest& test, SelectionSystem::EComponentMode mode )
: m_selector( selector ), m_test( test ), m_mode( mode ){
}
bool pre( const scene::Path& path, scene::Instance& instance ) const {
if ( Instance_isSelected( instance ) ) {
ComponentSelectionTestable* componentSelectionTestable = Instance_getComponentSelectionTestable( instance );
if ( componentSelectionTestable ) {
componentSelectionTestable->testSelectComponents( m_selector, m_test, m_mode );
}
}
return true;
}
};
void Scene_TestSelect_Primitive( Selector& selector, SelectionTest& test, const VolumeTest& volume ){
Scene_forEachVisible( GlobalSceneGraph(), volume, testselect_primitive_visible( selector, test ) );
}
void Scene_TestSelect_Component_Selected( Selector& selector, SelectionTest& test, const VolumeTest& volume, SelectionSystem::EComponentMode componentMode ){
Scene_forEachVisible( GlobalSceneGraph(), volume, testselect_component_visible_selected( selector, test, componentMode ) );
}
void Scene_TestSelect_Component( Selector& selector, SelectionTest& test, const VolumeTest& volume, SelectionSystem::EComponentMode componentMode ){
Scene_forEachVisible( GlobalSceneGraph(), volume, testselect_component_visible( selector, test, componentMode ) );
}
void RadiantSelectionSystem::Scene_TestSelect( Selector& selector, SelectionTest& test, const View& view, SelectionSystem::EMode mode, SelectionSystem::EComponentMode componentMode ){
switch ( mode )
{
case eEntity:
Scene_forEachVisible( GlobalSceneGraph(), view, testselect_entity_visible( selector, test ) );
break;
case ePrimitive:
Scene_TestSelect_Primitive( selector, test, view );
break;
case eComponent:
Scene_TestSelect_Component_Selected( selector, test, view, componentMode );
break;
}
}
void Scene_Intersect( const View& view, const float device_point[2], const float device_epsilon[2], Vector3& intersection ){
View scissored( view );
ConstructSelectionTest( scissored, SelectionBoxForPoint( device_point, device_epsilon ) );
SelectionVolume test( scissored );
BestPointSelector bestPointSelector;
Scene_TestSelect_Primitive( bestPointSelector, test, scissored );
test.BeginMesh( g_matrix4_identity, true );
if( bestPointSelector.isSelected() ){
intersection = vector4_projected( matrix4_transformed_vector4( test.getScreen2world(), Vector4( 0, 0, bestPointSelector.best().depth(), 1 ) ) );
}
else{
const Vector3 near = vector4_projected( matrix4_transformed_vector4( test.getScreen2world(), Vector4( 0, 0, -1, 1 ) ) );
const Vector3 far = vector4_projected( matrix4_transformed_vector4( test.getScreen2world(), Vector4( 0, 0, 1, 1 ) ) );
intersection = vector3_normalised( far - near ) * 256.f + near;
}
}
class FreezeTransforms : public scene::Graph::Walker
{
public:
bool pre( const scene::Path& path, scene::Instance& instance ) const {
TransformNode* transformNode = Node_getTransformNode( path.top() );
if ( transformNode != 0 ) {
Transformable* transform = Instance_getTransformable( instance );
if ( transform != 0 ) {
transform->freezeTransform();
}
}
return true;
}
};
void RadiantSelectionSystem::freezeTransforms(){
GlobalSceneGraph().traverse( FreezeTransforms() );
}
bool RadiantSelectionSystem::endMove(){
if( m_transformOrigin_manipulator.isSelected() ){
if( m_pivot2world == m_pivot2world_start ){
m_pivotIsCustom = !m_pivotIsCustom;
pivotChanged();
}
return true;
}
if ( ManipulatorMode() == eUV )
m_uv_manipulator.freezeTransform();
else
freezeTransforms();
// if ( Mode() == ePrimitive && ManipulatorMode() == eDrag ) {
// g_bTmpComponentMode = false;
// Scene_SelectAll_Component( false, g_modifiers == c_modifierAlt? SelectionSystem::eVertex : SelectionSystem::eFace );
// }
if( g_bTmpComponentMode ){
g_bTmpComponentMode = false;
setSelectedAllComponents( false );
}
m_pivot_moving = false;
pivotChanged();
SceneChangeNotify();
if ( m_undo_begun ) {
StringOutputStream command;
if ( ManipulatorMode() == eTranslate ) {
command << "translateTool";
outputTranslation( command );
}
else if ( ManipulatorMode() == eRotate ) {
command << "rotateTool";
outputRotation( command );
}
else if ( ManipulatorMode() == eScale ) {
command << "scaleTool";
outputScale( command );
}
else if ( ManipulatorMode() == eSkew ) {
command << "transformTool";
// outputScale( command );
}
else if ( ManipulatorMode() == eDrag ) {
command << "dragTool";
}
else if ( ManipulatorMode() == eUV ) {
command << "UVTool";
}
GlobalUndoSystem().finish( command.c_str() );
}
return false;
}
inline AABB Instance_getPivotBounds( scene::Instance& instance ){
Entity* entity = Node_getEntity( instance.path().top() );
if ( entity != 0
&& ( entity->getEntityClass().fixedsize
|| !node_is_group( instance.path().top() ) ) ) {
Editable* editable = Node_getEditable( instance.path().top() );
if ( editable != 0 ) {
return AABB( vector4_to_vector3( matrix4_multiplied_by_matrix4( instance.localToWorld(), editable->getLocalPivot() ).t() ), Vector3( 0, 0, 0 ) );
}
else
{
return AABB( vector4_to_vector3( instance.localToWorld().t() ), Vector3( 0, 0, 0 ) );
}
}
return instance.worldAABB();
}
class bounds_selected : public scene::Graph::Walker
{
AABB& m_bounds;
public:
bounds_selected( AABB& bounds )
: m_bounds( bounds ){
m_bounds = AABB();
}
bool pre( const scene::Path& path, scene::Instance& instance ) const {
if ( Instance_isSelected( instance ) ) {
aabb_extend_by_aabb_safe( m_bounds, Instance_getPivotBounds( instance ) );
}
return true;
}
};
class bounds_selected_component : public scene::Graph::Walker
{
AABB& m_bounds;
public:
bounds_selected_component( AABB& bounds )
: m_bounds( bounds ){
m_bounds = AABB();
}
bool pre( const scene::Path& path, scene::Instance& instance ) const {
if ( Instance_isSelected( instance ) ) {
ComponentEditable* componentEditable = Instance_getComponentEditable( instance );
if ( componentEditable ) {
aabb_extend_by_aabb_safe( m_bounds, aabb_for_oriented_aabb_safe( componentEditable->getSelectedComponentsBounds(), instance.localToWorld() ) );
}
}
return true;
}
};
void Scene_BoundsSelected( scene::Graph& graph, AABB& bounds ){
graph.traverse( bounds_selected( bounds ) );
}
void Scene_BoundsSelectedComponent( scene::Graph& graph, AABB& bounds ){
graph.traverse( bounds_selected_component( bounds ) );
}
#if 0
inline void pivot_for_node( Matrix4& pivot, scene::Node& node, scene::Instance& instance ){
ComponentEditable* componentEditable = Instance_getComponentEditable( instance );
if ( GlobalSelectionSystem().Mode() == SelectionSystem::eComponent
&& componentEditable != 0 ) {
pivot = matrix4_translation_for_vec3( componentEditable->getSelectedComponentsBounds().origin );
}
else
{
Bounded* bounded = Instance_getBounded( instance );
if ( bounded != 0 ) {
pivot = matrix4_translation_for_vec3( bounded->localAABB().origin );
}
else
{
pivot = g_matrix4_identity;
}
}
}
#endif
void RadiantSelectionSystem::ConstructPivotRotation() const {
switch ( m_manipulator_mode )
{
case eTranslate:
break;
case eRotate:
if ( Mode() == eComponent ) {
matrix4_assign_rotation_for_pivot( m_pivot2world, m_component_selection.back() );
}
else
{
matrix4_assign_rotation_for_pivot( m_pivot2world, m_selection.back() );
}
break;
case eScale:
if ( Mode() == eComponent ) {
matrix4_assign_rotation_for_pivot( m_pivot2world, m_component_selection.back() );
}
else
{
matrix4_assign_rotation_for_pivot( m_pivot2world, m_selection.back() );
}
break;
default:
break;
}
}
void RadiantSelectionSystem::ConstructPivot() const {
if ( !m_pivotChanged || m_pivot_moving ) {
return;
}
m_pivotChanged = false;
if ( !nothingSelected() ) {
m_bounds = getSelectionAABB();
if( !m_pivotIsCustom ){
Vector3 object_pivot = m_bounds.origin;
//vector3_snap( object_pivot, GetSnapGridSize() );
//globalOutputStream() << object_pivot << "\n";
m_pivot2world = matrix4_translation_for_vec3( object_pivot );
}
else{
// m_pivot2world = matrix4_translation_for_vec3( vector4_to_vector3( m_pivot2world.t() ) );
matrix4_assign_rotation( m_pivot2world, g_matrix4_identity );
}
ConstructPivotRotation();
}
}
void RadiantSelectionSystem::setCustomTransformOrigin( const Vector3& origin, const bool set[3] ) const {
if ( !nothingSelected() && transformOrigin_isTranslatable() ) {
//globalOutputStream() << origin << "\n";
for( std::size_t i = 0; i < 3; i++ ){
float value = origin[i];
if( set[i] ){
float bestsnapDist = fabs( m_bounds.origin[i] - value );
float bestsnapTo = m_bounds.origin[i];
float othersnapDist = fabs( m_bounds.origin[i] + m_bounds.extents[i] - value );
if( othersnapDist < bestsnapDist ){
bestsnapDist = othersnapDist;
bestsnapTo = m_bounds.origin[i] + m_bounds.extents[i];
}
othersnapDist = fabs( m_bounds.origin[i] - m_bounds.extents[i] - value );
if( othersnapDist < bestsnapDist ){
bestsnapDist = othersnapDist;
bestsnapTo = m_bounds.origin[i] - m_bounds.extents[i];
}
othersnapDist = fabs( float_snapped( value, GetSnapGridSize() ) - value );
if( othersnapDist < bestsnapDist ){
bestsnapDist = othersnapDist;
bestsnapTo = float_snapped( value, GetSnapGridSize() );
}
value = bestsnapTo;
m_pivot2world[i + 12] = value; //m_pivot2world.tx() .ty() .tz()
}
}
m_pivotIsCustom = true;
ConstructPivotRotation();
}
}
AABB RadiantSelectionSystem::getSelectionAABB() const {
AABB bounds;
if ( !nothingSelected() ) {
if ( Mode() == eComponent || g_bTmpComponentMode ) {
Scene_BoundsSelectedComponent( GlobalSceneGraph(), bounds );
if( !aabb_valid( bounds ) ) /* selecting PlaneSelectables sets g_bTmpComponentMode, but only brushes return correct componentEditable->getSelectedComponentsBounds() */
bounds = getBoundsSelected();
}
else
{
bounds = getBoundsSelected();
}
}
return bounds;
}
void RadiantSelectionSystem::renderSolid( Renderer& renderer, const VolumeTest& volume ) const {
//if(view->TestPoint(m_object_pivot))
if ( !nothingSelected()
|| ManipulatorMode() == eClip
|| ManipulatorMode() == eBuild
|| ManipulatorMode() == eUV
|| ManipulatorMode() == eDrag ) {
renderer.Highlight( Renderer::ePrimitive, false );
renderer.Highlight( Renderer::eFace, false );
renderer.SetState( m_state, Renderer::eWireframeOnly );
renderer.SetState( m_state, Renderer::eFullMaterials );
if( transformOrigin_isTranslatable() )
m_transformOrigin_manipulator.render( renderer, volume, GetPivot2World() );
m_manipulator->render( renderer, volume, GetPivot2World() );
}
#if defined( DEBUG_SELECTION )
renderer.SetState( g_state_clipped, Renderer::eWireframeOnly );
renderer.SetState( g_state_clipped, Renderer::eFullMaterials );
renderer.addRenderable( g_render_clipped, g_render_clipped.m_world );
#endif
}
#include "preferencesystem.h"
#include "preferences.h"
bool g_bLeftMouseClickSelector = true;
void SelectionSystem_constructPreferences( PreferencesPage& page ){
page.appendSpinner( "Selector size (pixels)", g_SELECT_EPSILON, 8, 2, 64 );
page.appendCheckBox( "", "Prefer point entities in 2D", getSelectionSystem().m_bPreferPointEntsIn2D );
page.appendCheckBox( "", "Left mouse click tunnel selector", g_bLeftMouseClickSelector );
{
const char* styles[] = { "XY plane + Z with Alt", "View plane + Forward with Alt", };
page.appendCombo(
"Move style in 3D",
STRING_ARRAY_RANGE( styles ),
IntImportCaller( TranslateFreeXY_Z::m_viewdependent ),
IntExportCaller( TranslateFreeXY_Z::m_viewdependent )
);
}
}
void SelectionSystem_constructPage( PreferenceGroup& group ){
PreferencesPage page( group.createPage( "Selection", "Selection System Settings" ) );
SelectionSystem_constructPreferences( page );
}
void SelectionSystem_registerPreferencesPage(){
PreferencesDialog_addSettingsPage( FreeCaller1<PreferenceGroup&, SelectionSystem_constructPage>() );
}
void SelectionSystem_OnBoundsChanged(){
getSelectionSystem().pivotChanged();
}
SignalHandlerId SelectionSystem_boundsChanged;
void SelectionSystem_Construct(){
RadiantSelectionSystem::constructStatic();
g_RadiantSelectionSystem = new RadiantSelectionSystem;
SelectionSystem_boundsChanged = GlobalSceneGraph().addBoundsChangedCallback( FreeCaller<SelectionSystem_OnBoundsChanged>() );
GlobalShaderCache().attachRenderable( getSelectionSystem() );
GlobalPreferenceSystem().registerPreference( "SELECT_EPSILON", IntImportStringCaller( g_SELECT_EPSILON ), IntExportStringCaller( g_SELECT_EPSILON ) );
GlobalPreferenceSystem().registerPreference( "PreferPointEntsIn2D", BoolImportStringCaller( getSelectionSystem().m_bPreferPointEntsIn2D ), BoolExportStringCaller( getSelectionSystem().m_bPreferPointEntsIn2D ) );
GlobalPreferenceSystem().registerPreference( "LeftMouseClickSelector", BoolImportStringCaller( g_bLeftMouseClickSelector ), BoolExportStringCaller( g_bLeftMouseClickSelector ) );
GlobalPreferenceSystem().registerPreference( "3DMoveStyle", IntImportStringCaller( TranslateFreeXY_Z::m_viewdependent ), IntExportStringCaller( TranslateFreeXY_Z::m_viewdependent ) );
SelectionSystem_registerPreferencesPage();
}
void SelectionSystem_Destroy(){
GlobalShaderCache().detachRenderable( getSelectionSystem() );
GlobalSceneGraph().removeBoundsChangedCallback( SelectionSystem_boundsChanged );
delete g_RadiantSelectionSystem;
RadiantSelectionSystem::destroyStatic();
}
inline float screen_normalised( float pos, std::size_t size ){
return ( ( 2.0f * pos ) / size ) - 1.0f;
}
typedef Vector2 DeviceVector;
inline DeviceVector window_to_normalised_device( WindowVector window, std::size_t width, std::size_t height ){
return DeviceVector( screen_normalised( window.x(), width ), screen_normalised( height - 1 - window.y(), height ) );
}
inline float device_constrained( float pos ){
return std::min( 1.0f, std::max( -1.0f, pos ) );
}
inline DeviceVector device_constrained( DeviceVector device ){
return DeviceVector( device_constrained( device.x() ), device_constrained( device.y() ) );
}
inline float window_constrained( float pos, std::size_t origin, std::size_t size ){
return std::min( static_cast<float>( origin + size ), std::max( static_cast<float>( origin ), pos ) );
}
inline WindowVector window_constrained( WindowVector window, std::size_t x, std::size_t y, std::size_t width, std::size_t height ){
return WindowVector( window_constrained( window.x(), x, width ), window_constrained( window.y(), y, height ) );
}
typedef Callback1<DeviceVector> MouseEventCallback;
Single<MouseEventCallback> g_mouseMovedCallback;
Single<MouseEventCallback> g_mouseUpCallback;
#if 1
const ButtonIdentifier c_button_select = c_buttonLeft;
const ButtonIdentifier c_button_select2 = c_buttonRight;
const ModifierFlags c_modifier_manipulator = c_modifierNone;
const ModifierFlags c_modifier_toggle = c_modifierShift;
const ModifierFlags c_modifier_replace = c_modifierShift | c_modifierAlt;
const ModifierFlags c_modifier_face = c_modifierControl;
#else
const ButtonIdentifier c_button_select = c_buttonLeft;
const ModifierFlags c_modifier_manipulator = c_modifierNone;
const ModifierFlags c_modifier_toggle = c_modifierControl;
const ModifierFlags c_modifier_replace = c_modifierNone;
const ModifierFlags c_modifier_face = c_modifierShift;
#endif
const ModifierFlags c_modifier_toggle_face = c_modifier_toggle | c_modifier_face;
const ModifierFlags c_modifier_replace_face = c_modifier_replace | c_modifier_face;
const ButtonIdentifier c_button_texture = c_buttonMiddle;
const ModifierFlags c_modifier_apply_texture1_project = c_modifierControl | c_modifierShift;
const ModifierFlags c_modifier_apply_texture2_seamless = c_modifierControl;
const ModifierFlags c_modifier_apply_texture3 = c_modifierShift;
const ModifierFlags c_modifier_copy_texture = c_modifierNone;
void Scene_copyClosestTexture( SelectionTest& test );
void Scene_applyClosestTexture( SelectionTest& test, bool shift, bool ctrl, bool alt, bool texturize_selected = false );
const char* Scene_applyClosestTexture_getUndoName( bool shift, bool ctrl, bool alt );
class TexManipulator_
{
const DeviceVector& m_epsilon;
const ModifierFlags& m_state;
public:
const View* m_view;
bool m_undo_begun;
TexManipulator_( const DeviceVector& epsilon, const ModifierFlags& state ) :
m_epsilon( epsilon ),
m_state( state ),
m_undo_begun( false ){
}
void mouseDown( DeviceVector position ){
View scissored( *m_view );
ConstructSelectionTest( scissored, SelectionBoxForPoint( &position[0], &m_epsilon[0] ) );
SelectionVolume volume( scissored );
if( m_state == c_modifier_copy_texture ) {
Scene_copyClosestTexture( volume );
}
else{
m_undo_begun = true;
GlobalUndoSystem().start();
Scene_applyClosestTexture( volume, bitfield_enabled( m_state, c_modifierShift ),
bitfield_enabled( m_state, c_modifierControl ),
bitfield_enabled( m_state, c_modifierAlt ), true );
}
}
void mouseMoved( DeviceVector position ){
if( m_undo_begun ){
View scissored( *m_view );
ConstructSelectionTest( scissored, SelectionBoxForPoint( &device_constrained( position )[0], &m_epsilon[0] ) );
SelectionVolume volume( scissored );
Scene_applyClosestTexture( volume, bitfield_enabled( m_state, c_modifierShift ),
bitfield_enabled( m_state, c_modifierControl ),
bitfield_enabled( m_state, c_modifierAlt ) );
}
}
typedef MemberCaller1<TexManipulator_, DeviceVector, &TexManipulator_::mouseMoved> MouseMovedCaller;
void mouseUp( DeviceVector position ){
if( m_undo_begun ){
GlobalUndoSystem().finish( Scene_applyClosestTexture_getUndoName( bitfield_enabled( m_state, c_modifierShift ),
bitfield_enabled( m_state, c_modifierControl ),
bitfield_enabled( m_state, c_modifierAlt ) ) );
m_undo_begun = false;
}
g_mouseMovedCallback.clear();
g_mouseUpCallback.clear();
}
typedef MemberCaller1<TexManipulator_, DeviceVector, &TexManipulator_::mouseUp> MouseUpCaller;
};
class Selector_
{
RadiantSelectionSystem::EModifier modifier_for_state( ModifierFlags state ){
if ( ( state == c_modifier_toggle || state == c_modifier_toggle_face || state == c_modifier_face )
&& m_mouse2 )
return RadiantSelectionSystem::eReplace;
else
return RadiantSelectionSystem::eManipulator;
}
rect_t getDeviceArea() const {
const DeviceVector delta( m_current - m_start );
if ( m_mouseMovedWhilePressed && selecting() && delta.x() != 0 && delta.y() != 0 )
return SelectionBoxForArea( &m_start[0], &delta[0] );
else
return rect_t();
}
const DeviceVector& m_epsilon;
ModifierFlags m_state;
public:
DeviceVector m_start;
DeviceVector m_current;
bool m_mouse2;
bool m_mouseMoved;
bool m_mouseMovedWhilePressed;
bool m_paintSelect;
const View* m_view;
RectangleCallback m_window_update;
Selector_( const DeviceVector& epsilon ) :
m_epsilon( epsilon ),
m_state( c_modifierNone ),
m_start( 0.f, 0.f ),
m_current( 0.f, 0.f ),
m_mouse2( false ),
m_mouseMoved( false ),
m_mouseMovedWhilePressed( false ){
}
void draw_area(){
m_window_update( getDeviceArea() );
}
void testSelect( DeviceVector position ){
RadiantSelectionSystem::EModifier modifier = modifier_for_state( m_state );
if ( modifier != RadiantSelectionSystem::eManipulator ) {
const DeviceVector delta( position - m_start );
if ( m_mouseMovedWhilePressed && delta.x() != 0 && delta.y() != 0 ) {
getSelectionSystem().SelectArea( *m_view, SelectionBoxForArea( &m_start[0], &delta[0] ), ( m_state & c_modifier_face ) != c_modifierNone );
}
else if( !m_mouseMovedWhilePressed ){
if ( modifier == RadiantSelectionSystem::eReplace && !m_mouseMoved ) {
modifier = RadiantSelectionSystem::eCycle;
}
getSelectionSystem().SelectPoint( *m_view, &position[0], &m_epsilon[0], modifier, ( m_state & c_modifier_face ) != c_modifierNone );
}
}
m_start = m_current = DeviceVector( 0.f, 0.f );
draw_area();
}
void testSelect_simpleM1( DeviceVector position ){
if( g_bLeftMouseClickSelector )
getSelectionSystem().SelectPoint( *m_view, &device_constrained( position )[0], &m_epsilon[0], m_mouseMoved ? RadiantSelectionSystem::eReplace : RadiantSelectionSystem::eCycle, false );
}
bool selecting() const {
return m_state != c_modifier_manipulator && m_mouse2;
}
void setState( ModifierFlags state ){
const bool was_selecting = selecting();
m_state = state;
if ( was_selecting ^ selecting() ) {
draw_area();
}
}
void mouseDown( DeviceVector position ){
m_start = m_current = device_constrained( position );
if( !m_mouse2 && m_state != c_modifierNone ){
m_paintSelect = getSelectionSystem().SelectPoint_InitPaint( *m_view, &position[0], &m_epsilon[0], ( m_state & c_modifier_face ) != c_modifierNone );
}
}
void mouseMoved( DeviceVector position ){
m_current = device_constrained( position );
if( m_mouse2 ){
draw_area();
}
else if( m_state != c_modifier_manipulator ){
getSelectionSystem().SelectPoint( *m_view, &m_current[0], &m_epsilon[0],
m_paintSelect ? RadiantSelectionSystem::eSelect : RadiantSelectionSystem::eDeselect,
( m_state & c_modifier_face ) != c_modifierNone );
}
}
typedef MemberCaller1<Selector_, DeviceVector, &Selector_::mouseMoved> MouseMovedCaller;
void mouseUp( DeviceVector position ){
if( m_mouse2 ){
testSelect( device_constrained( position ) );
}
else{
m_start = m_current = DeviceVector( 0.0f, 0.0f );
}
g_mouseMovedCallback.clear();
g_mouseUpCallback.clear();
}
typedef MemberCaller1<Selector_, DeviceVector, &Selector_::mouseUp> MouseUpCaller;
};
class Manipulator_
{
DeviceVector getEpsilon(){
switch ( getSelectionSystem().ManipulatorMode() )
{
case SelectionSystem::eClip:
return m_epsilon / g_SELECT_EPSILON * ( g_SELECT_EPSILON + 4 );
case SelectionSystem::eDrag:
case SelectionSystem::eUV:
return m_epsilon;
default: //getSelectionSystem().transformOrigin_isTranslatable()
return m_epsilon / g_SELECT_EPSILON * 8;
}
}
const DeviceVector& m_epsilon;
const ModifierFlags& m_state;
public:
const View* m_view;
bool m_moving_transformOrigin;
bool m_mouseMovedWhilePressed;
Manipulator_( const DeviceVector& epsilon, const ModifierFlags& state ) :
m_epsilon( epsilon ),
m_state( state ),
m_moving_transformOrigin( false ),
m_mouseMovedWhilePressed( false ) {
}
bool mouseDown( DeviceVector position ){
if( getSelectionSystem().ManipulatorMode() == SelectionSystem::eClip )
Clipper_tryDoubleclick();
return getSelectionSystem().SelectManipulator( *m_view, &position[0], &getEpsilon()[0] );
}
void mouseMoved( DeviceVector position ){
if( m_mouseMovedWhilePressed )
getSelectionSystem().MoveSelected( *m_view, &position[0], bitfield_enabled( m_state, c_modifierShift ),
bitfield_enabled( m_state, c_modifierControl ),
bitfield_enabled( m_state, c_modifierAlt ) );
}
typedef MemberCaller1<Manipulator_, DeviceVector, &Manipulator_::mouseMoved> MouseMovedCaller;
void mouseUp( DeviceVector position ){
m_moving_transformOrigin = getSelectionSystem().endMove();
g_mouseMovedCallback.clear();
g_mouseUpCallback.clear();
}
typedef MemberCaller1<Manipulator_, DeviceVector, &Manipulator_::mouseUp> MouseUpCaller;
void highlight( DeviceVector position ){
getSelectionSystem().HighlightManipulator( *m_view, &position[0], &getEpsilon()[0] );
}
};
class RadiantWindowObserver final : public SelectionSystemWindowObserver
{
DeviceVector m_epsilon;
ModifierFlags m_state;
int m_width;
int m_height;
bool m_mouse_down;
const float m_moveEpsilon;
float m_move; /* released move after m_moveEnd, for tunnel selector decision: eReplace or eCycle */
float m_movePressed; /* pressed move after m_moveStart, for decision: m1 tunnel selector or manipulate and if to do tunnel selector at all */
DeviceVector m_moveStart;
DeviceVector m_moveEnd;
Selector_ m_selector;
Manipulator_ m_manipulator;
TexManipulator_ m_texmanipulator;
public:
RadiantWindowObserver() :
m_state( c_modifierNone ),
m_mouse_down( false ),
m_moveEpsilon( .01f ),
m_selector( m_epsilon ),
m_manipulator( m_epsilon, m_state ),
m_texmanipulator( m_epsilon, m_state ){
}
void release(){
delete this;
}
void setView( const View& view ){
m_selector.m_view = &view;
m_manipulator.m_view = &view;
m_texmanipulator.m_view = &view;
}
void setRectangleDrawCallback( const RectangleCallback& callback ){
m_selector.m_window_update = callback;
}
void updateEpsilon(){
m_epsilon = DeviceVector( g_SELECT_EPSILON / static_cast<float>( m_width ), g_SELECT_EPSILON / static_cast<float>( m_height ) );
}
void onSizeChanged( int width, int height ){
m_width = width;
m_height = height;
updateEpsilon();
}
void onMouseDown( const WindowVector& position, ButtonIdentifier button, ModifierFlags modifiers ){
updateEpsilon(); /* could have changed, as it is user setting */
const DeviceVector devicePosition( device( position ) );
if ( button == c_button_select || ( button == c_button_select2 && modifiers != c_modifierNone ) ) {
m_mouse_down = true;
const bool clipper2d( !m_manipulator.m_view->fill() && button == c_button_select && modifiers == c_modifierControl );
if( clipper2d && getSelectionSystem().ManipulatorMode() != SelectionSystem::eClip )
ClipperModeQuick();
if ( ( modifiers == c_modifier_manipulator
|| clipper2d
|| ( modifiers == c_modifierAlt && getSelectionSystem().Mode() == SelectionSystem::ePrimitive ) /* AltResize */
|| ( modifiers == ( c_modifierAlt | c_modifierControl ) && getSelectionSystem().Mode() == SelectionSystem::ePrimitive ) /* extrude */
) && m_manipulator.mouseDown( devicePosition ) ) {
g_mouseMovedCallback.insert( MouseEventCallback( Manipulator_::MouseMovedCaller( m_manipulator ) ) );
g_mouseUpCallback.insert( MouseEventCallback( Manipulator_::MouseUpCaller( m_manipulator ) ) );
}
else
{
m_selector.m_mouse2 = ( button != c_button_select );
m_selector.mouseDown( devicePosition );
g_mouseMovedCallback.insert( MouseEventCallback( Selector_::MouseMovedCaller( m_selector ) ) );
g_mouseUpCallback.insert( MouseEventCallback( Selector_::MouseUpCaller( m_selector ) ) );
}
}
else if ( button == c_button_texture ) {
m_mouse_down = true;
m_texmanipulator.mouseDown( devicePosition );
g_mouseMovedCallback.insert( MouseEventCallback( TexManipulator_::MouseMovedCaller( m_texmanipulator ) ) );
g_mouseUpCallback.insert( MouseEventCallback( TexManipulator_::MouseUpCaller( m_texmanipulator ) ) );
}
m_moveStart = devicePosition;
m_movePressed = 0.f;
}
void onMouseMotion( const WindowVector& position, ModifierFlags modifiers ){
m_selector.m_mouseMoved = mouse_moved_epsilon( position, m_moveEnd, m_move );
if ( m_mouse_down && !g_mouseMovedCallback.empty() ) {
m_manipulator.m_mouseMovedWhilePressed = m_selector.m_mouseMovedWhilePressed = mouse_moved_epsilon( position, m_moveStart, m_movePressed );
g_mouseMovedCallback.get() ( device( position ) );
}
else{
m_manipulator.highlight( device( position ) );
}
}
void onMouseUp( const WindowVector& position, ButtonIdentifier button, ModifierFlags modifiers ){
if ( ( button == c_button_select || button == c_button_select2 || button == c_button_texture ) && !g_mouseUpCallback.empty() ) {
g_mouseUpCallback.get() ( device( position ) );
m_mouse_down = false;
}
if( button == c_button_select /* L button w/o mouse moved = tunnel selection */
&& modifiers == c_modifierNone
&& !m_selector.m_mouseMovedWhilePressed
&& !m_manipulator.m_moving_transformOrigin
&& !( getSelectionSystem().Mode() == SelectionSystem::eComponent && getSelectionSystem().ManipulatorMode() == SelectionSystem::eDrag )
&& getSelectionSystem().ManipulatorMode() != SelectionSystem::eClip
&& getSelectionSystem().ManipulatorMode() != SelectionSystem::eBuild ){
m_selector.testSelect_simpleM1( device( position ) );
}
if( getSelectionSystem().ManipulatorMode() == SelectionSystem::eClip )
Clipper_tryDoubleclickedCut();
m_manipulator.m_moving_transformOrigin = false;
m_selector.m_mouseMoved = false;
m_selector.m_mouseMovedWhilePressed = false;
m_manipulator.m_mouseMovedWhilePressed = false;
m_moveEnd = device( position );
m_move = 0.f;
}
void onModifierDown( ModifierFlags type ){
g_modifiers = m_state = bitfield_enable( m_state, type );
m_selector.setState( m_state );
}
void onModifierUp( ModifierFlags type ){
g_modifiers = m_state = bitfield_disable( m_state, type );
m_selector.setState( m_state );
}
DeviceVector device( WindowVector window ) const {
return window_to_normalised_device( window, m_width, m_height );
}
bool mouse_moved_epsilon( const WindowVector& position, const DeviceVector& moveStart, float& move ){
if( move > m_moveEpsilon )
return true;
const DeviceVector devicePosition( device( position ) );
const float currentMove = std::max( fabs( devicePosition.x() - moveStart.x() ), fabs( devicePosition.y() - moveStart.y() ) );
move = std::max( move, currentMove );
// globalOutputStream() << move << " move\n";
return move > m_moveEpsilon;
}
/* support mouse_moved_epsilon with frozen pointer (camera freelook) */
void incMouseMove( const WindowVector& delta ){
const WindowVector normalized_delta( delta.x() * 2.f / m_width, delta.y() * 2.f / m_height );
m_moveEnd -= normalized_delta;
if( m_mouse_down )
m_moveStart -= normalized_delta;
}
};
SelectionSystemWindowObserver* NewWindowObserver(){
return new RadiantWindowObserver;
}
#include "modulesystem/singletonmodule.h"
#include "modulesystem/moduleregistry.h"
class SelectionDependencies :
public GlobalSceneGraphModuleRef,
public GlobalShaderCacheModuleRef,
public GlobalOpenGLModuleRef
{
};
class SelectionAPI : public TypeSystemRef
{
SelectionSystem* m_selection;
public:
typedef SelectionSystem Type;
STRING_CONSTANT( Name, "*" );
SelectionAPI(){
SelectionSystem_Construct();
m_selection = &getSelectionSystem();
}
~SelectionAPI(){
SelectionSystem_Destroy();
}
SelectionSystem* getTable(){
return m_selection;
}
};
typedef SingletonModule<SelectionAPI, SelectionDependencies> SelectionModule;
typedef Static<SelectionModule> StaticSelectionModule;
StaticRegisterModule staticRegisterSelection( StaticSelectionModule::instance() );