netradiant-custom/radiant/brush_primit.cpp
2021-05-24 20:23:09 +03:00

2169 lines
86 KiB
C++

/*
Copyright (C) 1999-2006 Id Software, Inc. and contributors.
For a list of contributors, see the accompanying CONTRIBUTORS file.
This file is part of GtkRadiant.
GtkRadiant is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
GtkRadiant is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GtkRadiant; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "brush_primit.h"
#include "debugging/debugging.h"
#include "itexdef.h"
#include "itextures.h"
#include <algorithm>
#include "stringio.h"
#include "texturelib.h"
#include "math/matrix.h"
#include "math/plane.h"
#include "math/aabb.h"
#include "winding.h"
#include "preferences.h"
bp_globals_t g_bp_globals;
float g_texdef_default_scale;
/*!
\brief Construct a transform from XYZ space to ST space (3d to 2d).
This will be one of three axis-aligned spaces, depending on the surface normal.
NOTE: could also be done by swapping values.
*/
void Normal_GetTransform( const Vector3& normal, Matrix4& transform ){
switch ( projectionaxis_for_normal( normal ) )
{
case eProjectionAxisZ:
transform[0] = 1;
transform[1] = 0;
transform[2] = 0;
transform[4] = 0;
transform[5] = 1;
transform[6] = 0;
transform[8] = 0;
transform[9] = 0;
transform[10] = 1;
break;
case eProjectionAxisY:
transform[0] = 1;
transform[1] = 0;
transform[2] = 0;
transform[4] = 0;
transform[5] = 0;
transform[6] = -1;
transform[8] = 0;
transform[9] = 1;
transform[10] = 0;
break;
case eProjectionAxisX:
transform[0] = 0;
transform[1] = 0;
transform[2] = 1;
transform[4] = 1;
transform[5] = 0;
transform[6] = 0;
transform[8] = 0;
transform[9] = 1;
transform[10] = 0;
break;
}
transform[3] = transform[7] = transform[11] = transform[12] = transform[13] = transform[14] = 0;
transform[15] = 1;
}
/*!
\brief Construct a transform in ST space from the texdef.
Transforms constructed from quake's texdef format are (-shift)*(1/scale)*(-rotate) with x translation sign flipped.
This would really make more sense if it was inverseof(shift*rotate*scale).. oh well.
*/
inline void Texdef_toTransform( const texdef_t& texdef, float width, float height, Matrix4& transform ){
double inverse_scale[2];
// transform to texdef shift/scale/rotate
inverse_scale[0] = 1 / ( texdef.scale[0] * width );
inverse_scale[1] = 1 / ( texdef.scale[1] * -height );
transform[12] = texdef.shift[0] / width;
transform[13] = -texdef.shift[1] / -height;
double c = cos( degrees_to_radians( -texdef.rotate ) );
double s = sin( degrees_to_radians( -texdef.rotate ) );
transform[0] = static_cast<float>( c * inverse_scale[0] );
transform[1] = static_cast<float>( s * inverse_scale[1] );
transform[4] = static_cast<float>( -s * inverse_scale[0] );
transform[5] = static_cast<float>( c * inverse_scale[1] );
transform[2] = transform[3] = transform[6] = transform[7] = transform[8] = transform[9] = transform[11] = transform[14] = 0;
transform[10] = transform[15] = 1;
}
inline void Valve220Texdef_toTransform( const texdef_t& texdef, float width, float height, Matrix4& transform ){
transform = g_matrix4_identity;
transform[12] = texdef.shift[0] / width;
transform[13] = -texdef.shift[1] / -height;
transform[0] = 1 / ( texdef.scale[0] * width );
transform[5] = 1 / ( texdef.scale[1] * -height );
}
inline void BPTexdef_toTransform( const brushprimit_texdef_t& bp_texdef, Matrix4& transform ){
transform = g_matrix4_identity;
transform.xx() = bp_texdef.coords[0][0];
transform.yx() = bp_texdef.coords[0][1];
transform.tx() = bp_texdef.coords[0][2];
transform.xy() = bp_texdef.coords[1][0];
transform.yy() = bp_texdef.coords[1][1];
transform.ty() = bp_texdef.coords[1][2];
}
inline void Texdef_toTransform( const TextureProjection& projection, float width, float height, Matrix4& transform ){
switch ( g_bp_globals.m_texdefTypeId )
{
case TEXDEFTYPEID_BRUSHPRIMITIVES:
BPTexdef_toTransform( projection.m_brushprimit_texdef, transform );
break;
case TEXDEFTYPEID_VALVE:
Valve220Texdef_toTransform( projection.m_texdef, width, height, transform );
break;
default: //case TEXDEFTYPEID_QUAKE:
Texdef_toTransform( projection.m_texdef, width, height, transform );
break;
}
}
// handles degenerate cases, just in case library atan2 doesn't
inline double arctangent_yx( double y, double x ){
if ( fabs( x ) > 1.0E-6 ) {
return atan2( y, x );
}
else if ( y > 0 ) {
return c_half_pi;
}
else
{
return -c_half_pi;
}
}
inline void Texdef_fromTransform( texdef_t& texdef, float width, float height, const Matrix4& transform ){
texdef.scale[0] = static_cast<float>( ( 1.0 / vector2_length( Vector2( transform[0], transform[4] ) ) ) / width );
texdef.scale[1] = static_cast<float>( ( 1.0 / vector2_length( Vector2( transform[1], transform[5] ) ) ) / height );
texdef.rotate = static_cast<float>( -radians_to_degrees( arctangent_yx( -transform[4], transform[0] ) ) );
if ( texdef.rotate == -180.0f ) {
texdef.rotate = 180.0f;
}
texdef.shift[0] = transform[12] * width;
texdef.shift[1] = transform[13] * height;
// If the 2d cross-product of the x and y axes is positive, one of the axes has a negative scale.
if ( vector2_cross( Vector2( transform[0], transform[4] ), Vector2( transform[1], transform[5] ) ) > 0 ) {
if ( texdef.rotate >= 180.0f ) {
texdef.rotate -= 180.0f;
texdef.scale[0] = -texdef.scale[0];
}
else
{
texdef.scale[1] = -texdef.scale[1];
}
}
//globalOutputStream() << "fromTransform: " << texdef.shift[0] << " " << texdef.shift[1] << " " << texdef.scale[0] << " " << texdef.scale[1] << " " << texdef.rotate << "\n";
}
inline void BPTexdef_fromTransform( brushprimit_texdef_t& bp_texdef, const Matrix4& transform ){
bp_texdef.coords[0][0] = transform.xx();
bp_texdef.coords[0][1] = transform.yx();
bp_texdef.coords[0][2] = transform.tx();
bp_texdef.coords[1][0] = transform.xy();
bp_texdef.coords[1][1] = transform.yy();
bp_texdef.coords[1][2] = transform.ty();
//globalOutputStream() << bp_texdef.coords[0][0] << " " << bp_texdef.coords[0][1] << " " << bp_texdef.coords[0][2] << "\n";
}
inline void Texdef_fromTransform( TextureProjection& projection, float width, float height, const Matrix4& transform ){
ASSERT_MESSAGE( ( transform[0] != 0 || transform[4] != 0 )
&& ( transform[1] != 0 || transform[5] != 0 ), "invalid texture matrix" );
if ( g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_BRUSHPRIMITIVES ) {
BPTexdef_fromTransform( projection.m_brushprimit_texdef, transform );
}
else
{
Texdef_fromTransform( projection.m_texdef, width, height, transform );
}
}
inline void Texdef_normalise( texdef_t& texdef, float width, float height ){
// it may be useful to also normalise the rotation here, if this function is used elsewhere.
texdef.shift[0] = float_mod( texdef.shift[0], width );
texdef.shift[1] = float_mod( texdef.shift[1], height );
//globalOutputStream() << "normalise: " << texdef.shift[0] << " " << texdef.shift[1] << " " << texdef.scale[0] << " " << texdef.scale[1] << " " << texdef.rotate << "\n";
}
/// this is supposed to work with brushprimit_texdef_t.removeScale()'d
inline void BPTexdef_normalise( brushprimit_texdef_t& bp_texdef, float width, float height ){
bp_texdef.coords[0][2] = float_mod( bp_texdef.coords[0][2], width );
bp_texdef.coords[1][2] = float_mod( bp_texdef.coords[1][2], height );
}
/// \brief Normalise \p projection for a given texture \p width and \p height.
///
/// All texture-projection translation (shift) values are congruent modulo the dimensions of the texture.
/// This function normalises shift values to the smallest positive congruent values.
void Texdef_normalise( TextureProjection& projection, float width, float height ){
if ( g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_BRUSHPRIMITIVES ) {
BPTexdef_normalise( projection.m_brushprimit_texdef, width, height );
}
else
{
Texdef_normalise( projection.m_texdef, width, height );
}
}
inline void DebugAxisBase( const Vector3& normal ){
Vector3 x, y;
ComputeAxisBase( normal, x, y );
globalOutputStream() << "BP debug: " << x << y << normal << "\n";
}
void Texdef_basisForNormal( const TextureProjection& projection, const Vector3& normal, Matrix4& basis ){
if ( g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_BRUSHPRIMITIVES ) {
basis = g_matrix4_identity;
ComputeAxisBase( normal, vector4_to_vector3( basis.x() ), vector4_to_vector3( basis.y() ) );
vector4_to_vector3( basis.z() ) = normal;
matrix4_transpose( basis );
//DebugAxisBase( normal );
}
else if ( g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_VALVE ) {
basis = g_matrix4_identity;
vector4_to_vector3( basis.x() ) = projection.m_basis_s;
vector4_to_vector3( basis.y() ) = vector3_negated( projection.m_basis_t );
vector4_to_vector3( basis.z() ) = vector3_normalised( vector3_cross( vector4_to_vector3( basis.x() ), vector4_to_vector3( basis.y() ) ) );
// matrix4_multiply_by_matrix4( basis, matrix4_rotation_for_z_degrees( -projection.m_texdef.rotate ) );
//globalOutputStream() << "debug: " << projection.m_basis_s << projection.m_basis_t << normal << "\n";
matrix4_transpose( basis );
}
else
{
Normal_GetTransform( normal, basis );
}
}
void Texdef_Construct_local2tex( const TextureProjection& projection, std::size_t width, std::size_t height, const Vector3& normal, Matrix4& local2tex ){
Texdef_toTransform( projection, (float)width, (float)height, local2tex );
{
Matrix4 xyz2st;
Texdef_basisForNormal( projection, normal, xyz2st );
matrix4_multiply_by_matrix4( local2tex, xyz2st );
}
}
void Texdef_EmitTextureCoordinates( const TextureProjection& projection, std::size_t width, std::size_t height, Winding& w, const Vector3& normal, const Matrix4& localToWorld ){
if ( w.numpoints < 3 ) {
return;
}
//globalOutputStream() << "normal: " << normal << "\n";
Matrix4 local2tex;
Texdef_toTransform( projection, (float)width, (float)height, local2tex );
//globalOutputStream() << "texdef: " << static_cast<const Vector3&>(local2tex.x()) << static_cast<const Vector3&>(local2tex.y()) << "\n";
#if 0
{
TextureProjection tmp;
Texdef_fromTransform( tmp, (float)width, (float)height, local2tex );
Matrix4 tmpTransform;
Texdef_toTransform( tmp, (float)width, (float)height, tmpTransform );
ASSERT_MESSAGE( matrix4_equal_epsilon( local2tex, tmpTransform, 0.0001f ), "bleh" );
}
#endif
{
Matrix4 xyz2st;
// we don't care if it's not normalised...
Texdef_basisForNormal( projection, matrix4_transformed_direction( localToWorld, normal ), xyz2st );
//globalOutputStream() << "basis: " << static_cast<const Vector3&>(xyz2st.x()) << static_cast<const Vector3&>(xyz2st.y()) << static_cast<const Vector3&>(xyz2st.z()) << "\n";
matrix4_multiply_by_matrix4( local2tex, xyz2st );
}
Vector3 tangent( vector3_normalised( vector4_to_vector3( matrix4_transposed( local2tex ).x() ) ) );
Vector3 bitangent( vector3_normalised( vector4_to_vector3( matrix4_transposed( local2tex ).y() ) ) );
matrix4_multiply_by_matrix4( local2tex, localToWorld );
for ( Winding::iterator i = w.begin(); i != w.end(); ++i )
{
Vector3 texcoord = matrix4_transformed_point( local2tex, ( *i ).vertex );
( *i ).texcoord[0] = texcoord[0];
( *i ).texcoord[1] = texcoord[1];
( *i ).tangent = tangent;
( *i ).bitangent = bitangent;
}
}
/*!
\brief Provides the axis-base of the texture ST space for this normal,
as they had been transformed to world XYZ space.
*/
void TextureAxisFromNormal( const Vector3& normal, Vector3& s, Vector3& t ){
switch ( projectionaxis_for_normal( normal ) )
{
case eProjectionAxisZ:
s[0] = 1;
s[1] = 0;
s[2] = 0;
t[0] = 0;
t[1] = -1;
t[2] = 0;
break;
case eProjectionAxisY:
s[0] = 1;
s[1] = 0;
s[2] = 0;
t[0] = 0;
t[1] = 0;
t[2] = -1;
break;
case eProjectionAxisX:
s[0] = 0;
s[1] = 1;
s[2] = 0;
t[0] = 0;
t[1] = 0;
t[2] = -1;
break;
}
}
void Texdef_Assign( texdef_t& td, const texdef_t& other ){
td = other;
}
void Texdef_Assign( texdef_t& td, const float* hShift, const float* vShift, const float* hScale, const float* vScale, const float* rotation ){
if( hShift ){
td.shift[0] = *hShift;
}
if( vShift ){
td.shift[1] = *vShift;
}
if( hScale ){
if( fabs( *hScale ) > 1e-5 ){
td.scale[0] = *hScale;
}
else{
td.scale[0] = -td.scale[0];
}
}
if( vScale ){
if( fabs( *vScale ) > 1e-5 ){
td.scale[1] = *vScale;
}
else{
td.scale[1] = -td.scale[1];
}
}
if( rotation ){
td.rotate = *rotation;
//td.rotate = static_cast<float>( float_to_integer( td.rotate * 100.f ) % 36000 ) / 100.f;
td.rotate = fmod( td.rotate, 360.f );
}
}
void Texdef_Shift( texdef_t& td, float s, float t ){
td.shift[0] += s;
td.shift[1] += t;
}
void Texdef_Scale( texdef_t& td, float s, float t ){
if( fabs( td.scale[0] + s ) > 1e-5 ){
td.scale[0] += s;
}
else{
td.scale[0] = -td.scale[0];
}
if( fabs( td.scale[1] + t ) > 1e-5 ){
td.scale[1] += t;
}
else{
td.scale[1] = -td.scale[1];
}
}
void Texdef_Rotate( texdef_t& td, float angle ){
td.rotate += angle;
td.rotate = fmod( td.rotate, 360.f );
}
#if 0
// NOTE: added these from Ritual's Q3Radiant
void ClearBounds( Vector3& mins, Vector3& maxs ){
mins[0] = mins[1] = mins[2] = 99999;
maxs[0] = maxs[1] = maxs[2] = -99999;
}
void AddPointToBounds( const Vector3& v, Vector3& mins, Vector3& maxs ){
int i;
float val;
for ( i = 0 ; i < 3 ; i++ )
{
val = v[i];
if ( val < mins[i] ) {
mins[i] = val;
}
if ( val > maxs[i] ) {
maxs[i] = val;
}
}
}
#endif
#if 0
template<typename Element>
inline BasicVector3<Element> vector3_inverse( const BasicVector3<Element>& self ){
return BasicVector3<Element>(
Element( 1.0 / self.x() ),
Element( 1.0 / self.y() ),
Element( 1.0 / self.z() )
);
}
#endif
#if 0
// compute a determinant using Sarrus rule
//++timo "inline" this with a macro
// NOTE : the three vectors are understood as columns of the matrix
inline float SarrusDet( const Vector3& a, const Vector3& b, const Vector3& c ){
return a[0] * b[1] * c[2] + b[0] * c[1] * a[2] + c[0] * a[1] * b[2]
- c[0] * b[1] * a[2] - a[1] * b[0] * c[2] - a[0] * b[2] * c[1];
}
// in many case we know three points A,B,C in two axis base B1 and B2
// and we want the matrix M so that A(B1) = T * A(B2)
// NOTE: 2D homogeneous space stuff
// NOTE: we don't do any check to see if there's a solution or we have a particular case .. need to make sure before calling
// NOTE: the third coord of the A,B,C point is ignored
// NOTE: see the commented out section to fill M and D
//++timo TODO: update the other members to use this when possible
void MatrixForPoints( Vector3 M[3], Vector3 D[2], brushprimit_texdef_t *T ){
// Vector3 M[3]; // columns of the matrix .. easier that way (the indexing is not standard! it's column-line .. later computations are easier that way)
float det;
// Vector3 D[2];
M[2][0] = 1.0f; M[2][1] = 1.0f; M[2][2] = 1.0f;
#if 0
// fill the data vectors
M[0][0] = A2[0]; M[0][1] = B2[0]; M[0][2] = C2[0];
M[1][0] = A2[1]; M[1][1] = B2[1]; M[1][2] = C2[1];
M[2][0] = 1.0f; M[2][1] = 1.0f; M[2][2] = 1.0f;
D[0][0] = A1[0];
D[0][1] = B1[0];
D[0][2] = C1[0];
D[1][0] = A1[1];
D[1][1] = B1[1];
D[1][2] = C1[1];
#endif
// solve
det = SarrusDet( M[0], M[1], M[2] );
T->coords[0][0] = SarrusDet( D[0], M[1], M[2] ) / det;
T->coords[0][1] = SarrusDet( M[0], D[0], M[2] ) / det;
T->coords[0][2] = SarrusDet( M[0], M[1], D[0] ) / det;
T->coords[1][0] = SarrusDet( D[1], M[1], M[2] ) / det;
T->coords[1][1] = SarrusDet( M[0], D[1], M[2] ) / det;
T->coords[1][2] = SarrusDet( M[0], M[1], D[1] ) / det;
}
#endif
#if 0
#ifdef _DEBUG
//#define DBG_BP
#endif
// texdef conversion
void FaceToBrushPrimitFace( face_t *f ){
Vector3 texX,texY;
Vector3 proj;
// ST of (0,0) (1,0) (0,1)
float ST[3][5]; // [ point index ] [ xyz ST ]
//++timo not used as long as brushprimit_texdef and texdef are static
/* f->brushprimit_texdef.contents=f->texdef.contents;
f->brushprimit_texdef.flags=f->texdef.flags;
f->brushprimit_texdef.value=f->texdef.value;
strcpy(f->brushprimit_texdef.name,f->texdef.name); */
#ifdef DBG_BP
if ( f->plane.normal[0] == 0.0f && f->plane.normal[1] == 0.0f && f->plane.normal[2] == 0.0f ) {
globalWarningStream() << "Warning : f->plane.normal is (0,0,0) in FaceToBrushPrimitFace\n";
}
// check d_texture
if ( !f->d_texture ) {
globalWarningStream() << "Warning : f.d_texture is 0 in FaceToBrushPrimitFace\n";
return;
}
#endif
// compute axis base
ComputeAxisBase( f->plane.normal,texX,texY );
// compute projection vector
VectorCopy( f->plane.normal,proj );
VectorScale( proj,f->plane.dist,proj );
// (0,0) in plane axis base is (0,0,0) in world coordinates + projection on the affine plane
// (1,0) in plane axis base is texX in world coordinates + projection on the affine plane
// (0,1) in plane axis base is texY in world coordinates + projection on the affine plane
// use old texture code to compute the ST coords of these points
VectorCopy( proj,ST[0] );
EmitTextureCoordinates( ST[0], f->pShader->getTexture(), f );
VectorCopy( texX,ST[1] );
VectorAdd( ST[1],proj,ST[1] );
EmitTextureCoordinates( ST[1], f->pShader->getTexture(), f );
VectorCopy( texY,ST[2] );
VectorAdd( ST[2],proj,ST[2] );
EmitTextureCoordinates( ST[2], f->pShader->getTexture(), f );
// compute texture matrix
f->brushprimit_texdef.coords[0][2] = ST[0][3];
f->brushprimit_texdef.coords[1][2] = ST[0][4];
f->brushprimit_texdef.coords[0][0] = ST[1][3] - f->brushprimit_texdef.coords[0][2];
f->brushprimit_texdef.coords[1][0] = ST[1][4] - f->brushprimit_texdef.coords[1][2];
f->brushprimit_texdef.coords[0][1] = ST[2][3] - f->brushprimit_texdef.coords[0][2];
f->brushprimit_texdef.coords[1][1] = ST[2][4] - f->brushprimit_texdef.coords[1][2];
}
// compute texture coordinates for the winding points
void EmitBrushPrimitTextureCoordinates( face_t * f, Winding * w ){
Vector3 texX,texY;
float x,y;
// compute axis base
ComputeAxisBase( f->plane.normal,texX,texY );
// in case the texcoords matrix is empty, build a default one
// same behaviour as if scale[0]==0 && scale[1]==0 in old code
if ( f->brushprimit_texdef.coords[0][0] == 0 && f->brushprimit_texdef.coords[1][0] == 0 && f->brushprimit_texdef.coords[0][1] == 0 && f->brushprimit_texdef.coords[1][1] == 0 ) {
f->brushprimit_texdef.coords[0][0] = 1.0f;
f->brushprimit_texdef.coords[1][1] = 1.0f;
ConvertTexMatWithQTexture( &f->brushprimit_texdef, 0, &f->brushprimit_texdef, f->pShader->getTexture() );
}
int i;
for ( i = 0 ; i < w.numpoints ; i++ )
{
x = vector3_dot( w.point_at( i ),texX );
y = vector3_dot( w.point_at( i ),texY );
#ifdef DBG_BP
if ( g_bp_globals.bNeedConvert ) {
// check we compute the same ST as the traditional texture computation used before
float S = f->brushprimit_texdef.coords[0][0] * x + f->brushprimit_texdef.coords[0][1] * y + f->brushprimit_texdef.coords[0][2];
float T = f->brushprimit_texdef.coords[1][0] * x + f->brushprimit_texdef.coords[1][1] * y + f->brushprimit_texdef.coords[1][2];
if ( fabs( S - w.point_at( i )[3] ) > 1e-2 || fabs( T - w.point_at( i )[4] ) > 1e-2 ) {
if ( fabs( S - w.point_at( i )[3] ) > 1e-4 || fabs( T - w.point_at( i )[4] ) > 1e-4 ) {
globalWarningStream() << "Warning : precision loss in brush -> brush primitive texture computation\n";
}
else{
globalWarningStream() << "Warning : brush -> brush primitive texture computation bug detected\n";
}
}
}
#endif
w.point_at( i )[3] = f->brushprimit_texdef.coords[0][0] * x + f->brushprimit_texdef.coords[0][1] * y + f->brushprimit_texdef.coords[0][2];
w.point_at( i )[4] = f->brushprimit_texdef.coords[1][0] * x + f->brushprimit_texdef.coords[1][1] * y + f->brushprimit_texdef.coords[1][2];
}
}
#endif
#if 0
typedef float texmat_t[2][3];
void TexMat_Scale( texmat_t texmat, float s, float t ){
texmat[0][0] *= s;
texmat[0][1] *= s;
texmat[0][2] *= s;
texmat[1][0] *= t;
texmat[1][1] *= t;
texmat[1][2] *= t;
}
void TexMat_Assign( texmat_t texmat, const texmat_t other ){
texmat[0][0] = other[0][0];
texmat[0][1] = other[0][1];
texmat[0][2] = other[0][2];
texmat[1][0] = other[1][0];
texmat[1][1] = other[1][1];
texmat[1][2] = other[1][2];
}
void ConvertTexMatWithDimensions( const texmat_t texmat1, std::size_t w1, std::size_t h1,
texmat_t texmat2, std::size_t w2, std::size_t h2 ){
TexMat_Assign( texmat2, texmat1 );
TexMat_Scale( texmat2, static_cast<float>( w1 ) / static_cast<float>( w2 ), static_cast<float>( h1 ) / static_cast<float>( h2 ) );
}
// convert a texture matrix between two qtexture_t
// if 0 for qtexture_t, basic 2x2 texture is assumed ( straight mapping between s/t coordinates and geometric coordinates )
void ConvertTexMatWithQTexture( const float texMat1[2][3], const qtexture_t *qtex1, float texMat2[2][3], const qtexture_t *qtex2 ){
ConvertTexMatWithDimensions( texMat1, ( qtex1 ) ? qtex1->width : 2, ( qtex1 ) ? qtex1->height : 2,
texMat2, ( qtex2 ) ? qtex2->width : 2, ( qtex2 ) ? qtex2->height : 2 );
}
void ConvertTexMatWithQTexture( const brushprimit_texdef_t *texMat1, const qtexture_t *qtex1, brushprimit_texdef_t *texMat2, const qtexture_t *qtex2 ){
ConvertTexMatWithQTexture( texMat1->coords, qtex1, texMat2->coords, qtex2 );
}
#endif
// compute a fake shift scale rot representation from the texture matrix
// these shift scale rot values are to be understood in the local axis base
// Note: this code looks similar to Texdef_fromTransform, but the algorithm is slightly different.
void TexMatToFakeTexCoords( const brushprimit_texdef_t& bp_texdef, texdef_t& texdef ){
#if 0
texdef.scale[0] = static_cast<float>( 1.0 / vector2_length( Vector2( bp_texdef.coords[0][0], bp_texdef.coords[1][0] ) ) );
texdef.scale[1] = static_cast<float>( 1.0 / vector2_length( Vector2( bp_texdef.coords[0][1], bp_texdef.coords[1][1] ) ) );
texdef.rotate = -static_cast<float>( radians_to_degrees( arctangent_yx( bp_texdef.coords[1][0], bp_texdef.coords[0][0] ) ) );
texdef.shift[0] = -bp_texdef.coords[0][2];
texdef.shift[1] = bp_texdef.coords[1][2];
// determine whether or not an axis is flipped using a 2d cross-product
double cross = vector2_cross( Vector2( bp_texdef.coords[0][0], bp_texdef.coords[0][1] ), Vector2( bp_texdef.coords[1][0], bp_texdef.coords[1][1] ) );
if ( cross < 0 ) {
// This is a bit of a compromise when using BPs--since we don't know *which* axis was flipped,
// we pick one (rather arbitrarily) using the following convention: If the X-axis is between
// 0 and 180, we assume it's the Y-axis that flipped, otherwise we assume it's the X-axis and
// subtract out 180 degrees to compensate.
if ( texdef.rotate >= 180.0f ) {
texdef.rotate -= 180.0f;
texdef.scale[0] = -texdef.scale[0];
}
else
{
texdef.scale[1] = -texdef.scale[1];
}
}
#else
texdef.scale[0] = static_cast<float>( 1.0 / vector2_length( Vector2( bp_texdef.coords[0][0], bp_texdef.coords[0][1] ) ) );
texdef.scale[1] = static_cast<float>( 1.0 / vector2_length( Vector2( bp_texdef.coords[1][0], bp_texdef.coords[1][1] ) ) );
if( bp_texdef.coords[0][0] < 0 ){
texdef.scale[0] = -texdef.scale[0];
}
if( bp_texdef.coords[1][1] < 0 ){
texdef.scale[1] = -texdef.scale[1];
}
#if 1
texdef.rotate = static_cast<float>( radians_to_degrees( acos( vector2_normalised( Vector2( bp_texdef.coords[0][0], bp_texdef.coords[0][1] ) )[0] ) ) );
if( bp_texdef.coords[0][1] > 0 ){
texdef.rotate = -texdef.rotate;
}
#else
texdef.rotate = static_cast<float>( radians_to_degrees( arctangent_yx( bp_texdef.coords[0][1], bp_texdef.coords[0][0] ) ) );
#endif
texdef.shift[0] = -bp_texdef.coords[0][2];
texdef.shift[1] = bp_texdef.coords[1][2];
#endif
}
// compute back the texture matrix from fake shift scale rot
void FakeTexCoordsToTexMat( const texdef_t& texdef, brushprimit_texdef_t& bp_texdef ){
double r = degrees_to_radians( -texdef.rotate );
double c = cos( r );
double s = sin( r );
double x = 1.0f / texdef.scale[0];
double y = 1.0f / texdef.scale[1];
bp_texdef.coords[0][0] = static_cast<float>( x * c );
bp_texdef.coords[1][0] = static_cast<float>( x * s );
bp_texdef.coords[0][1] = static_cast<float>( y * -s );
bp_texdef.coords[1][1] = static_cast<float>( y * c );
bp_texdef.coords[0][2] = -texdef.shift[0];
bp_texdef.coords[1][2] = texdef.shift[1];
// globalOutputStream() << "[ " << bp_texdef.coords[0][0] << " " << bp_texdef.coords[0][1] << " ][ " << bp_texdef.coords[1][0] << " " << bp_texdef.coords[1][1] << " ]\n";
}
#if 0 // texture locking (brush primit)
// used for texture locking
// will move the texture according to a geometric vector
void ShiftTextureGeometric_BrushPrimit( face_t *f, Vector3& delta ){
Vector3 texS,texT;
float tx,ty;
Vector3 M[3]; // columns of the matrix .. easier that way
float det;
Vector3 D[2];
// compute plane axis base ( doesn't change with translation )
ComputeAxisBase( f->plane.normal, texS, texT );
// compute translation vector in plane axis base
tx = vector3_dot( delta, texS );
ty = vector3_dot( delta, texT );
// fill the data vectors
M[0][0] = tx; M[0][1] = 1.0f + tx; M[0][2] = tx;
M[1][0] = ty; M[1][1] = ty; M[1][2] = 1.0f + ty;
M[2][0] = 1.0f; M[2][1] = 1.0f; M[2][2] = 1.0f;
D[0][0] = f->brushprimit_texdef.coords[0][2];
D[0][1] = f->brushprimit_texdef.coords[0][0] + f->brushprimit_texdef.coords[0][2];
D[0][2] = f->brushprimit_texdef.coords[0][1] + f->brushprimit_texdef.coords[0][2];
D[1][0] = f->brushprimit_texdef.coords[1][2];
D[1][1] = f->brushprimit_texdef.coords[1][0] + f->brushprimit_texdef.coords[1][2];
D[1][2] = f->brushprimit_texdef.coords[1][1] + f->brushprimit_texdef.coords[1][2];
// solve
det = SarrusDet( M[0], M[1], M[2] );
f->brushprimit_texdef.coords[0][0] = SarrusDet( D[0], M[1], M[2] ) / det;
f->brushprimit_texdef.coords[0][1] = SarrusDet( M[0], D[0], M[2] ) / det;
f->brushprimit_texdef.coords[0][2] = SarrusDet( M[0], M[1], D[0] ) / det;
f->brushprimit_texdef.coords[1][0] = SarrusDet( D[1], M[1], M[2] ) / det;
f->brushprimit_texdef.coords[1][1] = SarrusDet( M[0], D[1], M[2] ) / det;
f->brushprimit_texdef.coords[1][2] = SarrusDet( M[0], M[1], D[1] ) / det;
}
// shift a texture (texture adjustments) along it's current texture axes
// x and y are geometric values, which we must compute as ST increments
// this depends on the texture size and the pixel/texel ratio
void ShiftTextureRelative_BrushPrimit( face_t *f, float x, float y ){
float s,t;
// as a ratio against texture size
// the scale of the texture is not relevant here (we work directly on a transformation from the base vectors)
s = ( x * 2.0 ) / (float)f->pShader->getTexture().width;
t = ( y * 2.0 ) / (float)f->pShader->getTexture().height;
f->brushprimit_texdef.coords[0][2] -= s;
f->brushprimit_texdef.coords[1][2] -= t;
}
#endif
#if 0
// TTimo: FIXME: I don't like that, it feels broken
// (and it's likely that it's not used anymore)
// best fitted 2D vector is x.X+y.Y
void ComputeBest2DVector( Vector3& v, Vector3& X, Vector3& Y, int &x, int &y ){
double sx,sy;
sx = vector3_dot( v, X );
sy = vector3_dot( v, Y );
if ( fabs( sy ) > fabs( sx ) ) {
x = 0;
if ( sy > 0.0 ) {
y = 1;
}
else{
y = -1;
}
}
else
{
y = 0;
if ( sx > 0.0 ) {
x = 1;
}
else{
x = -1;
}
}
}
#endif
#if 0 // texdef conversion
void BrushPrimitFaceToFace( face_t *face ){
// we have parsed brush primitives and need conversion back to standard format
// NOTE: converting back is a quick hack, there's some information lost and we can't do anything about it
// FIXME: if we normalize the texture matrix to a standard 2x2 size, we end up with wrong scaling
// I tried various tweaks, no luck .. seems shifting is lost
brushprimit_texdef_t aux;
ConvertTexMatWithQTexture( &face->brushprimit_texdef, face->pShader->getTexture(), &aux, 0 );
TexMatToFakeTexCoords( aux.coords, face->texdef.shift, &face->texdef.rotate, face->texdef.scale );
face->texdef.scale[0] /= 2.0;
face->texdef.scale[1] /= 2.0;
}
#endif
#if 0 // texture locking (brush primit)
// TEXTURE LOCKING -----------------------------------------------------------------------------------------------------
// (Relevant to the editor only?)
// internally used for texture locking on rotation and flipping
// the general algorithm is the same for both lockings, it's only the geometric transformation part that changes
// so I wanted to keep it in a single function
// if there are more linear transformations that need the locking, going to a C++ or code pointer solution would be best
// (but right now I want to keep brush_primit.cpp strictly C)
bool txlock_bRotation;
// rotation locking params
int txl_nAxis;
float txl_fDeg;
Vector3 txl_vOrigin;
// flip locking params
Vector3 txl_matrix[3];
Vector3 txl_origin;
void TextureLockTransformation_BrushPrimit( face_t *f ){
Vector3 Orig,texS,texT; // axis base of initial plane
// used by transformation algo
Vector3 temp; int j;
Vector3 vRotate; // rotation vector
Vector3 rOrig,rvecS,rvecT; // geometric transformation of (0,0) (1,0) (0,1) { initial plane axis base }
Vector3 rNormal,rtexS,rtexT; // axis base for the transformed plane
Vector3 lOrig,lvecS,lvecT; // [2] are not used ( but useful for debugging )
Vector3 M[3];
float det;
Vector3 D[2];
// compute plane axis base
ComputeAxisBase( f->plane.normal, texS, texT );
VectorSet( Orig, 0.0f, 0.0f, 0.0f );
// compute coordinates of (0,0) (1,0) (0,1) ( expressed in initial plane axis base ) after transformation
// (0,0) (1,0) (0,1) ( expressed in initial plane axis base ) <-> (0,0,0) texS texT ( expressed world axis base )
// input: Orig, texS, texT (and the global locking params)
// output: rOrig, rvecS, rvecT, rNormal
if ( txlock_bRotation ) {
// rotation vector
VectorSet( vRotate, 0.0f, 0.0f, 0.0f );
vRotate[txl_nAxis] = txl_fDeg;
VectorRotateOrigin( Orig, vRotate, txl_vOrigin, rOrig );
VectorRotateOrigin( texS, vRotate, txl_vOrigin, rvecS );
VectorRotateOrigin( texT, vRotate, txl_vOrigin, rvecT );
// compute normal of plane after rotation
VectorRotate( f->plane.normal, vRotate, rNormal );
}
else
{
for ( j = 0 ; j < 3 ; j++ )
rOrig[j] = vector3_dot( vector3_subtracted( Orig, txl_origin ), txl_matrix[j] ) + txl_origin[j];
for ( j = 0 ; j < 3 ; j++ )
rvecS[j] = vector3_dot( vector3_subtracted( texS, txl_origin ), txl_matrix[j] ) + txl_origin[j];
for ( j = 0 ; j < 3 ; j++ )
rvecT[j] = vector3_dot( vector3_subtracted( texT, txl_origin ), txl_matrix[j] ) + txl_origin[j];
// we also need the axis base of the target plane, apply the transformation matrix to the normal too..
for ( j = 0 ; j < 3 ; j++ )
rNormal[j] = vector3_dot( f->plane.normal, txl_matrix[j] );
}
// compute rotated plane axis base
ComputeAxisBase( rNormal, rtexS, rtexT );
// compute S/T coordinates of the three points in rotated axis base ( in M matrix )
lOrig[0] = vector3_dot( rOrig, rtexS );
lOrig[1] = vector3_dot( rOrig, rtexT );
lvecS[0] = vector3_dot( rvecS, rtexS );
lvecS[1] = vector3_dot( rvecS, rtexT );
lvecT[0] = vector3_dot( rvecT, rtexS );
lvecT[1] = vector3_dot( rvecT, rtexT );
M[0][0] = lOrig[0]; M[1][0] = lOrig[1]; M[2][0] = 1.0f;
M[0][1] = lvecS[0]; M[1][1] = lvecS[1]; M[2][1] = 1.0f;
M[0][2] = lvecT[0]; M[1][2] = lvecT[1]; M[2][2] = 1.0f;
// fill data vector
D[0][0] = f->brushprimit_texdef.coords[0][2];
D[0][1] = f->brushprimit_texdef.coords[0][0] + f->brushprimit_texdef.coords[0][2];
D[0][2] = f->brushprimit_texdef.coords[0][1] + f->brushprimit_texdef.coords[0][2];
D[1][0] = f->brushprimit_texdef.coords[1][2];
D[1][1] = f->brushprimit_texdef.coords[1][0] + f->brushprimit_texdef.coords[1][2];
D[1][2] = f->brushprimit_texdef.coords[1][1] + f->brushprimit_texdef.coords[1][2];
// solve
det = SarrusDet( M[0], M[1], M[2] );
f->brushprimit_texdef.coords[0][0] = SarrusDet( D[0], M[1], M[2] ) / det;
f->brushprimit_texdef.coords[0][1] = SarrusDet( M[0], D[0], M[2] ) / det;
f->brushprimit_texdef.coords[0][2] = SarrusDet( M[0], M[1], D[0] ) / det;
f->brushprimit_texdef.coords[1][0] = SarrusDet( D[1], M[1], M[2] ) / det;
f->brushprimit_texdef.coords[1][1] = SarrusDet( M[0], D[1], M[2] ) / det;
f->brushprimit_texdef.coords[1][2] = SarrusDet( M[0], M[1], D[1] ) / det;
}
// texture locking
// called before the points on the face are actually rotated
void RotateFaceTexture_BrushPrimit( face_t *f, int nAxis, float fDeg, Vector3& vOrigin ){
// this is a placeholder to call the general texture locking algorithm
txlock_bRotation = true;
txl_nAxis = nAxis;
txl_fDeg = fDeg;
VectorCopy( vOrigin, txl_vOrigin );
TextureLockTransformation_BrushPrimit( f );
}
// compute the new brush primit texture matrix for a transformation matrix and a flip order flag (change plane orientation)
// this matches the select_matrix algo used in select.cpp
// this needs to be called on the face BEFORE any geometric transformation
// it will compute the texture matrix that will represent the same texture on the face after the geometric transformation is done
void ApplyMatrix_BrushPrimit( face_t *f, Vector3 matrix[3], Vector3& origin ){
// this is a placeholder to call the general texture locking algorithm
txlock_bRotation = false;
VectorCopy( matrix[0], txl_matrix[0] );
VectorCopy( matrix[1], txl_matrix[1] );
VectorCopy( matrix[2], txl_matrix[2] );
VectorCopy( origin, txl_origin );
TextureLockTransformation_BrushPrimit( f );
}
#endif
#if 0
// low level functions .. put in mathlib?
#define BPMatCopy( a,b ) {b[0][0] = a[0][0]; b[0][1] = a[0][1]; b[0][2] = a[0][2]; b[1][0] = a[1][0]; b[1][1] = a[1][1]; b[1][2] = a[1][2]; }
// apply a scale transformation to the BP matrix
#define BPMatScale( m,sS,sT ) {m[0][0] *= sS; m[1][0] *= sS; m[0][1] *= sT; m[1][1] *= sT; }
// apply a translation transformation to a BP matrix
#define BPMatTranslate( m,s,t ) {m[0][2] += m[0][0] * s + m[0][1] * t; m[1][2] += m[1][0] * s + m[1][1] * t; }
// 2D homogeneous matrix product C = A*B
void BPMatMul( float A[2][3], float B[2][3], float C[2][3] );
// apply a rotation (degrees)
void BPMatRotate( float A[2][3], float theta );
// don't do C==A!
void BPMatMul( float A[2][3], float B[2][3], float C[2][3] ){
C[0][0] = A[0][0] * B[0][0] + A[0][1] * B[1][0];
C[1][0] = A[1][0] * B[0][0] + A[1][1] * B[1][0];
C[0][1] = A[0][0] * B[0][1] + A[0][1] * B[1][1];
C[1][1] = A[1][0] * B[0][1] + A[1][1] * B[1][1];
C[0][2] = A[0][0] * B[0][2] + A[0][1] * B[1][2] + A[0][2];
C[1][2] = A[1][0] * B[0][2] + A[1][1] * B[1][2] + A[1][2];
}
void BPMatDump( float A[2][3] ){
globalOutputStream() << "" << A[0][0]
<< " " << A[0][1]
<< " " << A[0][2]
<< "\n" << A[1][0]
<< " " << A[1][2]
<< " " << A[1][2]
<< "\n0 0 1\n";
}
void BPMatRotate( float A[2][3], float theta ){
float m[2][3];
float aux[2][3];
memset( &m, 0, sizeof( float ) * 6 );
m[0][0] = static_cast<float>( cos( degrees_to_radians( theta ) ) );
m[0][1] = static_cast<float>( -sin( degrees_to_radians( theta ) ) );
m[1][0] = -m[0][1];
m[1][1] = m[0][0];
BPMatMul( A, m, aux );
BPMatCopy( aux,A );
}
#endif
#if 0 // camera-relative texture shift
// get the relative axes of the current texturing
void BrushPrimit_GetRelativeAxes( face_t *f, Vector3& vecS, Vector3& vecT ){
float vS[2],vT[2];
// first we compute them as expressed in plane axis base
// BP matrix has coordinates of plane axis base expressed in geometric axis base
// so we use the line vectors
vS[0] = f->brushprimit_texdef.coords[0][0];
vS[1] = f->brushprimit_texdef.coords[0][1];
vT[0] = f->brushprimit_texdef.coords[1][0];
vT[1] = f->brushprimit_texdef.coords[1][1];
// now compute those vectors in geometric space
Vector3 texS, texT; // axis base of the plane (geometric)
ComputeAxisBase( f->plane.normal, texS, texT );
// vecS[] = vS[0].texS[] + vS[1].texT[]
// vecT[] = vT[0].texS[] + vT[1].texT[]
vecS[0] = vS[0] * texS[0] + vS[1] * texT[0];
vecS[1] = vS[0] * texS[1] + vS[1] * texT[1];
vecS[2] = vS[0] * texS[2] + vS[1] * texT[2];
vecT[0] = vT[0] * texS[0] + vT[1] * texT[0];
vecT[1] = vT[0] * texS[1] + vT[1] * texT[1];
vecT[2] = vT[0] * texS[2] + vT[1] * texT[2];
}
// brush primitive texture adjustments, use the camera view to map adjustments
// ShiftTextureRelative_BrushPrimit ( s , t ) will shift relative to the texture
void ShiftTextureRelative_Camera( face_t *f, int x, int y ){
Vector3 vecS, vecT;
float XY[2]; // the values we are going to send for translation
float sgn[2]; // +1 or -1
int axis[2];
CamWnd* pCam;
// get the two relative texture axes for the current texturing
BrushPrimit_GetRelativeAxes( f, vecS, vecT );
// center point of the face, project it on the camera space
Vector3 C;
VectorClear( C );
int i;
for ( i = 0; i < f->face_winding->numpoints; i++ )
{
VectorAdd( C,f->face_winding->point_at( i ),C );
}
VectorScale( C,1.0 / f->face_winding->numpoints,C );
pCam = g_pParentWnd->GetCamWnd();
pCam->MatchViewAxes( C, vecS, axis[0], sgn[0] );
pCam->MatchViewAxes( C, vecT, axis[1], sgn[1] );
// this happens when the two directions can't be mapped on two different directions on the screen
// then the move will occur against a single axis
// (i.e. the user is not positioned well enough to send understandable shift commands)
// NOTE: in most cases this warning is not very relevant because the user would use one of the two axes
// for which the solution is easy (the other one being unknown)
// so this warning could be removed
if ( axis[0] == axis[1] ) {
globalWarningStream() << "Warning: degenerate in ShiftTextureRelative_Camera\n";
}
// compute the X Y geometric increments
// those geometric increments will be applied along the texture axes (the ones we computed above)
XY[0] = 0;
XY[1] = 0;
if ( x != 0 ) {
// moving right/left
XY[axis[0]] += sgn[0] * x;
}
if ( y != 0 ) {
XY[axis[1]] += sgn[1] * y;
}
// we worked out a move along vecS vecT, and we now it's geometric amplitude
// apply it
ShiftTextureRelative_BrushPrimit( f, XY[0], XY[1] );
}
#endif
#include "math/quaternion.h"
void Valve220_rotate( TextureProjection& projection, float angle ){
// globalOutputStream() << angle << " angle\n";
// globalOutputStream() << projection.m_texdef.rotate << " projection.m_texdef.rotate\n";
const Matrix4 rotmat = matrix4_rotation_for_axisangle( vector3_cross( projection.m_basis_s, projection.m_basis_t ), degrees_to_radians( -angle ) );
matrix4_transform_direction( rotmat, projection.m_basis_s );
matrix4_transform_direction( rotmat, projection.m_basis_t );
vector3_normalise( projection.m_basis_s );
vector3_normalise( projection.m_basis_t );
// globalOutputStream() << projection.m_basis_s << " projection.m_basis_s\n";
// globalOutputStream() << projection.m_basis_t << " projection.m_basis_t\n";
}
void BPTexdef_Assign( brushprimit_texdef_t& bp_td, const brushprimit_texdef_t& bp_other ){
bp_td = bp_other;
}
void BPTexdef_Shift( brushprimit_texdef_t& bp_td, float s, float t ){
// shift a texture (texture adjustments) along it's current texture axes
// x and y are geometric values, which we must compute as ST increments
// this depends on the texture size and the pixel/texel ratio
// as a ratio against texture size
// the scale of the texture is not relevant here (we work directly on a transformation from the base vectors)
bp_td.coords[0][2] -= s;
bp_td.coords[1][2] += t;
}
void BPTexdef_Scale( brushprimit_texdef_t& bp_td, float s, float t ){
#if 0
// apply same scale as the spinner button of the surface inspector
texdef_t texdef;
// compute fake shift scale rot
TexMatToFakeTexCoords( bp_td, texdef );
// update
texdef.scale[0] += s;
texdef.scale[1] += t;
// compute new normalized texture matrix
FakeTexCoordsToTexMat( texdef, bp_td );
#else
texdef_t texdef;
TexMatToFakeTexCoords( bp_td, texdef );
float scaleS = -1.f;
float scaleT = -1.f;
if( fabs( texdef.scale[0] + s ) > 1e-5 ){
scaleS = texdef.scale[0] / ( texdef.scale[0] + s );
}
if( fabs( texdef.scale[1] + t ) > 1e-5 ){
scaleT = texdef.scale[1] / ( texdef.scale[1] + t );
}
bp_td.coords[0][0] *= scaleS;
bp_td.coords[0][1] *= scaleS;
bp_td.coords[1][0] *= scaleT;
bp_td.coords[1][1] *= scaleT;
#endif
}
void BPTexdef_Rotate( brushprimit_texdef_t& bp_td, float angle ){
#if 0
// apply same scale as the spinner button of the surface inspector
texdef_t texdef;
// compute fake shift scale rot
TexMatToFakeTexCoords( bp_td, texdef );
// update
texdef.rotate += angle;
// compute new normalized texture matrix
FakeTexCoordsToTexMat( texdef, bp_td );
#else
const float x = bp_td.coords[0][0];
const float y = bp_td.coords[0][1];
const float x1 = bp_td.coords[1][0];
const float y1 = bp_td.coords[1][1];
const float s = sin( degrees_to_radians( -angle ) );
const float c = cos( degrees_to_radians( -angle ) );
bp_td.coords[0][0] = x * c - y * s ;
bp_td.coords[0][1] = x * s + y * c;
bp_td.coords[1][0] = x1 * c - y1 * s;
bp_td.coords[1][1] = x1 * s + y1 * c;
#endif
}
void BPTexdef_Assign( brushprimit_texdef_t& bp_td, const float* hShift, const float* vShift, const float* hScale, const float* vScale, const float* rotation ){
texdef_t texdef;
TexMatToFakeTexCoords( bp_td, texdef );
if( hShift ){
bp_td.coords[0][2] = -*hShift;
}
if( vShift ){
bp_td.coords[1][2] = *vShift;
}
if( hScale ){
float scaleS = -1.f;
if( fabs( *hScale ) > 1e-5 ){
scaleS = texdef.scale[0] / *hScale;
}
bp_td.coords[0][0] *= scaleS;
bp_td.coords[0][1] *= scaleS;
}
if( vScale ){
float scaleT = -1.f;
if( fabs( *vScale ) > 1e-5 ){
scaleT = texdef.scale[1] / *vScale;
}
bp_td.coords[1][0] *= scaleT;
bp_td.coords[1][1] *= scaleT;
}
if( rotation ){
BPTexdef_Rotate( bp_td, *rotation - texdef.rotate );
}
}
#if 0
void BPTexdef_Construct( brushprimit_texdef_t& bp_td, std::size_t width, std::size_t height ){
bp_td.coords[0][0] = 1.0f;
bp_td.coords[1][1] = 1.0f;
ConvertTexMatWithDimensions( bp_td.coords, 2, 2, bp_td.coords, width, height );
}
#endif
void Texdef_Assign( TextureProjection& projection, const TextureProjection& other, bool setBasis /*= true*/ ){
if ( g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_BRUSHPRIMITIVES ) {
BPTexdef_Assign( projection.m_brushprimit_texdef, other.m_brushprimit_texdef );
}
else
{
Texdef_Assign( projection.m_texdef, other.m_texdef );
if ( g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_VALVE && setBasis ) {
projection.m_basis_s = other.m_basis_s;
projection.m_basis_t = other.m_basis_t;
}
}
}
void Texdef_Assign( TextureProjection& projection, const float* hShift, const float* vShift, const float* hScale, const float* vScale, const float* rotation ){
if ( g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_BRUSHPRIMITIVES ) {
BPTexdef_Assign( projection.m_brushprimit_texdef, hShift, vShift, hScale, vScale, rotation );
}
else
{
if ( rotation && g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_VALVE ) {
Valve220_rotate( projection, *rotation - projection.m_texdef.rotate );
}
Texdef_Assign( projection.m_texdef, hShift, vShift, hScale, vScale, rotation );
}
}
void Texdef_Shift( TextureProjection& projection, float s, float t ){
if ( g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_BRUSHPRIMITIVES ) {
BPTexdef_Shift( projection.m_brushprimit_texdef, s, t );
}
else
{
Texdef_Shift( projection.m_texdef, s, t );
}
}
void Texdef_Scale( TextureProjection& projection, float s, float t ){
if ( g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_BRUSHPRIMITIVES ) {
BPTexdef_Scale( projection.m_brushprimit_texdef, s, t );
}
else
{
Texdef_Scale( projection.m_texdef, s, t );
}
}
void Texdef_Rotate( TextureProjection& projection, float angle ){
if ( g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_BRUSHPRIMITIVES ) {
BPTexdef_Rotate( projection.m_brushprimit_texdef, angle );
}
else
{
if ( g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_VALVE ) {
Valve220_rotate( projection, angle );
}
Texdef_Rotate( projection.m_texdef, angle );
}
}
void Texdef_FitTexture( TextureProjection& projection, std::size_t width, std::size_t height, const Vector3& normal, const Winding& w, float s_repeat, float t_repeat, bool only_dimension ){
if ( w.numpoints < 3 ) {
return;
}
Matrix4 st2tex;
Texdef_toTransform( projection, (float)width, (float)height, st2tex );
// the current texture transform
Matrix4 local2tex = st2tex;
{
Matrix4 xyz2st;
Texdef_basisForNormal( projection, normal, xyz2st );
matrix4_multiply_by_matrix4( local2tex, xyz2st );
}
// the bounds of the current texture transform
AABB bounds;
for ( Winding::const_iterator i = w.begin(); i != w.end(); ++i )
{
Vector3 texcoord = matrix4_transformed_point( local2tex, ( *i ).vertex );
aabb_extend_by_point_safe( bounds, texcoord );
}
bounds.origin.z() = 0;
bounds.extents.z() = 1;
// the bounds of a perfectly fitted texture transform
AABB perfect;
if( t_repeat == 0 && s_repeat == 0 ){
//bad user's input
t_repeat = s_repeat = 1;
perfect.origin = Vector3( s_repeat * 0.5, t_repeat * 0.5, 0 );
perfect.extents = Vector3( s_repeat * 0.5, t_repeat * 0.5, 1 );
}
if( t_repeat == 0 ){
if( only_dimension ){ //fit width, keep height
perfect.origin = Vector3( s_repeat * 0.5, bounds.origin.y(), 0 );
perfect.extents = Vector3( s_repeat * 0.5, bounds.extents.y(), 1 );
}
else{ //fit width
perfect.origin = Vector3( s_repeat * 0.5, s_repeat * 0.5 * bounds.extents.y() / bounds.extents.x(), 0 );
perfect.extents = Vector3( s_repeat * 0.5, s_repeat * 0.5 * bounds.extents.y() / bounds.extents.x(), 1 );
}
}
else if( s_repeat == 0 ){
if( only_dimension ){ //fit height, keep width
perfect.origin = Vector3( bounds.origin.x(), t_repeat * 0.5, 0 );
perfect.extents = Vector3( bounds.extents.x(), t_repeat * 0.5, 1 );
}
else{ //fit height
perfect.origin = Vector3( t_repeat * 0.5 * bounds.extents.x() / bounds.extents.y(), t_repeat * 0.5, 0 );
perfect.extents = Vector3( t_repeat * 0.5 * bounds.extents.x() / bounds.extents.y(), t_repeat * 0.5, 1 );
}
}
else{
perfect.origin = Vector3( s_repeat * 0.5, t_repeat * 0.5, 0 );
perfect.extents = Vector3( s_repeat * 0.5, t_repeat * 0.5, 1 );
}
// the difference between the current texture transform and the perfectly fitted transform
Matrix4 matrix( matrix4_translation_for_vec3( bounds.origin - perfect.origin ) );
matrix4_pivoted_scale_by_vec3( matrix, bounds.extents / perfect.extents, perfect.origin );
matrix4_affine_invert( matrix );
// apply the difference to the current texture transform
matrix4_premultiply_by_matrix4( st2tex, matrix );
Texdef_fromTransform( projection, (float)width, (float)height, st2tex );
//Texdef_normalise( projection, (float)width, (float)height );
if ( g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_BRUSHPRIMITIVES )
BPTexdef_normalise( projection.m_brushprimit_texdef, 1.f, 1.f ); /* scaleApplied is! */
else
Texdef_normalise( projection.m_texdef, (float)width, (float)height );
}
float Texdef_getDefaultTextureScale(){
return g_texdef_default_scale;
}
void TexDef_Construct_Default( TextureProjection& projection ){
projection.m_texdef.scale[0] = Texdef_getDefaultTextureScale();
projection.m_texdef.scale[1] = Texdef_getDefaultTextureScale();
if ( g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_BRUSHPRIMITIVES ) {
FakeTexCoordsToTexMat( projection.m_texdef, projection.m_brushprimit_texdef );
}
}
void ShiftScaleRotate_fromFace( texdef_t& shiftScaleRotate, const TextureProjection& projection ){
if ( g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_BRUSHPRIMITIVES ) {
TexMatToFakeTexCoords( projection.m_brushprimit_texdef, shiftScaleRotate );
}
else
{
shiftScaleRotate = projection.m_texdef;
}
}
void ShiftScaleRotate_toFace( const texdef_t& shiftScaleRotate, TextureProjection& projection ){
if ( g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_BRUSHPRIMITIVES ) {
// compute texture matrix
// the matrix returned must be understood as a qtexture_t with width=2 height=2
FakeTexCoordsToTexMat( shiftScaleRotate, projection.m_brushprimit_texdef );
}
else
{
projection.m_texdef = shiftScaleRotate;
}
}
inline void printAP( const TextureProjection& projection ){
globalOutputStream() << "AP: scale( " << projection.m_texdef.scale[0] << " " << projection.m_texdef.scale[1] << " ) shift( " << projection.m_texdef.shift[0] << " " << projection.m_texdef.shift[1] << " ) rotate: " << projection.m_texdef.rotate << "\n";
}
inline void printBP( const TextureProjection& projection ){
globalOutputStream() << "BP: ( " << projection.m_brushprimit_texdef.coords[0][0] << " " << projection.m_brushprimit_texdef.coords[0][1] << " " << projection.m_brushprimit_texdef.coords[0][2] << " ) ( " << projection.m_brushprimit_texdef.coords[1][0] << " " << projection.m_brushprimit_texdef.coords[1][1] << " " << projection.m_brushprimit_texdef.coords[1][2] << " )\n";
}
inline void print220( const TextureProjection& projection ){
globalOutputStream() << "220: projection.m_basis_s: " << projection.m_basis_s << " projection.m_basis_t: " << projection.m_basis_t << "\n";
printAP( projection );
}
#if 0
inline void print_vector3( const Vector3& v ){
globalOutputStream() << "( " << v.x() << " " << v.y() << " " << v.z() << " )\n";
}
inline void print_3x3( const Matrix4& m ){
globalOutputStream() << "( " << m.xx() << " " << m.xy() << " " << m.xz() << " ) "
<< "( " << m.yx() << " " << m.yy() << " " << m.yz() << " ) "
<< "( " << m.zx() << " " << m.zy() << " " << m.zz() << " )\n";
}
inline Matrix4 matrix4_rotation_for_vector3( const Vector3& x, const Vector3& y, const Vector3& z ){
return Matrix4(
x.x(), x.y(), x.z(), 0,
y.x(), y.y(), y.z(), 0,
z.x(), z.y(), z.z(), 0,
0, 0, 0, 1
);
}
inline Matrix4 matrix4_swap_axes( const Vector3& from, const Vector3& to ){
if ( from.x() != 0 && to.y() != 0 ) {
return matrix4_rotation_for_vector3( to, from, g_vector3_axis_z );
}
if ( from.x() != 0 && to.z() != 0 ) {
return matrix4_rotation_for_vector3( to, g_vector3_axis_y, from );
}
if ( from.y() != 0 && to.z() != 0 ) {
return matrix4_rotation_for_vector3( g_vector3_axis_x, to, from );
}
if ( from.y() != 0 && to.x() != 0 ) {
return matrix4_rotation_for_vector3( from, to, g_vector3_axis_z );
}
if ( from.z() != 0 && to.x() != 0 ) {
return matrix4_rotation_for_vector3( from, g_vector3_axis_y, to );
}
if ( from.z() != 0 && to.y() != 0 ) {
return matrix4_rotation_for_vector3( g_vector3_axis_x, from, to );
}
ERROR_MESSAGE( "unhandled axis swap case" );
return g_matrix4_identity;
}
inline Matrix4 matrix4_reflection_for_plane( const Plane3& plane ){
return Matrix4(
static_cast<float>( 1 - ( 2 * plane.a * plane.a ) ),
static_cast<float>( -2 * plane.a * plane.b ),
static_cast<float>( -2 * plane.a * plane.c ),
0,
static_cast<float>( -2 * plane.b * plane.a ),
static_cast<float>( 1 - ( 2 * plane.b * plane.b ) ),
static_cast<float>( -2 * plane.b * plane.c ),
0,
static_cast<float>( -2 * plane.c * plane.a ),
static_cast<float>( -2 * plane.c * plane.b ),
static_cast<float>( 1 - ( 2 * plane.c * plane.c ) ),
0,
static_cast<float>( -2 * plane.d * plane.a ),
static_cast<float>( -2 * plane.d * plane.b ),
static_cast<float>( -2 * plane.d * plane.c ),
1
);
}
inline Matrix4 matrix4_reflection_for_plane45( const Plane3& plane, const Vector3& from, const Vector3& to ){
Vector3 first = from;
Vector3 second = to;
if ( ( vector3_dot( from, plane.normal() ) > 0 ) == ( vector3_dot( to, plane.normal() ) > 0 ) ) {
first = vector3_negated( first );
second = vector3_negated( second );
}
#if 0
globalOutputStream() << "normal: ";
print_vector3( plane.normal() );
globalOutputStream() << "from: ";
print_vector3( first );
globalOutputStream() << "to: ";
print_vector3( second );
#endif
Matrix4 swap = matrix4_swap_axes( first, second );
//Matrix4 tmp = matrix4_reflection_for_plane( plane );
swap.tx() = -static_cast<float>( -2 * plane.a * plane.d );
swap.ty() = -static_cast<float>( -2 * plane.b * plane.d );
swap.tz() = -static_cast<float>( -2 * plane.c * plane.d );
return swap;
}
void Texdef_transformLocked_original( TextureProjection& projection, std::size_t width, std::size_t height, const Plane3& plane, const Matrix4& identity2transformed, const Vector3 centroid ){
// globalOutputStream() << "\t\t----------------------\n";
// printAP( projection );
// printBP( projection );
// globalOutputStream() << "width:" << width << " height" << height << "\n";
//globalOutputStream() << "identity2transformed: " << identity2transformed << "\n";
//globalOutputStream() << "plane.normal(): " << plane.normal() << "\n";
#if 0
const Vector3 normalTransformed( matrix4_transformed_direction( identity2transformed, plane.normal() ) );
#else //preserves scale in BP while scaling, but not shift //fixes QNAN
const Matrix4 maa( matrix4_for_normal_transform( identity2transformed ) );
const Vector3 normalTransformed( vector3_normalised( matrix4_transformed_direction( maa, plane.normal() ) ) );
#endif
//globalOutputStream() << "normalTransformed: " << normalTransformed << "\n";
// identity: identity space
// transformed: transformation
// stIdentity: base st projection space before transformation
// stTransformed: base st projection space after transformation
// stOriginal: original texdef space
// stTransformed2stOriginal = stTransformed -> transformed -> identity -> stIdentity -> stOriginal
Matrix4 identity2stIdentity;
Texdef_basisForNormal( projection, plane.normal(), identity2stIdentity );
//globalOutputStream() << "identity2stIdentity: " << identity2stIdentity << "\n";
if ( g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_VALVE ) {
matrix4_transform_direction( maa, projection.m_basis_s );
matrix4_transform_direction( maa, projection.m_basis_t );
}
Matrix4 transformed2stTransformed;
Texdef_basisForNormal( projection, normalTransformed, transformed2stTransformed );
// globalOutputStream() << "transformed2stTransformed: " << transformed2stTransformed << "\n";
Matrix4 stTransformed2identity( matrix4_affine_inverse( matrix4_multiplied_by_matrix4( transformed2stTransformed, identity2transformed ) ) );
// globalOutputStream() << "stTransformed2identity: " << stTransformed2identity << "\n";
Vector3 originalProjectionAxis( vector4_to_vector3( matrix4_affine_inverse( identity2stIdentity ).z() ) );
Vector3 transformedProjectionAxis( vector4_to_vector3( stTransformed2identity.z() ) );
Matrix4 stIdentity2stOriginal;
Texdef_toTransform( projection, (float)width, (float)height, stIdentity2stOriginal );
// globalOutputStream() << "stIdentity2stOriginal: " << stIdentity2stOriginal << "\n";
Matrix4 identity2stOriginal( matrix4_multiplied_by_matrix4( stIdentity2stOriginal, identity2stIdentity ) );
// globalOutputStream() << "identity2stOriginal: " << identity2stOriginal << "\n";
//globalOutputStream() << "originalProj: " << originalProjectionAxis << "\n";
//globalOutputStream() << "transformedProj: " << transformedProjectionAxis << "\n";
double dot = vector3_dot( originalProjectionAxis, transformedProjectionAxis );
//globalOutputStream() << "dot: " << dot << "\n";
if ( dot == 0 ) {
// The projection axis chosen for the transformed normal is at 90 degrees
// to the transformed projection axis chosen for the original normal.
// This happens when the projection axis is ambiguous - e.g. for the plane
// 'X == Y' the projection axis could be either X or Y.
//globalOutputStream() << "flipped\n";
#if 0
globalOutputStream() << "projection off by 90\n";
globalOutputStream() << "normal: ";
print_vector3( plane.normal() );
globalOutputStream() << "original projection: ";
print_vector3( originalProjectionAxis );
globalOutputStream() << "transformed projection: ";
print_vector3( transformedProjectionAxis );
#endif
Matrix4 identityCorrected = matrix4_reflection_for_plane45( plane, originalProjectionAxis, transformedProjectionAxis );
identity2stOriginal = matrix4_multiplied_by_matrix4( identity2stOriginal, identityCorrected );
}
else if( dot != dot ){ //catch QNAN: happens on scaling cuboid on Z and sometimes on rotating (in bp mode) //and in making seamless to self or parallel
return;
}
Matrix4 stTransformed2stOriginal = matrix4_multiplied_by_matrix4( identity2stOriginal, stTransformed2identity );
// globalOutputStream() << "stTransformed2stOriginal: " << stTransformed2stOriginal << "\n";
Texdef_fromTransform( projection, (float)width, (float)height, stTransformed2stOriginal );
// printAP( projection );
// printBP( projection );
Texdef_normalise( projection, (float)width, (float)height );
// globalOutputStream() << "norm "; printAP( projection );
// globalOutputStream() << "norm "; printBP( projection );
}
#endif
double Det3x3( double a00, double a01, double a02,
double a10, double a11, double a12,
double a20, double a21, double a22 ){
return
a00 * ( a11 * a22 - a12 * a21 )
- a01 * ( a10 * a22 - a12 * a20 )
+ a02 * ( a10 * a21 - a11 * a20 );
}
void BP_from_ST( brushprimit_texdef_t& bp, const DoubleVector3 points[3], const DoubleVector3 st[3], const DoubleVector3& normal, const bool normalize = true ){
double xyI[2], xyJ[2], xyK[2];
double stI[2], stJ[2], stK[2];
double D, D0, D1, D2;
DoubleVector3 texX, texY;
ComputeAxisBase( normal, texX, texY );
xyI[0] = vector3_dot( points[0], texX );
xyI[1] = vector3_dot( points[0], texY );
xyJ[0] = vector3_dot( points[1], texX );
xyJ[1] = vector3_dot( points[1], texY );
xyK[0] = vector3_dot( points[2], texX );
xyK[1] = vector3_dot( points[2], texY );
stI[0] = st[0][0]; stI[1] = st[0][1];
stJ[0] = st[1][0]; stJ[1] = st[1][1];
stK[0] = st[2][0]; stK[1] = st[2][1];
// - solve linear equations:
// - (x, y) := xyz . (texX, texY)
// - st[i] = texMat[i][0]*x + texMat[i][1]*y + texMat[i][2]
// (for three vertices)
D = Det3x3(
xyI[0], xyI[1], 1,
xyJ[0], xyJ[1], 1,
xyK[0], xyK[1], 1
);
if ( D != 0 ) {
for ( std::size_t i = 0; i < 2; ++i )
{
D0 = Det3x3(
stI[i], xyI[1], 1,
stJ[i], xyJ[1], 1,
stK[i], xyK[1], 1
);
D1 = Det3x3(
xyI[0], stI[i], 1,
xyJ[0], stJ[i], 1,
xyK[0], stK[i], 1
);
D2 = Det3x3(
xyI[0], xyI[1], stI[i],
xyJ[0], xyJ[1], stJ[i],
xyK[0], xyK[1], stK[i]
);
bp.coords[i][0] = D0 / D;
bp.coords[i][1] = D1 / D;
bp.coords[i][2] = normalize? fmod( D2 / D, 1.0 ) : ( D2 / D );
}
// globalOutputStream() << "BP out: ( " << bp.coords[0][0] << " " << bp.coords[0][1] << " " << bp.coords[0][2] << " ) ( " << bp.coords[1][0] << " " << bp.coords[1][1] << " " << bp.coords[1][2] << " )\n";
}
}
const Vector3 BaseAxes[] = {
Vector3( 0.0, 0.0, 1.0), Vector3( 1.0, 0.0, 0.0), Vector3( 0.0, -1.0, 0.0),
Vector3( 0.0, 0.0, -1.0), Vector3( 1.0, 0.0, 0.0), Vector3( 0.0, -1.0, 0.0),
Vector3( 1.0, 0.0, 0.0), Vector3( 0.0, 1.0, 0.0), Vector3( 0.0, 0.0, -1.0),
Vector3(-1.0, 0.0, 0.0), Vector3( 0.0, 1.0, 0.0), Vector3( 0.0, 0.0, -1.0),
Vector3( 0.0, 1.0, 0.0), Vector3( 1.0, 0.0, 0.0), Vector3( 0.0, 0.0, -1.0),
Vector3( 0.0, -1.0, 0.0), Vector3( 1.0, 0.0, 0.0), Vector3( 0.0, 0.0, -1.0),
};
std::size_t planeNormalIndex( const Vector3& normal ) {
#if 0
std::size_t bestIndex = 0;
float bestDot = 0.f;
for( std::size_t i = 0; i < 6; ++i ) {
const float dot = vector3_dot( normal, BaseAxes[i * 3] );
if( dot > bestDot ) { // no need to use -altaxis for qbsp, but -oldaxis is necessary
bestDot = dot;
bestIndex = i;
}
}
return bestIndex;
#else
switch ( projectionaxis_for_normal( normal ) )
{
case eProjectionAxisZ:
return normal.z() > 0 ? 0 : 1;
break;
case eProjectionAxisX:
return normal.x() > 0 ? 2 : 3;
break;
default: //case eProjectionAxisY:
return normal.y() > 0 ? 4 : 5;
break;
}
#endif
}
void AP_from_axes( const Vector3& axisX, const Vector3& axisY, const DoubleVector3& normal, std::size_t width, std::size_t height, const Vector3& invariant, const Vector2& invariantTexCoords, texdef_t& texdef ){
// obtain the texture plane norm and the base texture axes
const std::size_t index = planeNormalIndex( normal );
Vector3 xAxis = BaseAxes[index * 3 + 1];
Vector3 yAxis = BaseAxes[index * 3 + 2];
Vector3 zAxis = BaseAxes[( index / 2 ) * 6];
const Plane3 texturePlane( zAxis, 0 );
// project the transformed texture axes onto the new texture projection plane
const Vector3 projectedXAxis = plane3_project_point( texturePlane, axisX );
const Vector3 projectedYAxis = plane3_project_point( texturePlane, axisY );
const Vector3 normalizedXAxis = vector3_normalised( projectedXAxis );
const Vector3 normalizedYAxis = vector3_normalised( projectedYAxis );
// determine the rotation angle from the dot product of the new base axes and the transformed, projected and normalized texture axes
float cosX = vector3_dot( xAxis, normalizedXAxis );
float cosY = vector3_dot( yAxis, normalizedYAxis );
float radX = std::acos( cosX );
if( vector3_dot( vector3_cross( xAxis, normalizedXAxis ), zAxis ) < 0.0 )
radX *= -1.0f;
float radY = std::acos( cosY );
if( vector3_dot( vector3_cross( yAxis, normalizedYAxis ), zAxis ) < 0.0 )
radY *= -1.0f;
// choosing between the X and Y axis rotations
float rad = width >= height ? radX : radY;
// for some reason, when the texture plane normal is the Y axis, we must rotation clockwise
if( ( index / 2 ) * 6 == 12 )
rad *= -1.0f;
// doSetRotation( newNormal, newRotation, newRotation );
const Matrix4 rotmat = matrix4_rotation_for_axisangle( vector3_cross( yAxis, xAxis ), rad );
matrix4_transform_direction( rotmat, xAxis );
matrix4_transform_direction( rotmat, yAxis );
// finally compute the scaling factors
Vector2 scale( vector3_length( projectedXAxis ),
vector3_length( projectedYAxis ) );
// the sign of the scaling factors depends on the angle between the new texture axis and the projected transformed axis
if( vector3_dot( xAxis, normalizedXAxis ) < 0 )
scale[0] *= -1.0f;
if( vector3_dot( yAxis, normalizedYAxis ) < 0 )
scale[1] *= -1.0f;
// determine the new texture coordinates of the transformed center of the face, sans offsets
const Vector2 newInvariantTexCoords( vector3_dot( xAxis / scale[0], invariant ),
vector3_dot( yAxis / scale[1], invariant ) );
// globalOutputStream() << "newInvariantTexCoords: " << newInvariantTexCoords[0] << " " << newInvariantTexCoords[1] << "\n";
// since the center should be invariant, the offsets are determined by the difference of the current and
// the original texture coordinates of the center
texdef.shift[0] = invariantTexCoords[0] - newInvariantTexCoords[0];
texdef.shift[1] = invariantTexCoords[1] - newInvariantTexCoords[1];
texdef.scale[0] = scale[0];
texdef.scale[1] = scale[1];
texdef.rotate = radians_to_degrees( rad );
Texdef_normalise( texdef, (float)width, (float)height );
}
void Texdef_transformLocked( TextureProjection& projection, std::size_t width, std::size_t height, const Plane3& plane, const Matrix4& identity2transformed, const Vector3& invariant ){
if( identity2transformed == g_matrix4_identity ){
//globalOutputStream() << "identity2transformed == g_matrix4_identity\n";
return; //TODO FIXME !!! this (and whole pipeline?) is called with g_matrix4_identity after every transform //now only on freezeTransform, it seems
}
if ( g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_BRUSHPRIMITIVES ) {
// globalOutputStream() << "identity2transformed: " << identity2transformed << "\n";
// globalOutputStream() << "in "; printBP( projection );
DoubleVector3 texX, texY;
ComputeAxisBase( plane.normal(), texX, texY );
const DoubleVector3 anchor = plane.normal() * plane.dist();
DoubleVector3 points[3] = { anchor, anchor + texX, anchor + texY };
DoubleVector3 st[3];
Matrix4 local2tex;
Texdef_Construct_local2tex( projection, width, height, plane.normal(), local2tex );
for ( std::size_t i = 0; i < 3; ++i ){
st[i] = matrix4_transformed_point( local2tex, points[i] );
matrix4_transform_point( identity2transformed, points[i] );
}
#if 0
const DoubleVector3 normalTransformed( matrix4_transformed_normal( identity2transformed, plane.normal() ) );
#else
/* this is also handling scale = 0 case */
DoubleVector3 normalTransformed( plane3_for_points( points ).normal() );
if( matrix4_handedness( identity2transformed ) == MATRIX4_LEFTHANDED )
vector3_negate( normalTransformed );
#endif
BP_from_ST( projection.m_brushprimit_texdef, points, st, normalTransformed );
}
else if( g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_QUAKE ) {
// globalOutputStream() << "\t\t***: " << invariant << "\n";
// globalOutputStream() << "identity2transformed: " << identity2transformed << "\n";
// printAP( projection );
if( projection.m_texdef.scale[0] == 0.0f || projection.m_texdef.scale[1] == 0.0f ) {
return;
}
#if 0//not ok, if scaling
const Vector3 offset = matrix4_transformed_point( identity2transformed, Vector3( 0, 0, 0 ) );
Vector3 newNormal = matrix4_transformed_point( identity2transformed, plane.normal() ) - offset;
#elif 0
const Vector3 newNormal( matrix4_transformed_normal( identity2transformed, plane.normal() ) );
#elif 1
/* this is also handling scale = 0 case */
DoubleVector3 texX, texY;
ComputeAxisBase( plane.normal(), texX, texY );
const DoubleVector3 anchor = plane.normal() * plane.dist();
DoubleVector3 points[3] = { anchor, anchor + texX, anchor + texY };
for ( std::size_t i = 0; i < 3; ++i )
matrix4_transform_point( identity2transformed, points[i] );
Vector3 newNormal( plane3_for_points( points ).normal() );
if( matrix4_handedness( identity2transformed ) == MATRIX4_LEFTHANDED )
vector3_negate( newNormal );
#endif
#if 0
// fix some rounding errors - if the old and new texture axes are almost the same, use the old axis
if( vector3_equal_epsilon( newNormal, plane.normal(), 0.01f ) ){
newNormal = plane.normal();
}
#endif
// calculate the current texture coordinates of the origin
const std::size_t index = planeNormalIndex( plane.normal() );
Vector3 xAxis = BaseAxes[index * 3 + 1];
Vector3 yAxis = BaseAxes[index * 3 + 2];
Vector3 zAxis = BaseAxes[( index / 2 ) * 6];
// globalOutputStream() << xAxis << " " << yAxis << " " << zAxis << "\n";
Matrix4 rotmat = matrix4_rotation_for_axisangle( vector3_cross( yAxis, xAxis ), degrees_to_radians( projection.m_texdef.rotate ) );
matrix4_transform_direction( rotmat, xAxis );
matrix4_transform_direction( rotmat, yAxis );
const Vector2 invariantTexCoords( vector3_dot( xAxis / projection.m_texdef.scale[0], invariant ) + projection.m_texdef.shift[0],
vector3_dot( yAxis / projection.m_texdef.scale[1], invariant ) + projection.m_texdef.shift[1] );
// globalOutputStream() << "invariantTexCoords: " << invariantTexCoords[0] << " " << invariantTexCoords[1] << "\n";
// project the texture axes onto the boundary plane along the texture Z axis
const Vector3 boundaryOffset = plane3_project_point( plane, Vector3( 0, 0, 0 ), zAxis );
const Vector3 xAxisOnBoundary = plane3_project_point( plane, xAxis * projection.m_texdef.scale[0], zAxis ) - boundaryOffset;
const Vector3 yAxisOnBoundary = plane3_project_point( plane, yAxis * projection.m_texdef.scale[1], zAxis ) - boundaryOffset;
// transform the projected texture axes and compensate the translational component
const Vector3 transformedXAxis = matrix4_transformed_direction( identity2transformed, xAxisOnBoundary );
const Vector3 transformedYAxis = matrix4_transformed_direction( identity2transformed, yAxisOnBoundary );
AP_from_axes( transformedXAxis, transformedYAxis, newNormal, width, height, matrix4_transformed_point( identity2transformed, invariant ), invariantTexCoords, projection.m_texdef );
// globalOutputStream() << "new "; printAP( projection );
}
else{ //TEXDEFTYPEID_VALVE
// print220( projection );
// globalOutputStream() << "identity2transformed: " << identity2transformed << "\n";
/* hack: is often broken with niggative scale */
if( projection.m_texdef.scale[0] < 0 ){
projection.m_texdef.scale[0] *= -1.f;
projection.m_basis_s *= -1.f;
}
if( projection.m_texdef.scale[1] < 0 ){
projection.m_texdef.scale[1] *= -1.f;
projection.m_basis_t *= -1.f;
}
//globalOutputStream() << "plane.normal(): " << plane.normal() << "\n";
const Matrix4 maa( matrix4_for_normal_transform( identity2transformed ) );
const Vector3 normalTransformed( vector3_normalised( matrix4_transformed_direction( maa, plane.normal() ) ) );
//globalOutputStream() << "normalTransformed: " << normalTransformed << "\n";
// identity: identity space
// transformed: transformation
// stIdentity: base st projection space before transformation
// stTransformed: base st projection space after transformation
// stOriginal: original texdef space
// stTransformed2stOriginal = stTransformed -> transformed -> identity -> stIdentity -> stOriginal
Matrix4 identity2stIdentity;
Texdef_basisForNormal( projection, plane.normal(), identity2stIdentity );
matrix4_transform_direction( maa, projection.m_basis_s );
matrix4_transform_direction( maa, projection.m_basis_t );
Matrix4 transformed2stTransformed;
Texdef_basisForNormal( projection, normalTransformed, transformed2stTransformed );
Matrix4 stTransformed2identity( matrix4_affine_inverse( matrix4_multiplied_by_matrix4( transformed2stTransformed, identity2transformed ) ) ); //QNAN here, if some scale = 0
Matrix4 stIdentity2stOriginal;
Texdef_toTransform( projection, (float)width, (float)height, stIdentity2stOriginal );
Matrix4 identity2stOriginal( matrix4_multiplied_by_matrix4( stIdentity2stOriginal, identity2stIdentity ) );
Matrix4 stTransformed2stOriginal = matrix4_multiplied_by_matrix4( identity2stOriginal, stTransformed2identity );
if( stTransformed2stOriginal[0] == stTransformed2stOriginal[0] ){ /* catch QNAN: happens when projecting along plane */
Texdef_fromTransform( projection, (float)width, (float)height, stTransformed2stOriginal );
Texdef_normalise( projection, (float)width, (float)height );
projection.m_texdef.scale[0] /= vector3_length( projection.m_basis_s );
projection.m_texdef.scale[1] /= vector3_length( projection.m_basis_t );
}
vector3_normalise( projection.m_basis_s );
vector3_normalise( projection.m_basis_t );
}
}
void Texdef_transform( TextureProjection& projection, std::size_t width, std::size_t height, const Plane3& plane, const Matrix4& identity2transformed, const Vector3& invariant ){
if( identity2transformed == g_matrix4_identity ){
//globalOutputStream() << "identity2transformed == g_matrix4_identity\n";
return; //TODO FIXME !!! this (and whole pipeline?) is called with g_matrix4_identity after every transform //now only on freezeTransform, it seems
}
if ( g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_BRUSHPRIMITIVES ||
g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_VALVE ) {
Texdef_transformLocked( projection, width, height, plane, identity2transformed, invariant );
}
else if( g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_QUAKE ) {
// globalOutputStream() << "\t\t***: " << invariant << "\n";
// globalOutputStream() << "identity2transformed: " << identity2transformed << "\n";
// printAP( projection );
if( projection.m_texdef.scale[0] == 0.0f || projection.m_texdef.scale[1] == 0.0f ) {
return;
}
// calculate the current texture coordinates of the origin
const std::size_t index = planeNormalIndex( plane.normal() );
Vector3 xAxis = BaseAxes[index * 3 + 1];
Vector3 yAxis = BaseAxes[index * 3 + 2];
Vector3 zAxis = BaseAxes[( index / 2 ) * 6];
// globalOutputStream() << xAxis << " " << yAxis << " " << zAxis << "\n";
Matrix4 rotmat = matrix4_rotation_for_axisangle( vector3_cross( yAxis, xAxis ), degrees_to_radians( projection.m_texdef.rotate ) );
matrix4_transform_direction( rotmat, xAxis );
matrix4_transform_direction( rotmat, yAxis );
const Vector2 invariantTexCoords( vector3_dot( xAxis / projection.m_texdef.scale[0], invariant ) + projection.m_texdef.shift[0],
vector3_dot( yAxis / projection.m_texdef.scale[1], invariant ) + projection.m_texdef.shift[1] );
// globalOutputStream() << "invariantTexCoords: " << invariantTexCoords[0] << " " << invariantTexCoords[1] << "\n";
// project the texture axes onto the boundary plane along the texture Z axis
const Vector3 boundaryOffset = plane3_project_point( plane, Vector3( 0, 0, 0 ), zAxis );
const Vector3 xAxisOnBoundary = plane3_project_point( plane, xAxis * projection.m_texdef.scale[0], zAxis ) - boundaryOffset;
const Vector3 yAxisOnBoundary = plane3_project_point( plane, yAxis * projection.m_texdef.scale[1], zAxis ) - boundaryOffset;
// transform the projected texture axes and compensate the translational component
const Vector3 transformedXAxis = matrix4_transformed_direction( identity2transformed, xAxisOnBoundary );
const Vector3 transformedYAxis = matrix4_transformed_direction( identity2transformed, yAxisOnBoundary );
AP_from_axes( transformedXAxis, transformedYAxis, plane.normal(), width, height, matrix4_transformed_point( identity2transformed, invariant ), invariantTexCoords, projection.m_texdef );
}
}
#if 0
void Q3_to_matrix( const texdef_t& texdef, float width, float height, const Vector3& normal, Matrix4& matrix ){
Normal_GetTransform( normal, matrix );
Matrix4 transform;
Texdef_toTransform( texdef, width, height, transform );
matrix4_multiply_by_matrix4( matrix, transform );
}
void BP_from_matrix( brushprimit_texdef_t& bp_texdef, const Vector3& normal, const Matrix4& transform ){
Matrix4 basis;
basis = g_matrix4_identity;
ComputeAxisBase( normal, vector4_to_vector3( basis.x() ), vector4_to_vector3( basis.y() ) );
vector4_to_vector3( basis.z() ) = normal;
matrix4_transpose( basis );
matrix4_affine_invert( basis );
Matrix4 basis2texture = matrix4_multiplied_by_matrix4( basis, transform );
BPTexdef_fromTransform( bp_texdef, basis2texture );
}
void Q3_to_BP( const texdef_t& texdef, float width, float height, const Vector3& normal, brushprimit_texdef_t& bp_texdef ){
Matrix4 matrix;
Q3_to_matrix( texdef, width, height, normal, matrix );
BP_from_matrix( bp_texdef, normal, matrix );
}
#endif
/// for arbitrary texture projections
void Texdef_Construct_local2tex4projection( const texdef_t& texdef, std::size_t width, std::size_t height, const Vector3& normal, const Vector3* direction, Matrix4& local2tex ){
Texdef_toTransform( texdef, (float)width, (float)height, local2tex );
{
if( direction ){ //arbitrary
Matrix4 basis = g_matrix4_identity;
ComputeAxisBase( *direction, vector4_to_vector3( basis.x() ), vector4_to_vector3( basis.y() ) );
vector4_to_vector3( basis.z() ) = *direction;
matrix4_transpose( basis );
matrix4_multiply_by_matrix4( local2tex, basis );
}
else{ //AP
Matrix4 xyz2st;
Normal_GetTransform( normal, xyz2st ); //Texdef_basisForNormal for AP
matrix4_multiply_by_matrix4( local2tex, xyz2st );
}
}
}
inline void BPTexdef_fromST011( TextureProjection& projection, const Plane3& plane, const Matrix4& local2tex ){
DoubleVector3 texX, texY;
ComputeAxisBase( plane.normal(), texX, texY );
// (0,0) in plane axis base is (0,0,0) in world coordinates + projection on the affine plane
// (1,0) in plane axis base is texX in world coordinates + projection on the affine plane
// (0,1) in plane axis base is texY in world coordinates + projection on the affine plane
// use old texture code to compute the ST coords of these points
// ST of (0,0) (1,0) (0,1)
const DoubleVector3 anchor = plane.normal() * plane.dist();
const DoubleVector3 points[3] = { anchor, anchor + texX, anchor + texY };
DoubleVector3 st[3];
for ( std::size_t i = 0; i < 3; ++i ){
st[i] = matrix4_transformed_point( local2tex, points[i] );
//globalOutputStream() << st[i] << "\n";
}
// compute texture matrix
projection.m_brushprimit_texdef.coords[0][2] = float_mod( st[0][0], 1.0 );
projection.m_brushprimit_texdef.coords[1][2] = float_mod( st[0][1], 1.0 );
projection.m_brushprimit_texdef.coords[0][0] = st[1][0] - st[0][0];
projection.m_brushprimit_texdef.coords[1][0] = st[1][1] - st[0][1];
projection.m_brushprimit_texdef.coords[0][1] = st[2][0] - st[0][0];
projection.m_brushprimit_texdef.coords[1][1] = st[2][1] - st[0][1];
}
void Texdef_ProjectTexture( TextureProjection& projection, std::size_t width, std::size_t height, const Plane3& plane, const texdef_t& texdef, const Vector3* direction ){
if ( g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_BRUSHPRIMITIVES ) {
//texdef_t texdef;
//Q3_to_BP( texdef, (float)width, (float)height, normal, projection.m_brushprimit_texdef );
Matrix4 local2tex;
Texdef_Construct_local2tex4projection( texdef, width, height, plane.normal(), direction, local2tex );
BPTexdef_fromST011( projection, plane, local2tex );
}
else if ( g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_VALVE ) {
Texdef_Assign( projection.m_texdef, texdef );
if( direction ){ //arbitrary
ComputeAxisBase( *direction, projection.m_basis_s, projection.m_basis_t );
}
else{ //AP
Matrix4 basis;
Normal_GetTransform( plane.normal(), basis );
projection.m_basis_s = Vector3( basis.xx(), basis.yx(), basis.zx() );
projection.m_basis_t = Vector3( -basis.xy(), -basis.yy(), -basis.zy() );
}
Valve220_rotate( projection, texdef.rotate );
}
}
void Texdef_ProjectTexture( TextureProjection& projection, std::size_t width, std::size_t height, const Plane3& plane, TextureProjection other_proj, const Vector3& other_normal ){
if ( g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_BRUSHPRIMITIVES ) {
other_proj.m_brushprimit_texdef.addScale( width, height );
Matrix4 local2tex;
Texdef_Construct_local2tex( other_proj, width, height, other_normal, local2tex );
BPTexdef_fromST011( projection, plane, local2tex );
}
else
{
Texdef_Assign( projection.m_texdef, other_proj.m_texdef );
if ( g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_VALVE ) {
projection.m_basis_s = other_proj.m_basis_s;
projection.m_basis_t = other_proj.m_basis_t;
}
}
}
inline bool BP_degenerate( const brushprimit_texdef_t& bp ){
return vector2_cross( Vector2( bp.coords[0][0], bp.coords[0][1] ),
Vector2( bp.coords[1][0], bp.coords[1][1] ) ) == 0
|| bp.coords[0][0] != bp.coords[0][0];
}
/// g_bp_globals.m_texdefTypeId must be == TEXDEFTYPEID_BRUSHPRIMITIVES during this
void AP_from_BP( TextureProjection& projection, const Plane3& plane, std::size_t width, std::size_t height ) {
/* catch degenerate BP basis, go default if so */
if( BP_degenerate( projection.m_brushprimit_texdef ) ){
projection.m_texdef.scale[0] = Texdef_getDefaultTextureScale();
projection.m_texdef.scale[1] = Texdef_getDefaultTextureScale();
return;
}
const Vector3 invariant( static_cast<Vector3>( plane.normal() * plane.dist() ) );
Matrix4 local2tex;
Texdef_Construct_local2tex( projection, width, height, plane.normal(), local2tex );
const Vector3 st = matrix4_transformed_point( local2tex, invariant );
const Vector2 invariantTexCoords( st[0] * width, st[1] * height );
// globalOutputStream() << "local2tex: " << local2tex << "\n";
// globalOutputStream() << "invariantTexCoords: " << invariantTexCoords[0] << " " << invariantTexCoords[1] << "\n";
const Matrix4 tex2local = matrix4_affine_inverse( local2tex );
AP_from_axes( vector4_to_vector3( tex2local.x() ) / width, vector4_to_vector3( tex2local.y() ) / height, plane.normal(), width, height, invariant, invariantTexCoords, projection.m_texdef );
}
void Valve220_from_BP( TextureProjection& projection, const Plane3& plane, std::size_t width, std::size_t height ) {
// printBP( projection );
#if 0
projection.m_texdef.scale[0] = 1.0 / ( vector2_length( Vector2( projection.m_brushprimit_texdef.coords[0][0], projection.m_brushprimit_texdef.coords[0][1] ) ) * (double)width );
projection.m_texdef.scale[1] = 1.0 / ( vector2_length( Vector2( projection.m_brushprimit_texdef.coords[1][0], projection.m_brushprimit_texdef.coords[1][1] ) ) * (double)height );
projection.m_texdef.shift[0] = projection.m_brushprimit_texdef.coords[0][2] * (float)width;
projection.m_texdef.shift[1] = projection.m_brushprimit_texdef.coords[1][2] * (float)height;
projection.m_texdef.rotate = static_cast<float>( -radians_to_degrees( arctangent_yx( projection.m_brushprimit_texdef.coords[0][1], projection.m_brushprimit_texdef.coords[0][0] ) ) );
if( projection.m_brushprimit_texdef.coords[0][0] * projection.m_brushprimit_texdef.coords[1][1] < 0 )
projection.m_texdef.rotate = -projection.m_texdef.rotate;
DoubleVector3 texX, texY;
ComputeAxisBase( plane.normal(), texX, texY );
projection.m_basis_s = vector3_normalised( texX * static_cast<double>( projection.m_brushprimit_texdef.coords[0][0] ) + texY * static_cast<double>( projection.m_brushprimit_texdef.coords[0][1] ) );
projection.m_basis_t = vector3_normalised( texX * static_cast<double>( projection.m_brushprimit_texdef.coords[1][0] ) + texY * static_cast<double>( projection.m_brushprimit_texdef.coords[1][1] ) );
#else
/* more reliable values this way */
DoubleVector3 texX, texY;
ComputeAxisBase( plane.normal(), texX, texY );
/* catch degenerate BP basis, go default if so */
if( BP_degenerate( projection.m_brushprimit_texdef ) ){
projection.m_basis_s = texX;
projection.m_basis_t = texY;
projection.m_texdef.scale[0] = Texdef_getDefaultTextureScale();
projection.m_texdef.scale[1] = Texdef_getDefaultTextureScale();
return;
}
projection.m_basis_s = vector3_normalised( texX * static_cast<double>( projection.m_brushprimit_texdef.coords[0][0] ) + texY * static_cast<double>( projection.m_brushprimit_texdef.coords[0][1] ) );
projection.m_basis_t = vector3_normalised( texX * static_cast<double>( projection.m_brushprimit_texdef.coords[1][0] ) + texY * static_cast<double>( projection.m_brushprimit_texdef.coords[1][1] ) );
projection.m_brushprimit_texdef.removeScale( width, height );
TexMatToFakeTexCoords( projection.m_brushprimit_texdef, projection.m_texdef );
projection.m_texdef.shift[0] *= -1.f;
if( projection.m_brushprimit_texdef.coords[0][0] < 0 )
projection.m_basis_s *= -1.f;
if( projection.m_brushprimit_texdef.coords[1][1] < 0 )
projection.m_basis_t *= -1.f;
projection.m_brushprimit_texdef.addScale( width, height );
#endif
// print220( projection );
}
/// g_bp_globals.m_texdefTypeId == 'in' during this
void Texdef_Convert( TexdefTypeId in, TexdefTypeId out, const Plane3& plane, TextureProjection& projection, std::size_t width, std::size_t height ) {
switch( out ) {
case TEXDEFTYPEID_QUAKE:
{
if( in == TEXDEFTYPEID_VALVE ){
Matrix4 local2tex;
Texdef_Construct_local2tex( projection, width, height, plane.normal(), local2tex );
BPTexdef_fromST011( projection, plane, local2tex );
const TexdefTypeId tmp = g_bp_globals.m_texdefTypeId;
g_bp_globals.m_texdefTypeId = TEXDEFTYPEID_BRUSHPRIMITIVES;
AP_from_BP( projection, plane, width, height );
g_bp_globals.m_texdefTypeId = tmp;
}
else if( in == TEXDEFTYPEID_BRUSHPRIMITIVES ){
AP_from_BP( projection, plane, width, height );
}
}
break;
case TEXDEFTYPEID_BRUSHPRIMITIVES:
{
Matrix4 local2tex;
Texdef_Construct_local2tex( projection, width, height, plane.normal(), local2tex );
BPTexdef_fromST011( projection, plane, local2tex );
}
break;
case TEXDEFTYPEID_VALVE:
if( in == TEXDEFTYPEID_QUAKE ) {
Matrix4 basis;
Normal_GetTransform( plane.normal(), basis );
projection.m_basis_s = Vector3( basis.xx(), basis.yx(), basis.zx() );
projection.m_basis_t = Vector3( -basis.xy(), -basis.yy(), -basis.zy() );
Valve220_rotate( projection, projection.m_texdef.rotate );
}
else if( in == TEXDEFTYPEID_BRUSHPRIMITIVES ){
Valve220_from_BP( projection, plane, width, height );
}
break;
default:
break;
}
}
void Texdef_from_ST( TextureProjection& projection, const DoubleVector3 points[3], const DoubleVector3 st[3], std::size_t width, std::size_t height ){
const Plane3 plane( plane3_for_points( points ) );
brushprimit_texdef_t bp;
BP_from_ST( bp, points, st, plane.normal() );
if( BP_degenerate( bp ) )
return;
else
projection.m_brushprimit_texdef = bp;
if( g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_QUAKE ){
const TexdefTypeId tmp = g_bp_globals.m_texdefTypeId;
g_bp_globals.m_texdefTypeId = TEXDEFTYPEID_BRUSHPRIMITIVES;
AP_from_BP( projection, plane, width, height );
g_bp_globals.m_texdefTypeId = tmp;
}
else if( g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_VALVE ){
Valve220_from_BP( projection, plane, width, height );
}
}
void Texdef_Construct_local2tex_from_ST( const DoubleVector3 points[3], const DoubleVector3 st[3], Matrix4& local2tex ){
const Plane3 plane( plane3_for_points( points ) );
brushprimit_texdef_t bp;
BP_from_ST( bp, points, st, plane.normal(), false );
BPTexdef_toTransform( bp, local2tex );
{
// Texdef_basisForNormal
Matrix4 basis = g_matrix4_identity;
ComputeAxisBase( plane.normal(), vector4_to_vector3( basis.x() ), vector4_to_vector3( basis.y() ) );
vector4_to_vector3( basis.z() ) = plane.normal();
matrix4_transpose( basis );
matrix4_multiply_by_matrix4( local2tex, basis );
}
}
#if 0
void Texdef_getTexAxes( const TextureProjection& projection, const Plane3& plane, std::size_t width, std::size_t height, Matrix4& local2tex, Matrix4& tex2local, Matrix4& basis ){
Texdef_Construct_local2tex( projection, width, height, plane.normal(), local2tex );
basis = matrix4_affine_inverse( local2tex ); //natural texture basis in world space
TextureProjection proj( projection );
if( g_bp_globals.m_texdefTypeId != TEXDEFTYPEID_BRUSHPRIMITIVES ){
BPTexdef_fromST011( proj, plane, local2tex );
}
// rest is equal to inverse( BP local2tex ), but hopefully has more precision
BPTexdef_toTransform( proj.m_brushprimit_texdef, local2tex );
tex2local = matrix4_affine_inverse( local2tex );
//Texdef_basisForNormal( proj, plane.normal(), xyz2st ); minus inverse of orthogonal basis via transpose
Matrix4 xyz2st = g_matrix4_identity;
ComputeAxisBase( plane.normal(), vector4_to_vector3( xyz2st.x() ), vector4_to_vector3( xyz2st.y() ) );
vector4_to_vector3( xyz2st.z() ) = plane.normal();
// natural texture basis, aligned to the plane
matrix4_premultiply_by_matrix4( tex2local, xyz2st ); // ( A B )-1 = B-1 A-1
// return BP local2tex to have STs range according to tex2local
matrix4_multiply_by_matrix4( local2tex, matrix4_transposed( xyz2st ) );
}
#endif