netradiant-custom/radiant/selection.cpp
Garux 3f1c97ebeb Radiant:
misc...
	* selection system: fixes of: selecting point behind point (not perfectly precise distance)
					selecting occluded objects and faces via direct and indirect hits
	* select models from back in 2d
2017-08-02 09:53:56 +03:00

4471 lines
137 KiB
C++

/*
Copyright (C) 2001-2006, William Joseph.
All Rights Reserved.
This file is part of GtkRadiant.
GtkRadiant is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
GtkRadiant is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GtkRadiant; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "selection.h"
#include "debugging/debugging.h"
#include <map>
#include <list>
#include <set>
#include "windowobserver.h"
#include "iundo.h"
#include "ientity.h"
#include "cullable.h"
#include "renderable.h"
#include "selectable.h"
#include "editable.h"
#include "math/frustum.h"
#include "signal/signal.h"
#include "generic/object.h"
#include "selectionlib.h"
#include "render.h"
#include "view.h"
#include "renderer.h"
#include "stream/stringstream.h"
#include "eclasslib.h"
#include "generic/bitfield.h"
#include "generic/static.h"
#include "pivot.h"
#include "stringio.h"
#include "container/container.h"
#include "grid.h"
TextOutputStream& ostream_write( TextOutputStream& t, const Vector4& v ){
return t << "[ " << v.x() << " " << v.y() << " " << v.z() << " " << v.w() << " ]";
}
TextOutputStream& ostream_write( TextOutputStream& t, const Matrix4& m ){
return t << "[ " << m.x() << " " << m.y() << " " << m.z() << " " << m.t() << " ]";
}
struct Pivot2World
{
Matrix4 m_worldSpace;
Matrix4 m_viewpointSpace;
Matrix4 m_viewplaneSpace;
Vector3 m_axis_screen;
void update( const Matrix4& pivot2world, const Matrix4& modelview, const Matrix4& projection, const Matrix4& viewport ){
Pivot2World_worldSpace( m_worldSpace, pivot2world, modelview, projection, viewport );
Pivot2World_viewpointSpace( m_viewpointSpace, m_axis_screen, pivot2world, modelview, projection, viewport );
Pivot2World_viewplaneSpace( m_viewplaneSpace, pivot2world, modelview, projection, viewport );
}
};
void point_for_device_point( Vector3& point, const Matrix4& device2object, const float x, const float y, const float z ){
// transform from normalised device coords to object coords
point = vector4_projected( matrix4_transformed_vector4( device2object, Vector4( x, y, z, 1 ) ) );
}
void ray_for_device_point( Ray& ray, const Matrix4& device2object, const float x, const float y ){
// point at x, y, zNear
point_for_device_point( ray.origin, device2object, x, y, -1 );
// point at x, y, zFar
point_for_device_point( ray.direction, device2object, x, y, 1 );
// construct ray
vector3_subtract( ray.direction, ray.origin );
vector3_normalise( ray.direction );
}
bool sphere_intersect_ray( const Vector3& origin, float radius, const Ray& ray, Vector3& intersection ){
intersection = vector3_subtracted( origin, ray.origin );
const double a = vector3_dot( intersection, ray.direction );
const double d = radius * radius - ( vector3_dot( intersection, intersection ) - a * a );
if ( d > 0 ) {
intersection = vector3_added( ray.origin, vector3_scaled( ray.direction, a - sqrt( d ) ) );
return true;
}
else
{
intersection = vector3_added( ray.origin, vector3_scaled( ray.direction, a ) );
return false;
}
}
void ray_intersect_ray( const Ray& ray, const Ray& other, Vector3& intersection ){
intersection = vector3_subtracted( ray.origin, other.origin );
//float a = 1;//vector3_dot(ray.direction, ray.direction); // always >= 0
double dot = vector3_dot( ray.direction, other.direction );
//float c = 1;//vector3_dot(other.direction, other.direction); // always >= 0
double d = vector3_dot( ray.direction, intersection );
double e = vector3_dot( other.direction, intersection );
double D = 1 - dot * dot; //a*c - dot*dot; // always >= 0
if ( D < 0.000001 ) {
// the lines are almost parallel
intersection = vector3_added( other.origin, vector3_scaled( other.direction, e ) );
}
else
{
intersection = vector3_added( other.origin, vector3_scaled( other.direction, ( e - dot * d ) / D ) );
}
}
const Vector3 g_origin( 0, 0, 0 );
const float g_radius = 64;
void point_on_sphere( Vector3& point, const Matrix4& device2object, const float x, const float y ){
Ray ray;
ray_for_device_point( ray, device2object, x, y );
sphere_intersect_ray( g_origin, g_radius, ray, point );
}
void point_on_axis( Vector3& point, const Vector3& axis, const Matrix4& device2object, const float x, const float y ){
Ray ray;
ray_for_device_point( ray, device2object, x, y );
ray_intersect_ray( ray, Ray( Vector3( 0, 0, 0 ), axis ), point );
}
void point_on_plane( Vector3& point, const Matrix4& device2object, const float x, const float y ){
Matrix4 object2device( matrix4_full_inverse( device2object ) );
point = vector4_projected( matrix4_transformed_vector4( device2object, Vector4( x, y, object2device[14] / object2device[15], 1 ) ) );
}
//! a and b are unit vectors .. returns angle in radians
inline float angle_between( const Vector3& a, const Vector3& b ){
return static_cast<float>( 2.0 * atan2(
vector3_length( vector3_subtracted( a, b ) ),
vector3_length( vector3_added( a, b ) )
) );
}
#if defined( _DEBUG ) && !defined( _DEBUG_QUICKER )
class test_quat
{
public:
test_quat( const Vector3& from, const Vector3& to ){
Vector4 quaternion( quaternion_for_unit_vectors( from, to ) );
Matrix4 matrix( matrix4_rotation_for_quaternion( quaternion_multiplied_by_quaternion( quaternion, c_quaternion_identity ) ) );
}
private:
};
static test_quat bleh( g_vector3_axis_x, g_vector3_axis_y );
#endif
//! axis is a unit vector
inline void constrain_to_axis( Vector3& vec, const Vector3& axis ){
vec = vector3_normalised( vector3_added( vec, vector3_scaled( axis, -vector3_dot( vec, axis ) ) ) );
}
//! a and b are unit vectors .. a and b must be orthogonal to axis .. returns angle in radians
float angle_for_axis( const Vector3& a, const Vector3& b, const Vector3& axis ){
if ( vector3_dot( axis, vector3_cross( a, b ) ) > 0.0 ) {
return angle_between( a, b );
}
else{
return -angle_between( a, b );
}
}
float distance_for_axis( const Vector3& a, const Vector3& b, const Vector3& axis ){
return static_cast<float>( vector3_dot( b, axis ) - vector3_dot( a, axis ) );
}
class Manipulatable
{
public:
virtual void Construct( const Matrix4& device2manip, const float x, const float y, const AABB bounds, const Vector3 transform_origin ) = 0;
virtual void Transform( const Matrix4& manip2object, const Matrix4& device2manip, const float x, const float y, const bool snap, const bool snapbbox ) = 0;
};
void transform_local2object( Matrix4& object, const Matrix4& local, const Matrix4& local2object ){
object = matrix4_multiplied_by_matrix4(
matrix4_multiplied_by_matrix4( local2object, local ),
matrix4_full_inverse( local2object )
);
}
class Rotatable
{
public:
virtual void rotate( const Quaternion& rotation ) = 0;
};
class RotateFree : public Manipulatable
{
Vector3 m_start;
Rotatable& m_rotatable;
public:
RotateFree( Rotatable& rotatable )
: m_rotatable( rotatable ){
}
void Construct( const Matrix4& device2manip, const float x, const float y, const AABB bounds, const Vector3 transform_origin ){
point_on_sphere( m_start, device2manip, x, y );
vector3_normalise( m_start );
}
void Transform( const Matrix4& manip2object, const Matrix4& device2manip, const float x, const float y, const bool snap, const bool snapbbox ){
Vector3 current;
point_on_sphere( current, device2manip, x, y );
if( snap ){
Vector3 axis( 0, 0, 0 );
for( std::size_t i = 0; i < 3; ++i ){
if( current[i] == 0.0f ){
axis[i] = 1.0f;
break;
}
}
if( vector3_length_squared( axis ) != 0 ){
constrain_to_axis( current, axis );
m_rotatable.rotate( quaternion_for_axisangle( axis, float_snapped( angle_for_axis( m_start, current, axis ), static_cast<float>( c_pi / 12.0 ) ) ) );
return;
}
}
vector3_normalise( current );
m_rotatable.rotate( quaternion_for_unit_vectors( m_start, current ) );
}
};
class RotateAxis : public Manipulatable
{
Vector3 m_axis;
Vector3 m_start;
Rotatable& m_rotatable;
public:
RotateAxis( Rotatable& rotatable )
: m_rotatable( rotatable ){
}
void Construct( const Matrix4& device2manip, const float x, const float y, const AABB bounds, const Vector3 transform_origin ){
point_on_sphere( m_start, device2manip, x, y );
constrain_to_axis( m_start, m_axis );
}
/// \brief Converts current position to a normalised vector orthogonal to axis.
void Transform( const Matrix4& manip2object, const Matrix4& device2manip, const float x, const float y, const bool snap, const bool snapbbox ){
Vector3 current;
point_on_sphere( current, device2manip, x, y );
constrain_to_axis( current, m_axis );
if( snap ){
m_rotatable.rotate( quaternion_for_axisangle( m_axis, float_snapped( angle_for_axis( m_start, current, m_axis ), static_cast<float>( c_pi / 12.0 ) ) ) );
}
else{
m_rotatable.rotate( quaternion_for_axisangle( m_axis, angle_for_axis( m_start, current, m_axis ) ) );
}
}
void SetAxis( const Vector3& axis ){
m_axis = axis;
}
};
void translation_local2object( Vector3& object, const Vector3& local, const Matrix4& local2object ){
object = matrix4_get_translation_vec3(
matrix4_multiplied_by_matrix4(
matrix4_translated_by_vec3( local2object, local ),
matrix4_full_inverse( local2object )
)
);
}
class Translatable
{
public:
virtual void translate( const Vector3& translation ) = 0;
};
class TranslateAxis : public Manipulatable
{
Vector3 m_start;
Vector3 m_axis;
Translatable& m_translatable;
AABB m_bounds;
public:
TranslateAxis( Translatable& translatable )
: m_translatable( translatable ){
}
void Construct( const Matrix4& device2manip, const float x, const float y, const AABB bounds, const Vector3 transform_origin ){
point_on_axis( m_start, m_axis, device2manip, x, y );
m_bounds = bounds;
}
void Transform( const Matrix4& manip2object, const Matrix4& device2manip, const float x, const float y, const bool snap, const bool snapbbox ){
Vector3 current;
point_on_axis( current, m_axis, device2manip, x, y );
current = vector3_scaled( m_axis, distance_for_axis( m_start, current, m_axis ) );
translation_local2object( current, current, manip2object );
if( snapbbox ){
float grid = GetSnapGridSize();
Vector3 maxs( m_bounds.origin + m_bounds.extents );
Vector3 mins( m_bounds.origin - m_bounds.extents );
// globalOutputStream() << "current: " << current << "\n";
for( std::size_t i = 0; i < 3; ++i ){
if( m_axis[i] != 0.f ){
float snapto1 = float_snapped( maxs[i] + current[i] , grid );
float snapto2 = float_snapped( mins[i] + current[i] , grid );
float dist1 = fabs( fabs( maxs[i] + current[i] ) - fabs( snapto1 ) );
float dist2 = fabs( fabs( mins[i] + current[i] ) - fabs( snapto2 ) );
// globalOutputStream() << "maxs[i] + current[i]: " << maxs[i] + current[i] << " snapto1: " << snapto1 << " dist1: " << dist1 << "\n";
// globalOutputStream() << "mins[i] + current[i]: " << mins[i] + current[i] << " snapto2: " << snapto2 << " dist2: " << dist2 << "\n";
current[i] = dist2 > dist1 ? snapto1 - maxs[i] : snapto2 - mins[i];
}
}
}
else{
vector3_snap( current, GetSnapGridSize() );
}
m_translatable.translate( current );
}
void SetAxis( const Vector3& axis ){
m_axis = axis;
}
};
class TranslateFree : public Manipulatable
{
private:
Vector3 m_start;
Translatable& m_translatable;
AABB m_bounds;
public:
TranslateFree( Translatable& translatable )
: m_translatable( translatable ){
}
void Construct( const Matrix4& device2manip, const float x, const float y, const AABB bounds, const Vector3 transform_origin ){
point_on_plane( m_start, device2manip, x, y );
m_bounds = bounds;
}
void Transform( const Matrix4& manip2object, const Matrix4& device2manip, const float x, const float y, const bool snap, const bool snapbbox ){
Vector3 current;
point_on_plane( current, device2manip, x, y );
current = vector3_subtracted( current, m_start );
if( snap ){
for ( std::size_t i = 0; i < 3 ; ++i ){
if( fabs( current[i] ) >= fabs( current[(i + 1) % 3] ) ){
current[(i + 1) % 3] = 0.0f;
}
else{
current[i] = 0.0f;
}
}
}
translation_local2object( current, current, manip2object );
if( snapbbox ){
float grid = GetSnapGridSize();
Vector3 maxs( m_bounds.origin + m_bounds.extents );
Vector3 mins( m_bounds.origin - m_bounds.extents );
//globalOutputStream() << "current: " << current << "\n";
for( std::size_t i = 0; i < 3; ++i ){
if( fabs( current[i] ) > 0.000001f ){
float snapto1 = float_snapped( maxs[i] + current[i] , grid );
float snapto2 = float_snapped( mins[i] + current[i] , grid );
float dist1 = fabs( fabs( maxs[i] + current[i] ) - fabs( snapto1 ) );
float dist2 = fabs( fabs( mins[i] + current[i] ) - fabs( snapto2 ) );
current[i] = dist2 > dist1 ? snapto1 - maxs[i] : snapto2 - mins[i];
}
}
}
else{
vector3_snap( current, GetSnapGridSize() );
}
m_translatable.translate( current );
}
};
class Scalable
{
public:
virtual void scale( const Vector3& scaling ) = 0;
};
class ScaleAxis : public Manipulatable
{
private:
Vector3 m_start;
Vector3 m_axis;
Scalable& m_scalable;
Vector3 m_choosen_extent;
AABB m_bounds;
public:
ScaleAxis( Scalable& scalable )
: m_scalable( scalable ){
}
void Construct( const Matrix4& device2manip, const float x, const float y, const AABB bounds, const Vector3 transform_origin ){
point_on_axis( m_start, m_axis, device2manip, x, y );
m_choosen_extent = Vector3(
std::max( bounds.origin[0] + bounds.extents[0] - transform_origin[0], - bounds.origin[0] + bounds.extents[0] + transform_origin[0] ),
std::max( bounds.origin[1] + bounds.extents[1] - transform_origin[1], - bounds.origin[1] + bounds.extents[1] + transform_origin[1] ),
std::max( bounds.origin[2] + bounds.extents[2] - transform_origin[2], - bounds.origin[2] + bounds.extents[2] + transform_origin[2] )
);
m_bounds = bounds;
}
void Transform( const Matrix4& manip2object, const Matrix4& device2manip, const float x, const float y, const bool snap, const bool snapbbox ){
//globalOutputStream() << "manip2object: " << manip2object << " device2manip: " << device2manip << " x: " << x << " y:" << y <<"\n";
Vector3 current;
point_on_axis( current, m_axis, device2manip, x, y );
Vector3 delta = vector3_subtracted( current, m_start );
translation_local2object( delta, delta, manip2object );
vector3_snap( delta, GetSnapGridSize() );
Vector3 start( vector3_snapped( m_start, GetSnapGridSize() != 0.0f ? GetSnapGridSize() : 0.001f ) );
for ( std::size_t i = 0; i < 3 ; ++i ){ //prevent snapping to 0 with big gridsize
if( float_snapped( m_start[i], 0.001f ) != 0.0f && start[i] == 0.0f ){
start[i] = GetSnapGridSize();
}
}
//globalOutputStream() << "m_start: " << m_start << " start: " << start << " delta: " << delta <<"\n";
Vector3 scale(
start[0] == 0 ? 1 : 1 + delta[0] / start[0],
start[1] == 0 ? 1 : 1 + delta[1] / start[1],
start[2] == 0 ? 1 : 1 + delta[2] / start[2]
);
for( std::size_t i = 0; i < 3; i++ ){
if( m_choosen_extent[i] > 0.0625f && m_axis[i] != 0.f ){ //epsilon to prevent super high scale for set of models, having really small extent, formed by origins
scale[i] = ( m_choosen_extent[i] + delta[i] ) / m_choosen_extent[i];
if( snapbbox ){
float snappdwidth = float_snapped( scale[i] * m_bounds.extents[i] * 2.f, GetSnapGridSize() );
scale[i] = snappdwidth / ( m_bounds.extents[i] * 2.f );
}
}
}
if( snap ){
for( std::size_t i = 0; i < 3; i++ ){
if( scale[i] == 1.0f ){
scale[i] = vector3_dot( scale, m_axis );
}
}
}
//globalOutputStream() << "scale: " << scale <<"\n";
m_scalable.scale( scale );
}
void SetAxis( const Vector3& axis ){
m_axis = axis;
}
};
class ScaleFree : public Manipulatable
{
private:
Vector3 m_start;
Scalable& m_scalable;
Vector3 m_choosen_extent;
AABB m_bounds;
public:
ScaleFree( Scalable& scalable )
: m_scalable( scalable ){
}
void Construct( const Matrix4& device2manip, const float x, const float y, const AABB bounds, const Vector3 transform_origin ){
point_on_plane( m_start, device2manip, x, y );
m_choosen_extent = Vector3(
std::max( bounds.origin[0] + bounds.extents[0] - transform_origin[0], - bounds.origin[0] + bounds.extents[0] + transform_origin[0] ),
std::max( bounds.origin[1] + bounds.extents[1] - transform_origin[1], - bounds.origin[1] + bounds.extents[1] + transform_origin[1] ),
std::max( bounds.origin[2] + bounds.extents[2] - transform_origin[2], - bounds.origin[2] + bounds.extents[2] + transform_origin[2] )
);
m_bounds = bounds;
}
void Transform( const Matrix4& manip2object, const Matrix4& device2manip, const float x, const float y, const bool snap, const bool snapbbox ){
Vector3 current;
point_on_plane( current, device2manip, x, y );
Vector3 delta = vector3_subtracted( current, m_start );
translation_local2object( delta, delta, manip2object );
vector3_snap( delta, GetSnapGridSize() );
Vector3 start( vector3_snapped( m_start, GetSnapGridSize() != 0.0f ? GetSnapGridSize() : 0.001f ) );
for ( std::size_t i = 0; i < 3 ; ++i ){ //prevent snapping to 0 with big gridsize
if( float_snapped( m_start[i], 0.001f ) != 0.0f && start[i] == 0.0f ){
start[i] = GetSnapGridSize();
}
}
std::size_t ignore_axis = 0;
if( snap ){
for ( std::size_t i = 1; i < 3 ; ++i ){
if( fabs( m_start[i] ) < fabs( m_start[ignore_axis] ) ){
ignore_axis = i;
}
}
start[ignore_axis] = 0.f;
}
Vector3 scale(
start[0] == 0 ? 1 : 1 + delta[0] / start[0],
start[1] == 0 ? 1 : 1 + delta[1] / start[1],
start[2] == 0 ? 1 : 1 + delta[2] / start[2]
);
//globalOutputStream() << "m_start: " << m_start << " start: " << start << " delta: " << delta <<"\n";
for( std::size_t i = 0; i < 3; i++ ){
if( m_choosen_extent[i] > 0.0625f && start[i] != 0.f ){
scale[i] = ( m_choosen_extent[i] + delta[i] ) / m_choosen_extent[i];
if( snapbbox ){
float snappdwidth = float_snapped( scale[i] * m_bounds.extents[i] * 2.f, GetSnapGridSize() );
scale[i] = snappdwidth / ( m_bounds.extents[i] * 2.f );
}
}
}
//globalOutputStream() << "pre snap scale: " << scale <<"\n";
if( snap ){
float bestscale = ignore_axis != 0 ? scale[0] : scale[1];
for( std::size_t i = ignore_axis != 0 ? 1 : 2; i < 3; i++ ){
if( ignore_axis != i && fabs( scale[i] ) < fabs( bestscale ) ){
bestscale = scale[i];
}
//globalOutputStream() << "bestscale: " << bestscale <<"\n";
}
for( std::size_t i = 0; i < 3; i++ ){
if( ignore_axis != i ){
scale[i] = ( scale[i] < 0.0f ) ? -fabs( bestscale ) : fabs( bestscale );
}
}
}
//globalOutputStream() << "scale: " << scale <<"\n";
m_scalable.scale( scale );
}
};
class RenderableClippedPrimitive : public OpenGLRenderable
{
struct primitive_t
{
PointVertex m_points[9];
std::size_t m_count;
};
Matrix4 m_inverse;
std::vector<primitive_t> m_primitives;
public:
Matrix4 m_world;
void render( RenderStateFlags state ) const {
for ( std::size_t i = 0; i < m_primitives.size(); ++i )
{
glColorPointer( 4, GL_UNSIGNED_BYTE, sizeof( PointVertex ), &m_primitives[i].m_points[0].colour );
glVertexPointer( 3, GL_FLOAT, sizeof( PointVertex ), &m_primitives[i].m_points[0].vertex );
switch ( m_primitives[i].m_count )
{
case 1: break;
case 2: glDrawArrays( GL_LINES, 0, GLsizei( m_primitives[i].m_count ) ); break;
default: glDrawArrays( GL_POLYGON, 0, GLsizei( m_primitives[i].m_count ) ); break;
}
}
}
void construct( const Matrix4& world2device ){
m_inverse = matrix4_full_inverse( world2device );
m_world = g_matrix4_identity;
}
void insert( const Vector4 clipped[9], std::size_t count ){
add_one();
m_primitives.back().m_count = count;
for ( std::size_t i = 0; i < count; ++i )
{
Vector3 world_point( vector4_projected( matrix4_transformed_vector4( m_inverse, clipped[i] ) ) );
m_primitives.back().m_points[i].vertex = vertex3f_for_vector3( world_point );
}
}
void destroy(){
m_primitives.clear();
}
private:
void add_one(){
m_primitives.push_back( primitive_t() );
const Colour4b colour_clipped( 255, 127, 0, 255 );
for ( std::size_t i = 0; i < 9; ++i )
m_primitives.back().m_points[i].colour = colour_clipped;
}
};
#if defined( _DEBUG ) && !defined( _DEBUG_QUICKER )
#define DEBUG_SELECTION
#endif
#if defined( DEBUG_SELECTION )
Shader* g_state_clipped;
RenderableClippedPrimitive g_render_clipped;
#endif
#if 0
// dist_Point_to_Line(): get the distance of a point to a line.
// Input: a Point P and a Line L (in any dimension)
// Return: the shortest distance from P to L
float
dist_Point_to_Line( Point P, Line L ){
Vector v = L.P1 - L.P0;
Vector w = P - L.P0;
double c1 = dot( w,v );
double c2 = dot( v,v );
double b = c1 / c2;
Point Pb = L.P0 + b * v;
return d( P, Pb );
}
#endif
class Segment3D
{
typedef Vector3 point_type;
public:
Segment3D( const point_type& _p0, const point_type& _p1 )
: p0( _p0 ), p1( _p1 ){
}
point_type p0, p1;
};
typedef Vector3 Point3D;
inline double vector3_distance_squared( const Point3D& a, const Point3D& b ){
return vector3_length_squared( b - a );
}
// get the distance of a point to a segment.
Point3D segment_closest_point_to_point( const Segment3D& segment, const Point3D& point ){
Vector3 v = segment.p1 - segment.p0;
Vector3 w = point - segment.p0;
double c1 = vector3_dot( w,v );
if ( c1 <= 0 ) {
return segment.p0;
}
double c2 = vector3_dot( v,v );
if ( c2 <= c1 ) {
return segment.p1;
}
return Point3D( segment.p0 + v * ( c1 / c2 ) );
}
double segment_dist_to_point_3d( const Segment3D& segment, const Point3D& point ){
return vector3_distance_squared( point, segment_closest_point_to_point( segment, point ) );
}
typedef Vector3 point_t;
typedef const Vector3* point_iterator_t;
// crossing number test for a point in a polygon
// This code is patterned after [Franklin, 2000]
bool point_test_polygon_2d( const point_t& P, point_iterator_t start, point_iterator_t finish ){
std::size_t crossings = 0;
// loop through all edges of the polygon
for ( point_iterator_t prev = finish - 1, cur = start; cur != finish; prev = cur, ++cur )
{ // edge from (*prev) to (*cur)
if ( ( ( ( *prev )[1] <= P[1] ) && ( ( *cur )[1] > P[1] ) ) // an upward crossing
|| ( ( ( *prev )[1] > P[1] ) && ( ( *cur )[1] <= P[1] ) ) ) { // a downward crossing
// compute the actual edge-ray intersect x-coordinate
float vt = (float)( P[1] - ( *prev )[1] ) / ( ( *cur )[1] - ( *prev )[1] );
if ( P[0] < ( *prev )[0] + vt * ( ( *cur )[0] - ( *prev )[0] ) ) { // P[0] < intersect
++crossings; // a valid crossing of y=P[1] right of P[0]
}
}
}
return ( crossings & 0x1 ) != 0; // 0 if even (out), and 1 if odd (in)
}
inline double triangle_signed_area_XY( const Vector3& p0, const Vector3& p1, const Vector3& p2 ){
return ( ( p1[0] - p0[0] ) * ( p2[1] - p0[1] ) ) - ( ( p2[0] - p0[0] ) * ( p1[1] - p0[1] ) );
}
enum clipcull_t
{
eClipCullNone,
eClipCullCW,
eClipCullCCW,
};
inline SelectionIntersection select_point_from_clipped( Vector4& clipped ){
return SelectionIntersection( clipped[2] / clipped[3], static_cast<float>( vector3_length_squared( Vector3( clipped[0] / clipped[3], clipped[1] / clipped[3], 0 ) ) ) );
}
void BestPoint( std::size_t count, Vector4 clipped[9], SelectionIntersection& best, clipcull_t cull, const Plane3* plane = 0 ){
Vector3 normalised[9];
{
for ( std::size_t i = 0; i < count; ++i )
{
normalised[i][0] = clipped[i][0] / clipped[i][3];
normalised[i][1] = clipped[i][1] / clipped[i][3];
normalised[i][2] = clipped[i][2] / clipped[i][3];
}
}
// if( cull == eClipCullCW ){
// globalOutputStream() << "eClipCullCW\n";
// }
// else if( cull == eClipCullCCW ){
// globalOutputStream() << "eClipCullCCW\n";
// }
if ( cull != eClipCullNone && count > 2 ) {
double signed_area = triangle_signed_area_XY( normalised[0], normalised[1], normalised[2] );
if ( ( cull == eClipCullCW && signed_area > 0 )
|| ( cull == eClipCullCCW && signed_area < 0 ) ) {
return;
}
}
if ( count == 2 ) {
Segment3D segment( normalised[0], normalised[1] );
Point3D point = segment_closest_point_to_point( segment, Vector3( 0, 0, 0 ) );
assign_if_closer( best, SelectionIntersection( point.z(), 0 ) );
}
else if ( count > 2 && !point_test_polygon_2d( Vector3( 0, 0, 0 ), normalised, normalised + count ) ) {
Plane3 plaine;
if( !plane ){
plaine = plane3_for_points( normalised[0], normalised[1], normalised[2] );
plane = &plaine;
}
//globalOutputStream() << plane.a << " " << plane.b << " " << plane.c << " " << "\n";
point_iterator_t end = normalised + count;
for ( point_iterator_t previous = end - 1, current = normalised; current != end; previous = current, ++current )
{
Segment3D segment( *previous, *current );
Point3D point = segment_closest_point_to_point( segment, Vector3( 0, 0, 0 ) );
float depth = point.z();
point.z() = 0;
float distance = static_cast<float>( vector3_length_squared( point ) );
if( plane->c == 0 ){
assign_if_closer( best, SelectionIntersection( depth, distance ) );
}
else{
assign_if_closer( best, SelectionIntersection( depth, distance, ray_distance_to_plane(
Ray( Vector3( 0, 0, 0 ), Vector3( 0, 0, 1 ) ),
*plane
) ) );
// globalOutputStream() << static_cast<float>( ray_distance_to_plane(
// Ray( Vector3( 0, 0, 0 ), Vector3( 0, 0, 1 ) ),
// plane
// ) ) << "\n";
}
}
}
else if ( count > 2 ) {
Plane3 plaine;
if( !plane ){
plaine = plane3_for_points( normalised[0], normalised[1], normalised[2] );
plane = &plaine;
}
assign_if_closer(
best,
SelectionIntersection(
ray_distance_to_plane(
Ray( Vector3( 0, 0, 0 ), Vector3( 0, 0, 1 ) ),
*plane
),
0,
ray_distance_to_plane(
Ray( Vector3( 10, 8, 0 ), Vector3( 0, 0, 1 ) ),
*plane
)
)
);
}
#if defined( DEBUG_SELECTION )
if ( count >= 2 ) {
g_render_clipped.insert( clipped, count );
}
#endif
}
void LineStrip_BestPoint( const Matrix4& local2view, const PointVertex* vertices, const std::size_t size, SelectionIntersection& best ){
Vector4 clipped[2];
for ( std::size_t i = 0; ( i + 1 ) < size; ++i )
{
const std::size_t count = matrix4_clip_line( local2view, vertex3f_to_vector3( vertices[i].vertex ), vertex3f_to_vector3( vertices[i + 1].vertex ), clipped );
BestPoint( count, clipped, best, eClipCullNone );
}
}
void LineLoop_BestPoint( const Matrix4& local2view, const PointVertex* vertices, const std::size_t size, SelectionIntersection& best ){
Vector4 clipped[2];
for ( std::size_t i = 0; i < size; ++i )
{
const std::size_t count = matrix4_clip_line( local2view, vertex3f_to_vector3( vertices[i].vertex ), vertex3f_to_vector3( vertices[( i + 1 ) % size].vertex ), clipped );
BestPoint( count, clipped, best, eClipCullNone );
}
}
void Line_BestPoint( const Matrix4& local2view, const PointVertex vertices[2], SelectionIntersection& best ){
Vector4 clipped[2];
const std::size_t count = matrix4_clip_line( local2view, vertex3f_to_vector3( vertices[0].vertex ), vertex3f_to_vector3( vertices[1].vertex ), clipped );
BestPoint( count, clipped, best, eClipCullNone );
}
void Circle_BestPoint( const Matrix4& local2view, clipcull_t cull, const PointVertex* vertices, const std::size_t size, SelectionIntersection& best ){
Vector4 clipped[9];
for ( std::size_t i = 0; i < size; ++i )
{
const std::size_t count = matrix4_clip_triangle( local2view, g_vector3_identity, vertex3f_to_vector3( vertices[i].vertex ), vertex3f_to_vector3( vertices[( i + 1 ) % size].vertex ), clipped );
BestPoint( count, clipped, best, cull );
}
}
void Quad_BestPoint( const Matrix4& local2view, clipcull_t cull, const PointVertex* vertices, SelectionIntersection& best ){
Vector4 clipped[9];
{
const std::size_t count = matrix4_clip_triangle( local2view, vertex3f_to_vector3( vertices[0].vertex ), vertex3f_to_vector3( vertices[1].vertex ), vertex3f_to_vector3( vertices[3].vertex ), clipped );
BestPoint( count, clipped, best, cull );
}
{
const std::size_t count = matrix4_clip_triangle( local2view, vertex3f_to_vector3( vertices[1].vertex ), vertex3f_to_vector3( vertices[2].vertex ), vertex3f_to_vector3( vertices[3].vertex ), clipped );
BestPoint( count, clipped, best, cull );
}
}
struct FlatShadedVertex
{
Vertex3f vertex;
Colour4b colour;
Normal3f normal;
FlatShadedVertex(){
}
};
typedef FlatShadedVertex* FlatShadedVertexIterator;
void Triangles_BestPoint( const Matrix4& local2view, clipcull_t cull, FlatShadedVertexIterator first, FlatShadedVertexIterator last, SelectionIntersection& best ){
for ( FlatShadedVertexIterator x( first ), y( first + 1 ), z( first + 2 ); x != last; x += 3, y += 3, z += 3 )
{
Vector4 clipped[9];
BestPoint(
matrix4_clip_triangle(
local2view,
reinterpret_cast<const Vector3&>( ( *x ).vertex ),
reinterpret_cast<const Vector3&>( ( *y ).vertex ),
reinterpret_cast<const Vector3&>( ( *z ).vertex ),
clipped
),
clipped,
best,
cull
);
}
}
typedef std::multimap<SelectionIntersection, Selectable*> SelectableSortedSet;
class SelectionPool : public Selector
{
SelectableSortedSet m_pool;
SelectionIntersection m_intersection;
Selectable* m_selectable;
public:
void pushSelectable( Selectable& selectable ){
m_intersection = SelectionIntersection();
m_selectable = &selectable;
}
void popSelectable(){
addSelectable( m_intersection, m_selectable );
m_intersection = SelectionIntersection();
}
void addIntersection( const SelectionIntersection& intersection ){
assign_if_closer( m_intersection, intersection );
}
void addSelectable( const SelectionIntersection& intersection, Selectable* selectable ){
if ( intersection.valid() ) {
m_pool.insert( SelectableSortedSet::value_type( intersection, selectable ) );
}
}
typedef SelectableSortedSet::iterator iterator;
iterator begin(){
return m_pool.begin();
}
iterator end(){
return m_pool.end();
}
bool failed(){
return m_pool.empty();
}
};
const Colour4b g_colour_sphere( 0, 0, 0, 255 );
const Colour4b g_colour_screen( 0, 255, 255, 255 );
const Colour4b g_colour_selected( 255, 255, 0, 255 );
inline const Colour4b& colourSelected( const Colour4b& colour, bool selected ){
return ( selected ) ? g_colour_selected : colour;
}
template<typename remap_policy>
inline void draw_semicircle( const std::size_t segments, const float radius, PointVertex* vertices, remap_policy remap ){
const double increment = c_pi / double(segments << 2);
std::size_t count = 0;
float x = radius;
float y = 0;
remap_policy::set( vertices[segments << 2].vertex, -radius, 0, 0 );
while ( count < segments )
{
PointVertex* i = vertices + count;
PointVertex* j = vertices + ( ( segments << 1 ) - ( count + 1 ) );
PointVertex* k = i + ( segments << 1 );
PointVertex* l = j + ( segments << 1 );
#if 0
PointVertex* m = i + ( segments << 2 );
PointVertex* n = j + ( segments << 2 );
PointVertex* o = k + ( segments << 2 );
PointVertex* p = l + ( segments << 2 );
#endif
remap_policy::set( i->vertex, x,-y, 0 );
remap_policy::set( k->vertex,-y,-x, 0 );
#if 0
remap_policy::set( m->vertex,-x, y, 0 );
remap_policy::set( o->vertex, y, x, 0 );
#endif
++count;
{
const double theta = increment * count;
x = static_cast<float>( radius * cos( theta ) );
y = static_cast<float>( radius * sin( theta ) );
}
remap_policy::set( j->vertex, y,-x, 0 );
remap_policy::set( l->vertex,-x,-y, 0 );
#if 0
remap_policy::set( n->vertex,-y, x, 0 );
remap_policy::set( p->vertex, x, y, 0 );
#endif
}
}
class Manipulator
{
public:
virtual Manipulatable* GetManipulatable() = 0;
virtual void testSelect( const View& view, const Matrix4& pivot2world ){
}
virtual void render( Renderer& renderer, const VolumeTest& volume, const Matrix4& pivot2world ){
}
virtual void setSelected( bool select ) = 0;
virtual bool isSelected() const = 0;
};
inline Vector3 normalised_safe( const Vector3& self ){
if ( vector3_equal( self, g_vector3_identity ) ) {
return g_vector3_identity;
}
return vector3_normalised( self );
}
class RotateManipulator : public Manipulator
{
struct RenderableCircle : public OpenGLRenderable
{
Array<PointVertex> m_vertices;
RenderableCircle( std::size_t size ) : m_vertices( size ){
}
void render( RenderStateFlags state ) const {
glColorPointer( 4, GL_UNSIGNED_BYTE, sizeof( PointVertex ), &m_vertices.data()->colour );
glVertexPointer( 3, GL_FLOAT, sizeof( PointVertex ), &m_vertices.data()->vertex );
glDrawArrays( GL_LINE_LOOP, 0, GLsizei( m_vertices.size() ) );
}
void setColour( const Colour4b& colour ){
for ( Array<PointVertex>::iterator i = m_vertices.begin(); i != m_vertices.end(); ++i )
{
( *i ).colour = colour;
}
}
};
struct RenderableSemiCircle : public OpenGLRenderable
{
Array<PointVertex> m_vertices;
RenderableSemiCircle( std::size_t size ) : m_vertices( size ){
}
void render( RenderStateFlags state ) const {
glColorPointer( 4, GL_UNSIGNED_BYTE, sizeof( PointVertex ), &m_vertices.data()->colour );
glVertexPointer( 3, GL_FLOAT, sizeof( PointVertex ), &m_vertices.data()->vertex );
glDrawArrays( GL_LINE_STRIP, 0, GLsizei( m_vertices.size() ) );
}
void setColour( const Colour4b& colour ){
for ( Array<PointVertex>::iterator i = m_vertices.begin(); i != m_vertices.end(); ++i )
{
( *i ).colour = colour;
}
}
};
RotateFree m_free;
RotateAxis m_axis;
Vector3 m_axis_screen;
RenderableSemiCircle m_circle_x;
RenderableSemiCircle m_circle_y;
RenderableSemiCircle m_circle_z;
RenderableCircle m_circle_screen;
RenderableCircle m_circle_sphere;
SelectableBool m_selectable_x;
SelectableBool m_selectable_y;
SelectableBool m_selectable_z;
SelectableBool m_selectable_screen;
SelectableBool m_selectable_sphere;
Pivot2World m_pivot;
Matrix4 m_local2world_x;
Matrix4 m_local2world_y;
Matrix4 m_local2world_z;
bool m_circle_x_visible;
bool m_circle_y_visible;
bool m_circle_z_visible;
public:
static Shader* m_state_outer;
RotateManipulator( Rotatable& rotatable, std::size_t segments, float radius ) :
m_free( rotatable ),
m_axis( rotatable ),
m_circle_x( ( segments << 2 ) + 1 ),
m_circle_y( ( segments << 2 ) + 1 ),
m_circle_z( ( segments << 2 ) + 1 ),
m_circle_screen( segments << 3 ),
m_circle_sphere( segments << 3 ){
draw_semicircle( segments, radius, m_circle_x.m_vertices.data(), RemapYZX() );
draw_semicircle( segments, radius, m_circle_y.m_vertices.data(), RemapZXY() );
draw_semicircle( segments, radius, m_circle_z.m_vertices.data(), RemapXYZ() );
draw_circle( segments, radius * 1.15f, m_circle_screen.m_vertices.data(), RemapXYZ() );
draw_circle( segments, radius, m_circle_sphere.m_vertices.data(), RemapXYZ() );
m_selectable_sphere.setSelected( true );
}
void UpdateColours(){
m_circle_x.setColour( colourSelected( g_colour_x, m_selectable_x.isSelected() ) );
m_circle_y.setColour( colourSelected( g_colour_y, m_selectable_y.isSelected() ) );
m_circle_z.setColour( colourSelected( g_colour_z, m_selectable_z.isSelected() ) );
m_circle_screen.setColour( colourSelected( g_colour_screen, m_selectable_screen.isSelected() ) );
m_circle_sphere.setColour( colourSelected( g_colour_sphere, false ) );
}
void updateCircleTransforms(){
Vector3 localViewpoint( matrix4_transformed_direction( matrix4_transposed( m_pivot.m_worldSpace ), vector4_to_vector3( m_pivot.m_viewpointSpace.z() ) ) );
m_circle_x_visible = !vector3_equal_epsilon( g_vector3_axis_x, localViewpoint, 1e-6f );
if ( m_circle_x_visible ) {
m_local2world_x = g_matrix4_identity;
vector4_to_vector3( m_local2world_x.y() ) = normalised_safe(
vector3_cross( g_vector3_axis_x, localViewpoint )
);
vector4_to_vector3( m_local2world_x.z() ) = normalised_safe(
vector3_cross( vector4_to_vector3( m_local2world_x.x() ), vector4_to_vector3( m_local2world_x.y() ) )
);
matrix4_premultiply_by_matrix4( m_local2world_x, m_pivot.m_worldSpace );
}
m_circle_y_visible = !vector3_equal_epsilon( g_vector3_axis_y, localViewpoint, 1e-6f );
if ( m_circle_y_visible ) {
m_local2world_y = g_matrix4_identity;
vector4_to_vector3( m_local2world_y.z() ) = normalised_safe(
vector3_cross( g_vector3_axis_y, localViewpoint )
);
vector4_to_vector3( m_local2world_y.x() ) = normalised_safe(
vector3_cross( vector4_to_vector3( m_local2world_y.y() ), vector4_to_vector3( m_local2world_y.z() ) )
);
matrix4_premultiply_by_matrix4( m_local2world_y, m_pivot.m_worldSpace );
}
m_circle_z_visible = !vector3_equal_epsilon( g_vector3_axis_z, localViewpoint, 1e-6f );
if ( m_circle_z_visible ) {
m_local2world_z = g_matrix4_identity;
vector4_to_vector3( m_local2world_z.x() ) = normalised_safe(
vector3_cross( g_vector3_axis_z, localViewpoint )
);
vector4_to_vector3( m_local2world_z.y() ) = normalised_safe(
vector3_cross( vector4_to_vector3( m_local2world_z.z() ), vector4_to_vector3( m_local2world_z.x() ) )
);
matrix4_premultiply_by_matrix4( m_local2world_z, m_pivot.m_worldSpace );
}
}
void render( Renderer& renderer, const VolumeTest& volume, const Matrix4& pivot2world ){
m_pivot.update( pivot2world, volume.GetModelview(), volume.GetProjection(), volume.GetViewport() );
updateCircleTransforms();
// temp hack
UpdateColours();
renderer.SetState( m_state_outer, Renderer::eWireframeOnly );
renderer.SetState( m_state_outer, Renderer::eFullMaterials );
renderer.addRenderable( m_circle_screen, m_pivot.m_viewpointSpace );
renderer.addRenderable( m_circle_sphere, m_pivot.m_viewpointSpace );
if ( m_circle_x_visible ) {
renderer.addRenderable( m_circle_x, m_local2world_x );
}
if ( m_circle_y_visible ) {
renderer.addRenderable( m_circle_y, m_local2world_y );
}
if ( m_circle_z_visible ) {
renderer.addRenderable( m_circle_z, m_local2world_z );
}
}
void testSelect( const View& view, const Matrix4& pivot2world ){
m_pivot.update( pivot2world, view.GetModelview(), view.GetProjection(), view.GetViewport() );
updateCircleTransforms();
SelectionPool selector;
{
{
Matrix4 local2view( matrix4_multiplied_by_matrix4( view.GetViewMatrix(), m_local2world_x ) );
#if defined( DEBUG_SELECTION )
g_render_clipped.construct( view.GetViewMatrix() );
#endif
SelectionIntersection best;
LineStrip_BestPoint( local2view, m_circle_x.m_vertices.data(), m_circle_x.m_vertices.size(), best );
selector.addSelectable( best, &m_selectable_x );
}
{
Matrix4 local2view( matrix4_multiplied_by_matrix4( view.GetViewMatrix(), m_local2world_y ) );
#if defined( DEBUG_SELECTION )
g_render_clipped.construct( view.GetViewMatrix() );
#endif
SelectionIntersection best;
LineStrip_BestPoint( local2view, m_circle_y.m_vertices.data(), m_circle_y.m_vertices.size(), best );
selector.addSelectable( best, &m_selectable_y );
}
{
Matrix4 local2view( matrix4_multiplied_by_matrix4( view.GetViewMatrix(), m_local2world_z ) );
#if defined( DEBUG_SELECTION )
g_render_clipped.construct( view.GetViewMatrix() );
#endif
SelectionIntersection best;
LineStrip_BestPoint( local2view, m_circle_z.m_vertices.data(), m_circle_z.m_vertices.size(), best );
selector.addSelectable( best, &m_selectable_z );
}
}
{
Matrix4 local2view( matrix4_multiplied_by_matrix4( view.GetViewMatrix(), m_pivot.m_viewpointSpace ) );
{
SelectionIntersection best;
LineLoop_BestPoint( local2view, m_circle_screen.m_vertices.data(), m_circle_screen.m_vertices.size(), best );
selector.addSelectable( best, &m_selectable_screen );
}
{
SelectionIntersection best;
Circle_BestPoint( local2view, eClipCullCW, m_circle_sphere.m_vertices.data(), m_circle_sphere.m_vertices.size(), best );
selector.addSelectable( best, &m_selectable_sphere );
}
}
m_axis_screen = m_pivot.m_axis_screen;
if ( !selector.failed() ) {
( *selector.begin() ).second->setSelected( true );
}
}
Manipulatable* GetManipulatable(){
if ( m_selectable_x.isSelected() ) {
m_axis.SetAxis( g_vector3_axis_x );
return &m_axis;
}
else if ( m_selectable_y.isSelected() ) {
m_axis.SetAxis( g_vector3_axis_y );
return &m_axis;
}
else if ( m_selectable_z.isSelected() ) {
m_axis.SetAxis( g_vector3_axis_z );
return &m_axis;
}
else if ( m_selectable_screen.isSelected() ) {
m_axis.SetAxis( m_axis_screen );
return &m_axis;
}
else{
return &m_free;
}
}
void setSelected( bool select ){
m_selectable_x.setSelected( select );
m_selectable_y.setSelected( select );
m_selectable_z.setSelected( select );
m_selectable_screen.setSelected( select );
}
bool isSelected() const {
return m_selectable_x.isSelected()
| m_selectable_y.isSelected()
| m_selectable_z.isSelected()
| m_selectable_screen.isSelected()
| m_selectable_sphere.isSelected();
}
};
Shader* RotateManipulator::m_state_outer;
const float arrowhead_length = 16;
const float arrowhead_radius = 4;
inline void draw_arrowline( const float length, PointVertex* line, const std::size_t axis ){
( *line++ ).vertex = vertex3f_identity;
( *line ).vertex = vertex3f_identity;
vertex3f_to_array( ( *line ).vertex )[axis] = length - arrowhead_length;
}
template<typename VertexRemap, typename NormalRemap>
inline void draw_arrowhead( const std::size_t segments, const float length, FlatShadedVertex* vertices, VertexRemap, NormalRemap ){
std::size_t head_tris = ( segments << 3 );
const double head_segment = c_2pi / head_tris;
for ( std::size_t i = 0; i < head_tris; ++i )
{
{
FlatShadedVertex& point = vertices[i * 6 + 0];
VertexRemap::x( point.vertex ) = length - arrowhead_length;
VertexRemap::y( point.vertex ) = arrowhead_radius * static_cast<float>( cos( i * head_segment ) );
VertexRemap::z( point.vertex ) = arrowhead_radius * static_cast<float>( sin( i * head_segment ) );
NormalRemap::x( point.normal ) = arrowhead_radius / arrowhead_length;
NormalRemap::y( point.normal ) = static_cast<float>( cos( i * head_segment ) );
NormalRemap::z( point.normal ) = static_cast<float>( sin( i * head_segment ) );
}
{
FlatShadedVertex& point = vertices[i * 6 + 1];
VertexRemap::x( point.vertex ) = length;
VertexRemap::y( point.vertex ) = 0;
VertexRemap::z( point.vertex ) = 0;
NormalRemap::x( point.normal ) = arrowhead_radius / arrowhead_length;
NormalRemap::y( point.normal ) = static_cast<float>( cos( ( i + 0.5 ) * head_segment ) );
NormalRemap::z( point.normal ) = static_cast<float>( sin( ( i + 0.5 ) * head_segment ) );
}
{
FlatShadedVertex& point = vertices[i * 6 + 2];
VertexRemap::x( point.vertex ) = length - arrowhead_length;
VertexRemap::y( point.vertex ) = arrowhead_radius * static_cast<float>( cos( ( i + 1 ) * head_segment ) );
VertexRemap::z( point.vertex ) = arrowhead_radius * static_cast<float>( sin( ( i + 1 ) * head_segment ) );
NormalRemap::x( point.normal ) = arrowhead_radius / arrowhead_length;
NormalRemap::y( point.normal ) = static_cast<float>( cos( ( i + 1 ) * head_segment ) );
NormalRemap::z( point.normal ) = static_cast<float>( sin( ( i + 1 ) * head_segment ) );
}
{
FlatShadedVertex& point = vertices[i * 6 + 3];
VertexRemap::x( point.vertex ) = length - arrowhead_length;
VertexRemap::y( point.vertex ) = 0;
VertexRemap::z( point.vertex ) = 0;
NormalRemap::x( point.normal ) = -1;
NormalRemap::y( point.normal ) = 0;
NormalRemap::z( point.normal ) = 0;
}
{
FlatShadedVertex& point = vertices[i * 6 + 4];
VertexRemap::x( point.vertex ) = length - arrowhead_length;
VertexRemap::y( point.vertex ) = arrowhead_radius * static_cast<float>( cos( i * head_segment ) );
VertexRemap::z( point.vertex ) = arrowhead_radius * static_cast<float>( sin( i * head_segment ) );
NormalRemap::x( point.normal ) = -1;
NormalRemap::y( point.normal ) = 0;
NormalRemap::z( point.normal ) = 0;
}
{
FlatShadedVertex& point = vertices[i * 6 + 5];
VertexRemap::x( point.vertex ) = length - arrowhead_length;
VertexRemap::y( point.vertex ) = arrowhead_radius * static_cast<float>( cos( ( i + 1 ) * head_segment ) );
VertexRemap::z( point.vertex ) = arrowhead_radius * static_cast<float>( sin( ( i + 1 ) * head_segment ) );
NormalRemap::x( point.normal ) = -1;
NormalRemap::y( point.normal ) = 0;
NormalRemap::z( point.normal ) = 0;
}
}
}
template<typename Triple>
class TripleRemapXYZ
{
public:
static float& x( Triple& triple ){
return triple.x();
}
static float& y( Triple& triple ){
return triple.y();
}
static float& z( Triple& triple ){
return triple.z();
}
};
template<typename Triple>
class TripleRemapYZX
{
public:
static float& x( Triple& triple ){
return triple.y();
}
static float& y( Triple& triple ){
return triple.z();
}
static float& z( Triple& triple ){
return triple.x();
}
};
template<typename Triple>
class TripleRemapZXY
{
public:
static float& x( Triple& triple ){
return triple.z();
}
static float& y( Triple& triple ){
return triple.x();
}
static float& z( Triple& triple ){
return triple.y();
}
};
void vector3_print( const Vector3& v ){
globalOutputStream() << "( " << v.x() << " " << v.y() << " " << v.z() << " )";
}
class TranslateManipulator : public Manipulator
{
struct RenderableArrowLine : public OpenGLRenderable
{
PointVertex m_line[2];
RenderableArrowLine(){
}
void render( RenderStateFlags state ) const {
glColorPointer( 4, GL_UNSIGNED_BYTE, sizeof( PointVertex ), &m_line[0].colour );
glVertexPointer( 3, GL_FLOAT, sizeof( PointVertex ), &m_line[0].vertex );
glDrawArrays( GL_LINES, 0, 2 );
}
void setColour( const Colour4b& colour ){
m_line[0].colour = colour;
m_line[1].colour = colour;
}
};
struct RenderableArrowHead : public OpenGLRenderable
{
Array<FlatShadedVertex> m_vertices;
RenderableArrowHead( std::size_t size )
: m_vertices( size ){
}
void render( RenderStateFlags state ) const {
glColorPointer( 4, GL_UNSIGNED_BYTE, sizeof( FlatShadedVertex ), &m_vertices.data()->colour );
glVertexPointer( 3, GL_FLOAT, sizeof( FlatShadedVertex ), &m_vertices.data()->vertex );
glNormalPointer( GL_FLOAT, sizeof( FlatShadedVertex ), &m_vertices.data()->normal );
glDrawArrays( GL_TRIANGLES, 0, GLsizei( m_vertices.size() ) );
}
void setColour( const Colour4b& colour ){
for ( Array<FlatShadedVertex>::iterator i = m_vertices.begin(); i != m_vertices.end(); ++i )
{
( *i ).colour = colour;
}
}
};
struct RenderableQuad : public OpenGLRenderable
{
PointVertex m_quad[4];
void render( RenderStateFlags state ) const {
glColorPointer( 4, GL_UNSIGNED_BYTE, sizeof( PointVertex ), &m_quad[0].colour );
glVertexPointer( 3, GL_FLOAT, sizeof( PointVertex ), &m_quad[0].vertex );
glDrawArrays( GL_LINE_LOOP, 0, 4 );
}
void setColour( const Colour4b& colour ){
m_quad[0].colour = colour;
m_quad[1].colour = colour;
m_quad[2].colour = colour;
m_quad[3].colour = colour;
}
};
TranslateFree m_free;
TranslateAxis m_axis;
RenderableArrowLine m_arrow_x;
RenderableArrowLine m_arrow_y;
RenderableArrowLine m_arrow_z;
RenderableArrowHead m_arrow_head_x;
RenderableArrowHead m_arrow_head_y;
RenderableArrowHead m_arrow_head_z;
RenderableQuad m_quad_screen;
SelectableBool m_selectable_x;
SelectableBool m_selectable_y;
SelectableBool m_selectable_z;
SelectableBool m_selectable_screen;
Pivot2World m_pivot;
public:
static Shader* m_state_wire;
static Shader* m_state_fill;
TranslateManipulator( Translatable& translatable, std::size_t segments, float length ) :
m_free( translatable ),
m_axis( translatable ),
m_arrow_head_x( 3 * 2 * ( segments << 3 ) ),
m_arrow_head_y( 3 * 2 * ( segments << 3 ) ),
m_arrow_head_z( 3 * 2 * ( segments << 3 ) ){
draw_arrowline( length, m_arrow_x.m_line, 0 );
draw_arrowhead( segments, length, m_arrow_head_x.m_vertices.data(), TripleRemapXYZ<Vertex3f>(), TripleRemapXYZ<Normal3f>() );
draw_arrowline( length, m_arrow_y.m_line, 1 );
draw_arrowhead( segments, length, m_arrow_head_y.m_vertices.data(), TripleRemapYZX<Vertex3f>(), TripleRemapYZX<Normal3f>() );
draw_arrowline( length, m_arrow_z.m_line, 2 );
draw_arrowhead( segments, length, m_arrow_head_z.m_vertices.data(), TripleRemapZXY<Vertex3f>(), TripleRemapZXY<Normal3f>() );
draw_quad( 16, m_quad_screen.m_quad );
}
void UpdateColours(){
m_arrow_x.setColour( colourSelected( g_colour_x, m_selectable_x.isSelected() ) );
m_arrow_head_x.setColour( colourSelected( g_colour_x, m_selectable_x.isSelected() ) );
m_arrow_y.setColour( colourSelected( g_colour_y, m_selectable_y.isSelected() ) );
m_arrow_head_y.setColour( colourSelected( g_colour_y, m_selectable_y.isSelected() ) );
m_arrow_z.setColour( colourSelected( g_colour_z, m_selectable_z.isSelected() ) );
m_arrow_head_z.setColour( colourSelected( g_colour_z, m_selectable_z.isSelected() ) );
m_quad_screen.setColour( colourSelected( g_colour_screen, m_selectable_screen.isSelected() ) );
}
bool manipulator_show_axis( const Pivot2World& pivot, const Vector3& axis ){
return fabs( vector3_dot( pivot.m_axis_screen, axis ) ) < 0.95;
}
void render( Renderer& renderer, const VolumeTest& volume, const Matrix4& pivot2world ){
m_pivot.update( pivot2world, volume.GetModelview(), volume.GetProjection(), volume.GetViewport() );
// temp hack
UpdateColours();
Vector3 x = vector3_normalised( vector4_to_vector3( m_pivot.m_worldSpace.x() ) );
bool show_x = manipulator_show_axis( m_pivot, x );
Vector3 y = vector3_normalised( vector4_to_vector3( m_pivot.m_worldSpace.y() ) );
bool show_y = manipulator_show_axis( m_pivot, y );
Vector3 z = vector3_normalised( vector4_to_vector3( m_pivot.m_worldSpace.z() ) );
bool show_z = manipulator_show_axis( m_pivot, z );
renderer.SetState( m_state_wire, Renderer::eWireframeOnly );
renderer.SetState( m_state_wire, Renderer::eFullMaterials );
if ( show_x ) {
renderer.addRenderable( m_arrow_x, m_pivot.m_worldSpace );
}
if ( show_y ) {
renderer.addRenderable( m_arrow_y, m_pivot.m_worldSpace );
}
if ( show_z ) {
renderer.addRenderable( m_arrow_z, m_pivot.m_worldSpace );
}
renderer.addRenderable( m_quad_screen, m_pivot.m_viewplaneSpace );
renderer.SetState( m_state_fill, Renderer::eWireframeOnly );
renderer.SetState( m_state_fill, Renderer::eFullMaterials );
if ( show_x ) {
renderer.addRenderable( m_arrow_head_x, m_pivot.m_worldSpace );
}
if ( show_y ) {
renderer.addRenderable( m_arrow_head_y, m_pivot.m_worldSpace );
}
if ( show_z ) {
renderer.addRenderable( m_arrow_head_z, m_pivot.m_worldSpace );
}
}
void testSelect( const View& view, const Matrix4& pivot2world ){
m_pivot.update( pivot2world, view.GetModelview(), view.GetProjection(), view.GetViewport() );
SelectionPool selector;
Vector3 x = vector3_normalised( vector4_to_vector3( m_pivot.m_worldSpace.x() ) );
bool show_x = manipulator_show_axis( m_pivot, x );
Vector3 y = vector3_normalised( vector4_to_vector3( m_pivot.m_worldSpace.y() ) );
bool show_y = manipulator_show_axis( m_pivot, y );
Vector3 z = vector3_normalised( vector4_to_vector3( m_pivot.m_worldSpace.z() ) );
bool show_z = manipulator_show_axis( m_pivot, z );
{
Matrix4 local2view( matrix4_multiplied_by_matrix4( view.GetViewMatrix(), m_pivot.m_viewpointSpace ) );
{
SelectionIntersection best;
Quad_BestPoint( local2view, eClipCullCW, m_quad_screen.m_quad, best );
if ( best.valid() ) {
best = SelectionIntersection( 0, 0 );
selector.addSelectable( best, &m_selectable_screen );
}
}
}
{
Matrix4 local2view( matrix4_multiplied_by_matrix4( view.GetViewMatrix(), m_pivot.m_worldSpace ) );
#if defined( DEBUG_SELECTION )
g_render_clipped.construct( view.GetViewMatrix() );
#endif
if ( show_x ) {
SelectionIntersection best;
Line_BestPoint( local2view, m_arrow_x.m_line, best );
Triangles_BestPoint( local2view, eClipCullCW, m_arrow_head_x.m_vertices.begin(), m_arrow_head_x.m_vertices.end(), best );
selector.addSelectable( best, &m_selectable_x );
}
if ( show_y ) {
SelectionIntersection best;
Line_BestPoint( local2view, m_arrow_y.m_line, best );
Triangles_BestPoint( local2view, eClipCullCW, m_arrow_head_y.m_vertices.begin(), m_arrow_head_y.m_vertices.end(), best );
selector.addSelectable( best, &m_selectable_y );
}
if ( show_z ) {
SelectionIntersection best;
Line_BestPoint( local2view, m_arrow_z.m_line, best );
Triangles_BestPoint( local2view, eClipCullCW, m_arrow_head_z.m_vertices.begin(), m_arrow_head_z.m_vertices.end(), best );
selector.addSelectable( best, &m_selectable_z );
}
}
if ( !selector.failed() ) {
( *selector.begin() ).second->setSelected( true );
}
}
Manipulatable* GetManipulatable(){
if ( m_selectable_x.isSelected() ) {
m_axis.SetAxis( g_vector3_axis_x );
return &m_axis;
}
else if ( m_selectable_y.isSelected() ) {
m_axis.SetAxis( g_vector3_axis_y );
return &m_axis;
}
else if ( m_selectable_z.isSelected() ) {
m_axis.SetAxis( g_vector3_axis_z );
return &m_axis;
}
else
{
return &m_free;
}
}
void setSelected( bool select ){
m_selectable_x.setSelected( select );
m_selectable_y.setSelected( select );
m_selectable_z.setSelected( select );
m_selectable_screen.setSelected( select );
}
bool isSelected() const {
return m_selectable_x.isSelected()
| m_selectable_y.isSelected()
| m_selectable_z.isSelected()
| m_selectable_screen.isSelected();
}
};
Shader* TranslateManipulator::m_state_wire;
Shader* TranslateManipulator::m_state_fill;
class ScaleManipulator : public Manipulator
{
struct RenderableArrow : public OpenGLRenderable
{
PointVertex m_line[2];
void render( RenderStateFlags state ) const {
glColorPointer( 4, GL_UNSIGNED_BYTE, sizeof( PointVertex ), &m_line[0].colour );
glVertexPointer( 3, GL_FLOAT, sizeof( PointVertex ), &m_line[0].vertex );
glDrawArrays( GL_LINES, 0, 2 );
}
void setColour( const Colour4b& colour ){
m_line[0].colour = colour;
m_line[1].colour = colour;
}
};
struct RenderableQuad : public OpenGLRenderable
{
PointVertex m_quad[4];
void render( RenderStateFlags state ) const {
glColorPointer( 4, GL_UNSIGNED_BYTE, sizeof( PointVertex ), &m_quad[0].colour );
glVertexPointer( 3, GL_FLOAT, sizeof( PointVertex ), &m_quad[0].vertex );
glDrawArrays( GL_QUADS, 0, 4 );
}
void setColour( const Colour4b& colour ){
m_quad[0].colour = colour;
m_quad[1].colour = colour;
m_quad[2].colour = colour;
m_quad[3].colour = colour;
}
};
ScaleFree m_free;
ScaleAxis m_axis;
RenderableArrow m_arrow_x;
RenderableArrow m_arrow_y;
RenderableArrow m_arrow_z;
RenderableQuad m_quad_screen;
SelectableBool m_selectable_x;
SelectableBool m_selectable_y;
SelectableBool m_selectable_z;
SelectableBool m_selectable_screen;
Pivot2World m_pivot;
public:
ScaleManipulator( Scalable& scalable, std::size_t segments, float length ) :
m_free( scalable ),
m_axis( scalable ){
draw_arrowline( length, m_arrow_x.m_line, 0 );
draw_arrowline( length, m_arrow_y.m_line, 1 );
draw_arrowline( length, m_arrow_z.m_line, 2 );
draw_quad( 16, m_quad_screen.m_quad );
}
Pivot2World& getPivot(){
return m_pivot;
}
void UpdateColours(){
m_arrow_x.setColour( colourSelected( g_colour_x, m_selectable_x.isSelected() ) );
m_arrow_y.setColour( colourSelected( g_colour_y, m_selectable_y.isSelected() ) );
m_arrow_z.setColour( colourSelected( g_colour_z, m_selectable_z.isSelected() ) );
m_quad_screen.setColour( colourSelected( g_colour_screen, m_selectable_screen.isSelected() ) );
}
void render( Renderer& renderer, const VolumeTest& volume, const Matrix4& pivot2world ){
m_pivot.update( pivot2world, volume.GetModelview(), volume.GetProjection(), volume.GetViewport() );
// temp hack
UpdateColours();
renderer.addRenderable( m_arrow_x, m_pivot.m_worldSpace );
renderer.addRenderable( m_arrow_y, m_pivot.m_worldSpace );
renderer.addRenderable( m_arrow_z, m_pivot.m_worldSpace );
renderer.addRenderable( m_quad_screen, m_pivot.m_viewpointSpace );
}
void testSelect( const View& view, const Matrix4& pivot2world ){
m_pivot.update( pivot2world, view.GetModelview(), view.GetProjection(), view.GetViewport() );
SelectionPool selector;
{
Matrix4 local2view( matrix4_multiplied_by_matrix4( view.GetViewMatrix(), m_pivot.m_worldSpace ) );
#if defined( DEBUG_SELECTION )
g_render_clipped.construct( view.GetViewMatrix() );
#endif
{
SelectionIntersection best;
Line_BestPoint( local2view, m_arrow_x.m_line, best );
selector.addSelectable( best, &m_selectable_x );
}
{
SelectionIntersection best;
Line_BestPoint( local2view, m_arrow_y.m_line, best );
selector.addSelectable( best, &m_selectable_y );
}
{
SelectionIntersection best;
Line_BestPoint( local2view, m_arrow_z.m_line, best );
selector.addSelectable( best, &m_selectable_z );
}
}
{
Matrix4 local2view( matrix4_multiplied_by_matrix4( view.GetViewMatrix(), m_pivot.m_viewpointSpace ) );
{
SelectionIntersection best;
Quad_BestPoint( local2view, eClipCullCW, m_quad_screen.m_quad, best );
selector.addSelectable( best, &m_selectable_screen );
}
}
if ( !selector.failed() ) {
( *selector.begin() ).second->setSelected( true );
}
}
Manipulatable* GetManipulatable(){
if ( m_selectable_x.isSelected() ) {
m_axis.SetAxis( g_vector3_axis_x );
return &m_axis;
}
else if ( m_selectable_y.isSelected() ) {
m_axis.SetAxis( g_vector3_axis_y );
return &m_axis;
}
else if ( m_selectable_z.isSelected() ) {
m_axis.SetAxis( g_vector3_axis_z );
return &m_axis;
}
else{
return &m_free;
}
}
void setSelected( bool select ){
m_selectable_x.setSelected( select );
m_selectable_y.setSelected( select );
m_selectable_z.setSelected( select );
m_selectable_screen.setSelected( select );
}
bool isSelected() const {
return m_selectable_x.isSelected()
| m_selectable_y.isSelected()
| m_selectable_z.isSelected()
| m_selectable_screen.isSelected();
}
};
inline PlaneSelectable* Instance_getPlaneSelectable( scene::Instance& instance ){
return InstanceTypeCast<PlaneSelectable>::cast( instance );
}
class PlaneSelectableSelectPlanes : public scene::Graph::Walker
{
Selector& m_selector;
SelectionTest& m_test;
PlaneCallback m_selectedPlaneCallback;
public:
PlaneSelectableSelectPlanes( Selector& selector, SelectionTest& test, const PlaneCallback& selectedPlaneCallback )
: m_selector( selector ), m_test( test ), m_selectedPlaneCallback( selectedPlaneCallback ){
}
bool pre( const scene::Path& path, scene::Instance& instance ) const {
if ( path.top().get().visible() ) {
Selectable* selectable = Instance_getSelectable( instance );
if ( selectable != 0 && selectable->isSelected() ) {
PlaneSelectable* planeSelectable = Instance_getPlaneSelectable( instance );
if ( planeSelectable != 0 ) {
planeSelectable->selectPlanes( m_selector, m_test, m_selectedPlaneCallback );
}
}
}
return true;
}
};
class PlaneSelectableSelectReversedPlanes : public scene::Graph::Walker
{
Selector& m_selector;
const SelectedPlanes& m_selectedPlanes;
public:
PlaneSelectableSelectReversedPlanes( Selector& selector, const SelectedPlanes& selectedPlanes )
: m_selector( selector ), m_selectedPlanes( selectedPlanes ){
}
bool pre( const scene::Path& path, scene::Instance& instance ) const {
if ( path.top().get().visible() ) {
Selectable* selectable = Instance_getSelectable( instance );
if ( selectable != 0 && selectable->isSelected() ) {
PlaneSelectable* planeSelectable = Instance_getPlaneSelectable( instance );
if ( planeSelectable != 0 ) {
planeSelectable->selectReversedPlanes( m_selector, m_selectedPlanes );
}
}
}
return true;
}
};
void Scene_forEachPlaneSelectable_selectPlanes( scene::Graph& graph, Selector& selector, SelectionTest& test, const PlaneCallback& selectedPlaneCallback ){
graph.traverse( PlaneSelectableSelectPlanes( selector, test, selectedPlaneCallback ) );
}
void Scene_forEachPlaneSelectable_selectReversedPlanes( scene::Graph& graph, Selector& selector, const SelectedPlanes& selectedPlanes ){
graph.traverse( PlaneSelectableSelectReversedPlanes( selector, selectedPlanes ) );
}
class PlaneLess
{
public:
bool operator()( const Plane3& plane, const Plane3& other ) const {
if ( plane.a < other.a ) {
return true;
}
if ( other.a < plane.a ) {
return false;
}
if ( plane.b < other.b ) {
return true;
}
if ( other.b < plane.b ) {
return false;
}
if ( plane.c < other.c ) {
return true;
}
if ( other.c < plane.c ) {
return false;
}
if ( plane.d < other.d ) {
return true;
}
if ( other.d < plane.d ) {
return false;
}
return false;
}
};
typedef std::set<Plane3, PlaneLess> PlaneSet;
inline void PlaneSet_insert( PlaneSet& self, const Plane3& plane ){
self.insert( plane );
}
inline bool PlaneSet_contains( const PlaneSet& self, const Plane3& plane ){
return self.find( plane ) != self.end();
}
class SelectedPlaneSet : public SelectedPlanes
{
PlaneSet m_selectedPlanes;
public:
bool empty() const {
return m_selectedPlanes.empty();
}
void insert( const Plane3& plane ){
PlaneSet_insert( m_selectedPlanes, plane );
}
bool contains( const Plane3& plane ) const {
return PlaneSet_contains( m_selectedPlanes, plane );
}
typedef MemberCaller1<SelectedPlaneSet, const Plane3&, &SelectedPlaneSet::insert> InsertCaller;
};
bool Scene_forEachPlaneSelectable_selectPlanes( scene::Graph& graph, Selector& selector, SelectionTest& test ){
SelectedPlaneSet selectedPlanes;
Scene_forEachPlaneSelectable_selectPlanes( graph, selector, test, SelectedPlaneSet::InsertCaller( selectedPlanes ) );
Scene_forEachPlaneSelectable_selectReversedPlanes( graph, selector, selectedPlanes );
return !selectedPlanes.empty();
}
#include "brush.h"
class TestedBrushFacesSelectVeritces : public scene::Graph::Walker
{
SelectionTest& m_test;
public:
TestedBrushFacesSelectVeritces( SelectionTest& test )
: m_test( test ){
}
bool pre( const scene::Path& path, scene::Instance& instance ) const {
if ( path.top().get().visible() ) {
Selectable* selectable = Instance_getSelectable( instance );
if ( selectable != 0 && selectable->isSelected() ) {
BrushInstance* brushInstance = Instance_getBrush( instance );
if ( brushInstance != 0 ) {
brushInstance->selectVerticesOnTestedFaces( m_test );
}
}
}
return true;
}
};
void Scene_forEachTestedBrushFace_selectVertices( scene::Graph& graph, SelectionTest& test ){
graph.traverse( TestedBrushFacesSelectVeritces( test ) );
}
class BrushPlanesSelectVeritces : public scene::Graph::Walker
{
SelectionTest& m_test;
public:
BrushPlanesSelectVeritces( SelectionTest& test )
: m_test( test ){
}
bool pre( const scene::Path& path, scene::Instance& instance ) const {
if ( path.top().get().visible() ) {
Selectable* selectable = Instance_getSelectable( instance );
if ( selectable != 0 && selectable->isSelected() ) {
BrushInstance* brushInstance = Instance_getBrush( instance );
if ( brushInstance != 0 ) {
brushInstance->selectVerticesOnPlanes( m_test );
}
}
}
return true;
}
};
void Scene_forEachBrushPlane_selectVertices( scene::Graph& graph, SelectionTest& test ){
graph.traverse( BrushPlanesSelectVeritces( test ) );
}
void Scene_Translate_Component_Selected( scene::Graph& graph, const Vector3& translation );
void Scene_Translate_Selected( scene::Graph& graph, const Vector3& translation );
void Scene_TestSelect_Primitive( Selector& selector, SelectionTest& test, const VolumeTest& volume );
void Scene_TestSelect_Component( Selector& selector, SelectionTest& test, const VolumeTest& volume, SelectionSystem::EComponentMode componentMode );
void Scene_TestSelect_Component_Selected( Selector& selector, SelectionTest& test, const VolumeTest& volume, SelectionSystem::EComponentMode componentMode );
void Scene_SelectAll_Component( bool select, SelectionSystem::EComponentMode componentMode );
class ResizeTranslatable : public Translatable
{
void translate( const Vector3& translation ){
Scene_Translate_Component_Selected( GlobalSceneGraph(), translation );
}
};
class DragTranslatable : public Translatable
{
void translate( const Vector3& translation ){
if ( GlobalSelectionSystem().Mode() == SelectionSystem::eComponent ) {
Scene_Translate_Component_Selected( GlobalSceneGraph(), translation );
}
else
{
Scene_Translate_Selected( GlobalSceneGraph(), translation );
}
}
};
class SelectionVolume : public SelectionTest
{
Matrix4 m_local2view;
const View& m_view;
clipcull_t m_cull;
Vector3 m_near;
Vector3 m_far;
public:
SelectionVolume( const View& view )
: m_view( view ){
}
const VolumeTest& getVolume() const {
return m_view;
}
const Vector3& getNear() const {
return m_near;
}
const Vector3& getFar() const {
return m_far;
}
void BeginMesh( const Matrix4& localToWorld, bool twoSided ){
m_local2view = matrix4_multiplied_by_matrix4( m_view.GetViewMatrix(), localToWorld );
// Cull back-facing polygons based on winding being clockwise or counter-clockwise.
// Don't cull if the view is wireframe and the polygons are two-sided.
m_cull = twoSided && !m_view.fill() ? eClipCullNone : ( matrix4_handedness( localToWorld ) == MATRIX4_RIGHTHANDED ) ? eClipCullCW : eClipCullCCW;
{
Matrix4 screen2world( matrix4_full_inverse( m_local2view ) );
m_near = vector4_projected(
matrix4_transformed_vector4(
screen2world,
Vector4( 0, 0, -1, 1 )
)
);
m_far = vector4_projected(
matrix4_transformed_vector4(
screen2world,
Vector4( 0, 0, 1, 1 )
)
);
}
#if defined( DEBUG_SELECTION )
g_render_clipped.construct( m_view.GetViewMatrix() );
#endif
}
void TestPoint( const Vector3& point, SelectionIntersection& best ){
Vector4 clipped;
if ( matrix4_clip_point( m_local2view, point, clipped ) == c_CLIP_PASS ) {
best = select_point_from_clipped( clipped );
}
}
void TestPolygon( const VertexPointer& vertices, std::size_t count, SelectionIntersection& best, const DoubleVector3 planepoints[3] ){
DoubleVector3 pts[3];
pts[0] = vector4_projected( matrix4_transformed_vector4( m_local2view, BasicVector4<double>( planepoints[0], 1 ) ) );
pts[1] = vector4_projected( matrix4_transformed_vector4( m_local2view, BasicVector4<double>( planepoints[1], 1 ) ) );
pts[2] = vector4_projected( matrix4_transformed_vector4( m_local2view, BasicVector4<double>( planepoints[2], 1 ) ) );
const Plane3 planeTransformed( plane3_for_points( pts ) );
Vector4 clipped[9];
for ( std::size_t i = 0; i + 2 < count; ++i )
{
BestPoint(
matrix4_clip_triangle(
m_local2view,
reinterpret_cast<const Vector3&>( vertices[0] ),
reinterpret_cast<const Vector3&>( vertices[i + 1] ),
reinterpret_cast<const Vector3&>( vertices[i + 2] ),
clipped
),
clipped,
best,
m_cull,
&planeTransformed
);
}
}
void TestLineLoop( const VertexPointer& vertices, std::size_t count, SelectionIntersection& best ){
if ( count == 0 ) {
return;
}
Vector4 clipped[9];
for ( VertexPointer::iterator i = vertices.begin(), end = i + count, prev = i + ( count - 1 ); i != end; prev = i, ++i )
{
BestPoint(
matrix4_clip_line(
m_local2view,
reinterpret_cast<const Vector3&>( ( *prev ) ),
reinterpret_cast<const Vector3&>( ( *i ) ),
clipped
),
clipped,
best,
m_cull
);
}
}
void TestLineStrip( const VertexPointer& vertices, std::size_t count, SelectionIntersection& best ){
if ( count == 0 ) {
return;
}
Vector4 clipped[9];
for ( VertexPointer::iterator i = vertices.begin(), end = i + count, next = i + 1; next != end; i = next, ++next )
{
BestPoint(
matrix4_clip_line(
m_local2view,
reinterpret_cast<const Vector3&>( ( *i ) ),
reinterpret_cast<const Vector3&>( ( *next ) ),
clipped
),
clipped,
best,
m_cull
);
}
}
void TestLines( const VertexPointer& vertices, std::size_t count, SelectionIntersection& best ){
if ( count == 0 ) {
return;
}
Vector4 clipped[9];
for ( VertexPointer::iterator i = vertices.begin(), end = i + count; i != end; i += 2 )
{
BestPoint(
matrix4_clip_line(
m_local2view,
reinterpret_cast<const Vector3&>( ( *i ) ),
reinterpret_cast<const Vector3&>( ( *( i + 1 ) ) ),
clipped
),
clipped,
best,
m_cull
);
}
}
void TestTriangles( const VertexPointer& vertices, const IndexPointer& indices, SelectionIntersection& best ){
Vector4 clipped[9];
for ( IndexPointer::iterator i( indices.begin() ); i != indices.end(); i += 3 )
{
BestPoint(
matrix4_clip_triangle(
m_local2view,
reinterpret_cast<const Vector3&>( vertices[*i] ),
reinterpret_cast<const Vector3&>( vertices[*( i + 1 )] ),
reinterpret_cast<const Vector3&>( vertices[*( i + 2 )] ),
clipped
),
clipped,
best,
m_cull
);
}
}
void TestQuads( const VertexPointer& vertices, const IndexPointer& indices, SelectionIntersection& best ){
Vector4 clipped[9];
for ( IndexPointer::iterator i( indices.begin() ); i != indices.end(); i += 4 )
{
BestPoint(
matrix4_clip_triangle(
m_local2view,
reinterpret_cast<const Vector3&>( vertices[*i] ),
reinterpret_cast<const Vector3&>( vertices[*( i + 1 )] ),
reinterpret_cast<const Vector3&>( vertices[*( i + 3 )] ),
clipped
),
clipped,
best,
m_cull
);
BestPoint(
matrix4_clip_triangle(
m_local2view,
reinterpret_cast<const Vector3&>( vertices[*( i + 1 )] ),
reinterpret_cast<const Vector3&>( vertices[*( i + 2 )] ),
reinterpret_cast<const Vector3&>( vertices[*( i + 3 )] ),
clipped
),
clipped,
best,
m_cull
);
}
}
void TestQuadStrip( const VertexPointer& vertices, const IndexPointer& indices, SelectionIntersection& best ){
Vector4 clipped[9];
for ( IndexPointer::iterator i( indices.begin() ); i + 2 != indices.end(); i += 2 )
{
BestPoint(
matrix4_clip_triangle(
m_local2view,
reinterpret_cast<const Vector3&>( vertices[*i] ),
reinterpret_cast<const Vector3&>( vertices[*( i + 1 )] ),
reinterpret_cast<const Vector3&>( vertices[*( i + 2 )] ),
clipped
),
clipped,
best,
m_cull
);
BestPoint(
matrix4_clip_triangle(
m_local2view,
reinterpret_cast<const Vector3&>( vertices[*( i + 2 )] ),
reinterpret_cast<const Vector3&>( vertices[*( i + 1 )] ),
reinterpret_cast<const Vector3&>( vertices[*( i + 3 )] ),
clipped
),
clipped,
best,
m_cull
);
}
}
};
class SelectionCounter
{
public:
typedef const Selectable& first_argument_type;
SelectionCounter( const SelectionChangeCallback& onchanged )
: m_count( 0 ), m_onchanged( onchanged ){
}
void operator()( const Selectable& selectable ){
if ( selectable.isSelected() ) {
++m_count;
}
else
{
ASSERT_MESSAGE( m_count != 0, "selection counter underflow" );
--m_count;
}
m_onchanged( selectable );
}
bool empty() const {
return m_count == 0;
}
std::size_t size() const {
return m_count;
}
private:
std::size_t m_count;
SelectionChangeCallback m_onchanged;
};
inline void ConstructSelectionTest( View& view, const rect_t selection_box ){
view.EnableScissor( selection_box.min[0], selection_box.max[0], selection_box.min[1], selection_box.max[1] );
}
inline const rect_t SelectionBoxForPoint( const float device_point[2], const float device_epsilon[2] ){
rect_t selection_box;
selection_box.min[0] = device_point[0] - device_epsilon[0];
selection_box.min[1] = device_point[1] - device_epsilon[1];
selection_box.max[0] = device_point[0] + device_epsilon[0];
selection_box.max[1] = device_point[1] + device_epsilon[1];
return selection_box;
}
inline const rect_t SelectionBoxForArea( const float device_point[2], const float device_delta[2] ){
rect_t selection_box;
selection_box.min[0] = ( device_delta[0] < 0 ) ? ( device_point[0] + device_delta[0] ) : ( device_point[0] );
selection_box.min[1] = ( device_delta[1] < 0 ) ? ( device_point[1] + device_delta[1] ) : ( device_point[1] );
selection_box.max[0] = ( device_delta[0] > 0 ) ? ( device_point[0] + device_delta[0] ) : ( device_point[0] );
selection_box.max[1] = ( device_delta[1] > 0 ) ? ( device_point[1] + device_delta[1] ) : ( device_point[1] );
return selection_box;
}
Quaternion construct_local_rotation( const Quaternion& world, const Quaternion& localToWorld ){
return quaternion_normalised( quaternion_multiplied_by_quaternion(
quaternion_normalised( quaternion_multiplied_by_quaternion(
quaternion_inverse( localToWorld ),
world
) ),
localToWorld
) );
}
inline void matrix4_assign_rotation( Matrix4& matrix, const Matrix4& other ){
matrix[0] = other[0];
matrix[1] = other[1];
matrix[2] = other[2];
matrix[4] = other[4];
matrix[5] = other[5];
matrix[6] = other[6];
matrix[8] = other[8];
matrix[9] = other[9];
matrix[10] = other[10];
}
#define SELECTIONSYSTEM_AXIAL_PIVOTS
void matrix4_assign_rotation_for_pivot( Matrix4& matrix, scene::Instance& instance ){
#ifndef SELECTIONSYSTEM_AXIAL_PIVOTS
Editable* editable = Node_getEditable( instance.path().top() );
if ( editable != 0 ) {
matrix4_assign_rotation( matrix, matrix4_multiplied_by_matrix4( instance.localToWorld(), editable->getLocalPivot() ) );
}
else
{
matrix4_assign_rotation( matrix, instance.localToWorld() );
}
#endif
}
inline bool Instance_isSelectedComponents( scene::Instance& instance ){
ComponentSelectionTestable* componentSelectionTestable = Instance_getComponentSelectionTestable( instance );
return componentSelectionTestable != 0
&& componentSelectionTestable->isSelectedComponents();
}
class TranslateSelected : public SelectionSystem::Visitor
{
const Vector3& m_translate;
public:
TranslateSelected( const Vector3& translate )
: m_translate( translate ){
}
void visit( scene::Instance& instance ) const {
Transformable* transform = Instance_getTransformable( instance );
if ( transform != 0 ) {
transform->setType( TRANSFORM_PRIMITIVE );
transform->setTranslation( m_translate );
}
}
};
void Scene_Translate_Selected( scene::Graph& graph, const Vector3& translation ){
if ( GlobalSelectionSystem().countSelected() != 0 ) {
GlobalSelectionSystem().foreachSelected( TranslateSelected( translation ) );
}
}
Vector3 get_local_pivot( const Vector3& world_pivot, const Matrix4& localToWorld ){
return Vector3(
matrix4_transformed_point(
matrix4_full_inverse( localToWorld ),
world_pivot
)
);
}
void translation_for_pivoted_matrix_transform( Vector3& parent_translation, const Matrix4& local_transform, const Vector3& world_pivot, const Matrix4& localToWorld, const Matrix4& localToParent ){
// we need a translation inside the parent system to move the origin of this object to the right place
// mathematically, it must fulfill:
//
// local_translation local_transform local_pivot = local_pivot
// local_translation = local_pivot - local_transform local_pivot
//
// or maybe?
// local_transform local_translation local_pivot = local_pivot
// local_translation local_pivot = local_transform^-1 local_pivot
// local_translation + local_pivot = local_transform^-1 local_pivot
// local_translation = local_transform^-1 local_pivot - local_pivot
Vector3 local_pivot( get_local_pivot( world_pivot, localToWorld ) );
Vector3 local_translation(
vector3_subtracted(
local_pivot,
matrix4_transformed_point(
local_transform,
local_pivot
)
/*
matrix4_transformed_point(
matrix4_full_inverse(local_transform),
local_pivot
),
local_pivot
*/
)
);
translation_local2object( parent_translation, local_translation, localToParent );
/*
// verify it!
globalOutputStream() << "World pivot is at " << world_pivot << "\n";
globalOutputStream() << "Local pivot is at " << local_pivot << "\n";
globalOutputStream() << "Transformation " << local_transform << " moves it to: " << matrix4_transformed_point(local_transform, local_pivot) << "\n";
globalOutputStream() << "Must move by " << local_translation << " in the local system" << "\n";
globalOutputStream() << "Must move by " << parent_translation << " in the parent system" << "\n";
*/
}
void translation_for_pivoted_rotation( Vector3& parent_translation, const Quaternion& local_rotation, const Vector3& world_pivot, const Matrix4& localToWorld, const Matrix4& localToParent ){
translation_for_pivoted_matrix_transform( parent_translation, matrix4_rotation_for_quaternion_quantised( local_rotation ), world_pivot, localToWorld, localToParent );
}
void translation_for_pivoted_scale( Vector3& parent_translation, const Vector3& world_scale, const Vector3& world_pivot, const Matrix4& localToWorld, const Matrix4& localToParent ){
Matrix4 local_transform(
matrix4_multiplied_by_matrix4(
matrix4_full_inverse( localToWorld ),
matrix4_multiplied_by_matrix4(
matrix4_scale_for_vec3( world_scale ),
localToWorld
)
)
);
local_transform.tx() = local_transform.ty() = local_transform.tz() = 0; // cancel translation parts
translation_for_pivoted_matrix_transform( parent_translation, local_transform, world_pivot, localToWorld, localToParent );
}
class rotate_selected : public SelectionSystem::Visitor
{
const Quaternion& m_rotate;
const Vector3& m_world_pivot;
public:
rotate_selected( const Quaternion& rotation, const Vector3& world_pivot )
: m_rotate( rotation ), m_world_pivot( world_pivot ){
}
void visit( scene::Instance& instance ) const {
TransformNode* transformNode = Node_getTransformNode( instance.path().top() );
if ( transformNode != 0 ) {
Transformable* transform = Instance_getTransformable( instance );
if ( transform != 0 ) {
transform->setType( TRANSFORM_PRIMITIVE );
transform->setScale( c_scale_identity );
transform->setTranslation( c_translation_identity );
transform->setType( TRANSFORM_PRIMITIVE );
transform->setRotation( m_rotate );
{
Editable* editable = Node_getEditable( instance.path().top() );
const Matrix4& localPivot = editable != 0 ? editable->getLocalPivot() : g_matrix4_identity;
Vector3 parent_translation;
translation_for_pivoted_rotation(
parent_translation,
m_rotate,
m_world_pivot,
#ifdef SELECTIONSYSTEM_AXIAL_PIVOTS
matrix4_multiplied_by_matrix4( matrix4_translation_for_vec3( matrix4_get_translation_vec3( instance.localToWorld() ) ), localPivot ),
matrix4_multiplied_by_matrix4( matrix4_translation_for_vec3( matrix4_get_translation_vec3( transformNode->localToParent() ) ), localPivot )
#else
matrix4_multiplied_by_matrix4( instance.localToWorld(), localPivot ),
matrix4_multiplied_by_matrix4( transformNode->localToParent(), localPivot )
#endif
);
transform->setTranslation( parent_translation );
}
}
}
}
};
void Scene_Rotate_Selected( scene::Graph& graph, const Quaternion& rotation, const Vector3& world_pivot ){
if ( GlobalSelectionSystem().countSelected() != 0 ) {
GlobalSelectionSystem().foreachSelected( rotate_selected( rotation, world_pivot ) );
}
}
class scale_selected : public SelectionSystem::Visitor
{
const Vector3& m_scale;
const Vector3& m_world_pivot;
public:
scale_selected( const Vector3& scaling, const Vector3& world_pivot )
: m_scale( scaling ), m_world_pivot( world_pivot ){
}
void visit( scene::Instance& instance ) const {
TransformNode* transformNode = Node_getTransformNode( instance.path().top() );
if ( transformNode != 0 ) {
Transformable* transform = Instance_getTransformable( instance );
if ( transform != 0 ) {
transform->setType( TRANSFORM_PRIMITIVE );
transform->setScale( c_scale_identity );
transform->setTranslation( c_translation_identity );
transform->setType( TRANSFORM_PRIMITIVE );
transform->setScale( m_scale );
{
Editable* editable = Node_getEditable( instance.path().top() );
const Matrix4& localPivot = editable != 0 ? editable->getLocalPivot() : g_matrix4_identity;
Vector3 parent_translation;
translation_for_pivoted_scale(
parent_translation,
m_scale,
m_world_pivot,
matrix4_multiplied_by_matrix4( instance.localToWorld(), localPivot ),
matrix4_multiplied_by_matrix4( transformNode->localToParent(), localPivot )
);
transform->setTranslation( parent_translation );
}
}
}
}
};
void Scene_Scale_Selected( scene::Graph& graph, const Vector3& scaling, const Vector3& world_pivot ){
if ( GlobalSelectionSystem().countSelected() != 0 ) {
GlobalSelectionSystem().foreachSelected( scale_selected( scaling, world_pivot ) );
}
}
class translate_component_selected : public SelectionSystem::Visitor
{
const Vector3& m_translate;
public:
translate_component_selected( const Vector3& translate )
: m_translate( translate ){
}
void visit( scene::Instance& instance ) const {
Transformable* transform = Instance_getTransformable( instance );
if ( transform != 0 ) {
transform->setType( TRANSFORM_COMPONENT );
transform->setTranslation( m_translate );
}
}
};
void Scene_Translate_Component_Selected( scene::Graph& graph, const Vector3& translation ){
if ( GlobalSelectionSystem().countSelected() != 0 ) {
GlobalSelectionSystem().foreachSelectedComponent( translate_component_selected( translation ) );
}
}
class rotate_component_selected : public SelectionSystem::Visitor
{
const Quaternion& m_rotate;
const Vector3& m_world_pivot;
public:
rotate_component_selected( const Quaternion& rotation, const Vector3& world_pivot )
: m_rotate( rotation ), m_world_pivot( world_pivot ){
}
void visit( scene::Instance& instance ) const {
Transformable* transform = Instance_getTransformable( instance );
if ( transform != 0 ) {
Vector3 parent_translation;
translation_for_pivoted_rotation( parent_translation, m_rotate, m_world_pivot, instance.localToWorld(), Node_getTransformNode( instance.path().top() )->localToParent() );
transform->setType( TRANSFORM_COMPONENT );
transform->setRotation( m_rotate );
transform->setTranslation( parent_translation );
}
}
};
void Scene_Rotate_Component_Selected( scene::Graph& graph, const Quaternion& rotation, const Vector3& world_pivot ){
if ( GlobalSelectionSystem().countSelectedComponents() != 0 ) {
GlobalSelectionSystem().foreachSelectedComponent( rotate_component_selected( rotation, world_pivot ) );
}
}
class scale_component_selected : public SelectionSystem::Visitor
{
const Vector3& m_scale;
const Vector3& m_world_pivot;
public:
scale_component_selected( const Vector3& scaling, const Vector3& world_pivot )
: m_scale( scaling ), m_world_pivot( world_pivot ){
}
void visit( scene::Instance& instance ) const {
Transformable* transform = Instance_getTransformable( instance );
if ( transform != 0 ) {
Vector3 parent_translation;
translation_for_pivoted_scale( parent_translation, m_scale, m_world_pivot, instance.localToWorld(), Node_getTransformNode( instance.path().top() )->localToParent() );
transform->setType( TRANSFORM_COMPONENT );
transform->setScale( m_scale );
transform->setTranslation( parent_translation );
}
}
};
void Scene_Scale_Component_Selected( scene::Graph& graph, const Vector3& scaling, const Vector3& world_pivot ){
if ( GlobalSelectionSystem().countSelectedComponents() != 0 ) {
GlobalSelectionSystem().foreachSelectedComponent( scale_component_selected( scaling, world_pivot ) );
}
}
class BooleanSelector : public Selector
{
bool m_selected;
SelectionIntersection m_intersection;
Selectable* m_selectable;
public:
BooleanSelector() : m_selected( false ){
}
void pushSelectable( Selectable& selectable ){
m_intersection = SelectionIntersection();
m_selectable = &selectable;
}
void popSelectable(){
if ( m_intersection.valid() ) {
m_selected = true;
}
m_intersection = SelectionIntersection();
}
void addIntersection( const SelectionIntersection& intersection ){
if ( m_selectable->isSelected() ) {
assign_if_closer( m_intersection, intersection );
}
}
bool isSelected(){
return m_selected;
}
};
class BestSelector : public Selector
{
SelectionIntersection m_intersection;
Selectable* m_selectable;
SelectionIntersection m_bestIntersection;
std::list<Selectable*> m_bestSelectable;
public:
BestSelector() : m_bestIntersection( SelectionIntersection() ), m_bestSelectable( 0 ){
}
void pushSelectable( Selectable& selectable ){
m_intersection = SelectionIntersection();
m_selectable = &selectable;
}
void popSelectable(){
if ( m_intersection.equalEpsilon( m_bestIntersection, 0.25f, 0.001f ) ) {
m_bestSelectable.push_back( m_selectable );
m_bestIntersection = m_intersection;
}
else if ( m_intersection < m_bestIntersection ) {
m_bestSelectable.clear();
m_bestSelectable.push_back( m_selectable );
m_bestIntersection = m_intersection;
}
m_intersection = SelectionIntersection();
}
void addIntersection( const SelectionIntersection& intersection ){
assign_if_closer( m_intersection, intersection );
}
std::list<Selectable*>& best(){
return m_bestSelectable;
}
};
class DeepBestSelector : public Selector
{
SelectionIntersection m_intersection;
Selectable* m_selectable;
SelectionIntersection m_bestIntersection;
std::list<Selectable*> m_bestSelectable;
public:
DeepBestSelector() : m_bestIntersection( SelectionIntersection() ), m_bestSelectable( 0 ){
}
void pushSelectable( Selectable& selectable ){
m_intersection = SelectionIntersection();
m_selectable = &selectable;
}
void popSelectable(){
if ( m_intersection.equalEpsilon( m_bestIntersection, 0.25f, 2.f ) ) {
m_bestSelectable.push_back( m_selectable );
m_bestIntersection = m_intersection;
}
else if ( m_intersection < m_bestIntersection ) {
m_bestSelectable.clear();
m_bestSelectable.push_back( m_selectable );
m_bestIntersection = m_intersection;
}
m_intersection = SelectionIntersection();
}
void addIntersection( const SelectionIntersection& intersection ){
assign_if_closer( m_intersection, intersection );
}
std::list<Selectable*>& best(){
return m_bestSelectable;
}
};
bool g_bAltResize_AltSelect = false; //AltDragManipulatorResize + select primitives in component modes
bool g_bTmpComponentMode = false;
class DragManipulator : public Manipulator
{
TranslateFree m_freeResize;
TranslateFree m_freeDrag;
ResizeTranslatable m_resize;
DragTranslatable m_drag;
SelectableBool m_dragSelectable; //drag already selected stuff
public:
bool m_selected; //selected temporally for drag
DragManipulator() : m_freeResize( m_resize ), m_freeDrag( m_drag ), m_selected( false ){
}
Manipulatable* GetManipulatable(){
return m_dragSelectable.isSelected() ? &m_freeDrag : &m_freeResize;
}
void testSelect( const View& view, const Matrix4& pivot2world ){
SelectionPool selector;
SelectionVolume test( view );
if ( GlobalSelectionSystem().Mode() == SelectionSystem::ePrimitive ) {
BooleanSelector booleanSelector;
Scene_TestSelect_Primitive( booleanSelector, test, view );
if ( booleanSelector.isSelected() ) {
if( g_bAltResize_AltSelect ){
DeepBestSelector deepSelector;
Scene_TestSelect_Component_Selected( deepSelector, test, view, SelectionSystem::eVertex );
for ( std::list<Selectable*>::iterator i = deepSelector.best().begin(); i != deepSelector.best().end(); ++i )
{
if ( !( *i )->isSelected() ) {
GlobalSelectionSystem().setSelectedAllComponents( false );
}
selector.addSelectable( SelectionIntersection( 0, 0 ), ( *i ) );
m_selected = true;
m_dragSelectable.setSelected( false );
}
if( deepSelector.best().empty() ){
Scene_forEachTestedBrushFace_selectVertices( GlobalSceneGraph(), test ); //drag clicked face
//Scene_forEachBrushPlane_selectVertices( GlobalSceneGraph(), test );
m_selected = true;
}
}
else{
selector.addSelectable( SelectionIntersection( 0, 0 ), &m_dragSelectable );
m_selected = false;
}
}
else
{
if( g_bAltResize_AltSelect ){
Scene_forEachBrushPlane_selectVertices( GlobalSceneGraph(), test );
m_selected = true;
}
else{
m_selected = Scene_forEachPlaneSelectable_selectPlanes( GlobalSceneGraph(), selector, test );
}
}
}
else
{
BestSelector bestSelector;
Scene_TestSelect_Component_Selected( bestSelector, test, view, GlobalSelectionSystem().ComponentMode() );
for ( std::list<Selectable*>::iterator i = bestSelector.best().begin(); i != bestSelector.best().end(); ++i )
{
if ( !( *i )->isSelected() ) {
GlobalSelectionSystem().setSelectedAllComponents( false );
}
m_selected = false;
selector.addSelectable( SelectionIntersection( 0, 0 ), ( *i ) );
m_dragSelectable.setSelected( true );
}
if( GlobalSelectionSystem().countSelectedComponents() != 0 ){
m_dragSelectable.setSelected( true );
}
}
for ( SelectionPool::iterator i = selector.begin(); i != selector.end(); ++i )
{
( *i ).second->setSelected( true );
}
g_bTmpComponentMode = m_selected;
}
void setSelected( bool select ){
m_selected = select;
m_dragSelectable.setSelected( select );
}
bool isSelected() const {
return m_selected || m_dragSelectable.isSelected();
}
};
class ClipManipulator : public Manipulator
{
public:
Manipulatable* GetManipulatable(){
ERROR_MESSAGE( "clipper is not manipulatable" );
return 0;
}
void setSelected( bool select ){
}
bool isSelected() const {
return false;
}
};
class select_all : public scene::Graph::Walker
{
bool m_select;
public:
select_all( bool select )
: m_select( select ){
}
bool pre( const scene::Path& path, scene::Instance& instance ) const {
Selectable* selectable = Instance_getSelectable( instance );
if ( selectable != 0 ) {
selectable->setSelected( m_select );
}
return true;
}
};
class select_all_component : public scene::Graph::Walker
{
bool m_select;
SelectionSystem::EComponentMode m_mode;
public:
select_all_component( bool select, SelectionSystem::EComponentMode mode )
: m_select( select ), m_mode( mode ){
}
bool pre( const scene::Path& path, scene::Instance& instance ) const {
ComponentSelectionTestable* componentSelectionTestable = Instance_getComponentSelectionTestable( instance );
if ( componentSelectionTestable ) {
componentSelectionTestable->setSelectedComponents( m_select, m_mode );
}
return true;
}
};
void Scene_SelectAll_Component( bool select, SelectionSystem::EComponentMode componentMode ){
GlobalSceneGraph().traverse( select_all_component( select, componentMode ) );
}
// RadiantSelectionSystem
class RadiantSelectionSystem :
public SelectionSystem,
public Translatable,
public Rotatable,
public Scalable,
public Renderable
{
mutable Matrix4 m_pivot2world;
Matrix4 m_pivot2world_start;
Matrix4 m_manip2pivot_start;
Translation m_translation;
Rotation m_rotation;
Scale m_scale;
public:
static Shader* m_state;
bool m_bPreferPointEntsIn2D;
private:
EManipulatorMode m_manipulator_mode;
Manipulator* m_manipulator;
// state
bool m_undo_begun;
EMode m_mode;
EComponentMode m_componentmode;
SelectionCounter m_count_primitive;
SelectionCounter m_count_component;
TranslateManipulator m_translate_manipulator;
RotateManipulator m_rotate_manipulator;
ScaleManipulator m_scale_manipulator;
DragManipulator m_drag_manipulator;
ClipManipulator m_clip_manipulator;
typedef SelectionList<scene::Instance> selection_t;
selection_t m_selection;
selection_t m_component_selection;
Signal1<const Selectable&> m_selectionChanged_callbacks;
void ConstructPivot() const;
void setCustomPivotOrigin( Vector3& point ) const;
public:
AABB getSelectionAABB() const;
private:
mutable bool m_pivotChanged;
bool m_pivot_moving;
mutable bool m_pivotIsCustom;
void Scene_TestSelect( Selector& selector, SelectionTest& test, const View& view, SelectionSystem::EMode mode, SelectionSystem::EComponentMode componentMode );
bool nothingSelected() const {
return ( Mode() == eComponent && m_count_component.empty() )
|| ( Mode() == ePrimitive && m_count_primitive.empty() );
}
public:
enum EModifier
{
eManipulator,
eToggle,
eReplace,
eCycle,
eSelect,
eDeselect,
};
RadiantSelectionSystem() :
m_bPreferPointEntsIn2D( true ),
m_undo_begun( false ),
m_mode( ePrimitive ),
m_componentmode( eDefault ),
m_count_primitive( SelectionChangedCaller( *this ) ),
m_count_component( SelectionChangedCaller( *this ) ),
m_translate_manipulator( *this, 2, 64 ),
m_rotate_manipulator( *this, 8, 64 ),
m_scale_manipulator( *this, 0, 64 ),
m_pivotChanged( false ),
m_pivot_moving( false ),
m_pivotIsCustom( false ){
SetManipulatorMode( eTranslate );
pivotChanged();
addSelectionChangeCallback( PivotChangedSelectionCaller( *this ) );
AddGridChangeCallback( PivotChangedCaller( *this ) );
}
void pivotChanged() const {
m_pivotChanged = true;
SceneChangeNotify();
}
typedef ConstMemberCaller<RadiantSelectionSystem, &RadiantSelectionSystem::pivotChanged> PivotChangedCaller;
void pivotChangedSelection( const Selectable& selectable ){
pivotChanged();
}
typedef MemberCaller1<RadiantSelectionSystem, const Selectable&, &RadiantSelectionSystem::pivotChangedSelection> PivotChangedSelectionCaller;
void SetMode( EMode mode ){
if ( m_mode != mode ) {
m_mode = mode;
pivotChanged();
}
}
EMode Mode() const {
return m_mode;
}
void SetComponentMode( EComponentMode mode ){
m_componentmode = mode;
}
EComponentMode ComponentMode() const {
return m_componentmode;
}
void SetManipulatorMode( EManipulatorMode mode ){
m_pivotIsCustom = false;
m_manipulator_mode = mode;
switch ( m_manipulator_mode )
{
case eTranslate: m_manipulator = &m_translate_manipulator; break;
case eRotate: m_manipulator = &m_rotate_manipulator; break;
case eScale: m_manipulator = &m_scale_manipulator; break;
case eDrag: m_manipulator = &m_drag_manipulator; break;
case eClip: m_manipulator = &m_clip_manipulator; break;
}
pivotChanged();
}
EManipulatorMode ManipulatorMode() const {
return m_manipulator_mode;
}
SelectionChangeCallback getObserver( EMode mode ){
if ( mode == ePrimitive ) {
return makeCallback1( m_count_primitive );
}
else
{
return makeCallback1( m_count_component );
}
}
std::size_t countSelected() const {
return m_count_primitive.size();
}
std::size_t countSelectedComponents() const {
return m_count_component.size();
}
void onSelectedChanged( scene::Instance& instance, const Selectable& selectable ){
if ( selectable.isSelected() ) {
m_selection.append( instance );
}
else
{
m_selection.erase( instance );
}
ASSERT_MESSAGE( m_selection.size() == m_count_primitive.size(), "selection-tracking error" );
}
void onComponentSelection( scene::Instance& instance, const Selectable& selectable ){
if ( selectable.isSelected() ) {
m_component_selection.append( instance );
}
else
{
m_component_selection.erase( instance );
}
ASSERT_MESSAGE( m_component_selection.size() == m_count_component.size(), "selection-tracking error" );
}
scene::Instance& ultimateSelected() const {
ASSERT_MESSAGE( m_selection.size() > 0, "no instance selected" );
return m_selection.back();
}
scene::Instance& penultimateSelected() const {
ASSERT_MESSAGE( m_selection.size() > 1, "only one instance selected" );
return *( *( --( --m_selection.end() ) ) );
}
void setSelectedAll( bool selected ){
GlobalSceneGraph().traverse( select_all( selected ) );
m_manipulator->setSelected( selected );
}
void setSelectedAllComponents( bool selected ){
Scene_SelectAll_Component( selected, SelectionSystem::eVertex );
Scene_SelectAll_Component( selected, SelectionSystem::eEdge );
Scene_SelectAll_Component( selected, SelectionSystem::eFace );
m_manipulator->setSelected( selected );
}
void foreachSelected( const Visitor& visitor ) const {
selection_t::const_iterator i = m_selection.begin();
while ( i != m_selection.end() )
{
visitor.visit( *( *( i++ ) ) );
}
}
void foreachSelectedComponent( const Visitor& visitor ) const {
selection_t::const_iterator i = m_component_selection.begin();
while ( i != m_component_selection.end() )
{
visitor.visit( *( *( i++ ) ) );
}
}
void addSelectionChangeCallback( const SelectionChangeHandler& handler ){
m_selectionChanged_callbacks.connectLast( handler );
}
void selectionChanged( const Selectable& selectable ){
m_selectionChanged_callbacks( selectable );
}
typedef MemberCaller1<RadiantSelectionSystem, const Selectable&, &RadiantSelectionSystem::selectionChanged> SelectionChangedCaller;
void startMove(){
m_pivot2world_start = GetPivot2World();
}
bool SelectManipulator( const View& view, const float device_point[2], const float device_epsilon[2] ){
if ( !nothingSelected() || ( ManipulatorMode() == eDrag && Mode() == eComponent ) ) {
#if defined ( DEBUG_SELECTION )
g_render_clipped.destroy();
#endif
m_manipulator->setSelected( false );
if ( !nothingSelected() || ( ManipulatorMode() == eDrag && Mode() == eComponent ) ) {
View scissored( view );
ConstructSelectionTest( scissored, SelectionBoxForPoint( device_point, device_epsilon ) );
m_manipulator->testSelect( scissored, GetPivot2World() );
}
startMove();
m_pivot_moving = m_manipulator->isSelected();
if ( m_pivot_moving ) {
Pivot2World pivot;
pivot.update( GetPivot2World(), view.GetModelview(), view.GetProjection(), view.GetViewport() );
m_manip2pivot_start = matrix4_multiplied_by_matrix4( matrix4_full_inverse( m_pivot2world_start ), pivot.m_worldSpace );
Matrix4 device2manip;
ConstructDevice2Manip( device2manip, m_pivot2world_start, view.GetModelview(), view.GetProjection(), view.GetViewport() );
m_manipulator->GetManipulatable()->Construct( device2manip, device_point[0], device_point[1], getSelectionAABB(), vector4_to_vector3( GetPivot2World().t() ) );
m_undo_begun = false;
}
SceneChangeNotify();
}
return m_pivot_moving;
}
void deselectAll(){
if ( Mode() == eComponent ) {
setSelectedAllComponents( false );
}
else
{
setSelectedAll( false );
}
}
void deselectComponentsOrAll( bool components ){
if ( components ) {
setSelectedAllComponents( false );
}
else
{
deselectAll();
}
}
#define SELECT_MATCHING
#define SELECT_MATCHING_DEPTH 1e-6f
#define SELECT_MATCHING_DIST 1e-6f
#define SELECT_MATCHING_COMPONENTS_DIST .25f
void SelectionPool_Select( SelectionPool& pool, bool select, float dist_epsilon ){
SelectionPool::iterator best = pool.begin();
if( ( *best ).second->isSelected() != select ){
( *best ).second->setSelected( select );
}
#ifdef SELECT_MATCHING
SelectionPool::iterator i = best;
++i;
while ( i != pool.end() )
{
if( ( *i ).first.equalEpsilon( ( *best ).first, dist_epsilon, SELECT_MATCHING_DEPTH ) ){
//if( ( *i ).second->isSelected() != select ){
( *i ).second->setSelected( select );
//}
}
else{
break;
}
++i;
}
#endif // SELECT_MATCHING
}
void SelectPoint( const View& view, const float device_point[2], const float device_epsilon[2], RadiantSelectionSystem::EModifier modifier, bool face ){
//globalOutputStream() << device_point[0] << " " << device_point[1] << "\n";
ASSERT_MESSAGE( fabs( device_point[0] ) <= 1.0f && fabs( device_point[1] ) <= 1.0f, "point-selection error" );
if ( modifier == eReplace ) {
deselectComponentsOrAll( face );
}
/*
//nothingSelected() doesn't consider faces, selected in non-component mode, m
if ( modifier == eCycle && nothingSelected() ){
modifier = eReplace;
}
*/
#if defined ( DEBUG_SELECTION )
g_render_clipped.destroy();
#endif
{
View scissored( view );
ConstructSelectionTest( scissored, SelectionBoxForPoint( device_point, device_epsilon ) );
SelectionVolume volume( scissored );
SelectionPool selector;
SelectionPool selector_point_ents;
const bool prefer_point_ents = m_bPreferPointEntsIn2D && Mode() == ePrimitive && !view.fill() && !face
&& ( modifier == RadiantSelectionSystem::eReplace || modifier == RadiantSelectionSystem::eSelect || modifier == RadiantSelectionSystem::eDeselect );
if( prefer_point_ents ){
Scene_TestSelect( selector_point_ents, volume, scissored, eEntity, ComponentMode() );
}
if( prefer_point_ents && !selector_point_ents.failed() ){
switch ( modifier )
{
// if cycle mode not enabled, enable it
case RadiantSelectionSystem::eReplace:
{
// select closest
( *selector_point_ents.begin() ).second->setSelected( true );
}
break;
case RadiantSelectionSystem::eSelect:
{
SelectionPool_Select( selector_point_ents, true, SELECT_MATCHING_DIST );
}
break;
case RadiantSelectionSystem::eDeselect:
{
SelectionPool_Select( selector_point_ents, false, SELECT_MATCHING_DIST );
}
break;
default:
break;
}
}
else{
if ( face ){
Scene_TestSelect_Component( selector, volume, scissored, eFace );
}
else{
Scene_TestSelect( selector, volume, scissored, g_bAltResize_AltSelect ? ePrimitive : Mode(), ComponentMode() );
}
if ( !selector.failed() ) {
switch ( modifier )
{
case RadiantSelectionSystem::eToggle:
{
SelectionPool::iterator best = selector.begin();
// toggle selection of the object with least depth
if ( ( *best ).second->isSelected() ) {
( *best ).second->setSelected( false );
}
else{
( *best ).second->setSelected( true );
}
}
break;
// if cycle mode not enabled, enable it
case RadiantSelectionSystem::eReplace:
{
// select closest
( *selector.begin() ).second->setSelected( true );
}
break;
// select the next object in the list from the one already selected
case RadiantSelectionSystem::eCycle:
{
bool cycleSelectionOccured = false;
SelectionPool::iterator i = selector.begin();
while ( i != selector.end() )
{
if ( ( *i ).second->isSelected() ) {
deselectComponentsOrAll( face );
++i;
if ( i != selector.end() ) {
i->second->setSelected( true );
}
else
{
selector.begin()->second->setSelected( true );
}
cycleSelectionOccured = true;
break;
}
++i;
}
if( !cycleSelectionOccured ){
deselectComponentsOrAll( face );
( *selector.begin() ).second->setSelected( true );
}
}
break;
case RadiantSelectionSystem::eSelect:
{
SelectionPool_Select( selector, true, ( Mode() == eComponent && !g_bAltResize_AltSelect )? SELECT_MATCHING_COMPONENTS_DIST : SELECT_MATCHING_DIST );
}
break;
case RadiantSelectionSystem::eDeselect:
{
SelectionPool_Select( selector, false, ( Mode() == eComponent && !g_bAltResize_AltSelect )? SELECT_MATCHING_COMPONENTS_DIST : SELECT_MATCHING_DIST );
}
break;
default:
break;
}
}
else if( modifier == eCycle ){
deselectComponentsOrAll( face );
}
}
}
}
bool SelectPoint_InitPaint( const View& view, const float device_point[2], const float device_epsilon[2], bool face ){
ASSERT_MESSAGE( fabs( device_point[0] ) <= 1.0f && fabs( device_point[1] ) <= 1.0f, "point-selection error" );
#if defined ( DEBUG_SELECTION )
g_render_clipped.destroy();
#endif
{
View scissored( view );
ConstructSelectionTest( scissored, SelectionBoxForPoint( device_point, device_epsilon ) );
SelectionVolume volume( scissored );
SelectionPool selector;
SelectionPool selector_point_ents;
const bool prefer_point_ents = m_bPreferPointEntsIn2D && Mode() == ePrimitive && !view.fill() && !face;
if( prefer_point_ents ){
Scene_TestSelect( selector_point_ents, volume, scissored, eEntity, ComponentMode() );
}
if( prefer_point_ents && !selector_point_ents.failed() ){
const bool wasSelected = ( *selector_point_ents.begin() ).second->isSelected();
SelectionPool_Select( selector_point_ents, !wasSelected, SELECT_MATCHING_DIST );
return !wasSelected;
}
else{//do primitives, if ents failed
if ( face ){
Scene_TestSelect_Component( selector, volume, scissored, eFace );
}
else{
Scene_TestSelect( selector, volume, scissored, g_bAltResize_AltSelect ? ePrimitive : Mode(), ComponentMode() );
}
if ( !selector.failed() ){
const bool wasSelected = ( *selector.begin() ).second->isSelected();
SelectionPool_Select( selector, !wasSelected, ( Mode() == eComponent && !g_bAltResize_AltSelect )? SELECT_MATCHING_COMPONENTS_DIST : SELECT_MATCHING_DIST );
#if 0
SelectionPool::iterator best = selector.begin();
SelectionPool::iterator i = best;
globalOutputStream() << "\n\n\n===========\n";
while ( i != selector.end() )
{
globalOutputStream() << "depth:" << ( *i ).first.m_depth << " dist:" << ( *i ).first.m_distance << " depth2:" << ( *i ).first.m_depth2 << "\n";
globalOutputStream() << "depth - best depth:" << ( *i ).first.m_depth - ( *best ).first.m_depth << "\n";
++i;
}
#endif
return !wasSelected;
}
else{
return true;
}
}
}
}
void SelectArea( const View& view, const float device_point[2], const float device_delta[2], RadiantSelectionSystem::EModifier modifier, bool face ){
if ( modifier == eReplace ) {
deselectComponentsOrAll( face );
}
#if defined ( DEBUG_SELECTION )
g_render_clipped.destroy();
#endif
{
View scissored( view );
ConstructSelectionTest( scissored, SelectionBoxForArea( device_point, device_delta ) );
SelectionVolume volume( scissored );
SelectionPool pool;
if ( face ) {
Scene_TestSelect_Component( pool, volume, scissored, eFace );
}
else
{
Scene_TestSelect( pool, volume, scissored, Mode(), ComponentMode() );
}
for ( SelectionPool::iterator i = pool.begin(); i != pool.end(); ++i )
{
( *i ).second->setSelected( !( modifier == RadiantSelectionSystem::eToggle && ( *i ).second->isSelected() ) );
}
}
}
void translate( const Vector3& translation ){
if ( !nothingSelected() ) {
//ASSERT_MESSAGE(!m_pivotChanged, "pivot is invalid");
m_translation = translation;
m_pivot2world = m_pivot2world_start;
matrix4_translate_by_vec3( m_pivot2world, translation );
if ( Mode() == eComponent ) {
Scene_Translate_Component_Selected( GlobalSceneGraph(), m_translation );
}
else
{
Scene_Translate_Selected( GlobalSceneGraph(), m_translation );
}
SceneChangeNotify();
}
}
void outputTranslation( TextOutputStream& ostream ){
ostream << " -xyz " << m_translation.x() << " " << m_translation.y() << " " << m_translation.z();
}
void rotate( const Quaternion& rotation ){
if ( !nothingSelected() ) {
//ASSERT_MESSAGE(!m_pivotChanged, "pivot is invalid");
m_rotation = rotation;
if ( Mode() == eComponent ) {
Scene_Rotate_Component_Selected( GlobalSceneGraph(), m_rotation, vector4_to_vector3( m_pivot2world.t() ) );
matrix4_assign_rotation_for_pivot( m_pivot2world, m_component_selection.back() );
}
else
{
Scene_Rotate_Selected( GlobalSceneGraph(), m_rotation, vector4_to_vector3( m_pivot2world.t() ) );
matrix4_assign_rotation_for_pivot( m_pivot2world, m_selection.back() );
}
SceneChangeNotify();
}
}
void outputRotation( TextOutputStream& ostream ){
ostream << " -eulerXYZ " << m_rotation.x() << " " << m_rotation.y() << " " << m_rotation.z();
}
void scale( const Vector3& scaling ){
if ( !nothingSelected() ) {
m_scale = scaling;
if ( Mode() == eComponent ) {
Scene_Scale_Component_Selected( GlobalSceneGraph(), m_scale, vector4_to_vector3( m_pivot2world.t() ) );
}
else
{
Scene_Scale_Selected( GlobalSceneGraph(), m_scale, vector4_to_vector3( m_pivot2world.t() ) );
}
SceneChangeNotify();
}
}
void outputScale( TextOutputStream& ostream ){
ostream << " -scale " << m_scale.x() << " " << m_scale.y() << " " << m_scale.z();
}
void rotateSelected( const Quaternion& rotation, bool snapOrigin = false ){
if( snapOrigin && !m_pivotIsCustom ){
m_pivot2world.tx() = float_snapped( m_pivot2world.tx(), GetSnapGridSize() );
m_pivot2world.ty() = float_snapped( m_pivot2world.ty(), GetSnapGridSize() );
m_pivot2world.tz() = float_snapped( m_pivot2world.tz(), GetSnapGridSize() );
}
startMove();
rotate( rotation );
freezeTransforms();
}
void translateSelected( const Vector3& translation ){
startMove();
translate( translation );
freezeTransforms();
}
void scaleSelected( const Vector3& scaling, bool snapOrigin = false ){
if( snapOrigin && !m_pivotIsCustom ){
m_pivot2world.tx() = float_snapped( m_pivot2world.tx(), GetSnapGridSize() );
m_pivot2world.ty() = float_snapped( m_pivot2world.ty(), GetSnapGridSize() );
m_pivot2world.tz() = float_snapped( m_pivot2world.tz(), GetSnapGridSize() );
}
startMove();
scale( scaling );
freezeTransforms();
}
void MoveSelected( const View& view, const float device_point[2], bool snap, bool snapbbox ){
if ( m_manipulator->isSelected() ) {
if ( !m_undo_begun ) {
m_undo_begun = true;
GlobalUndoSystem().start();
}
Matrix4 device2manip;
ConstructDevice2Manip( device2manip, m_pivot2world_start, view.GetModelview(), view.GetProjection(), view.GetViewport() );
m_manipulator->GetManipulatable()->Transform( m_manip2pivot_start, device2manip, device_point[0], device_point[1], snap, snapbbox );
}
}
/// \todo Support view-dependent nudge.
void NudgeManipulator( const Vector3& nudge, const Vector3& view ){
// if ( ManipulatorMode() == eTranslate || ManipulatorMode() == eDrag ) {
translateSelected( nudge );
// }
}
void endMove();
void freezeTransforms();
void renderSolid( Renderer& renderer, const VolumeTest& volume ) const;
void renderWireframe( Renderer& renderer, const VolumeTest& volume ) const {
renderSolid( renderer, volume );
}
const Matrix4& GetPivot2World() const {
ConstructPivot();
return m_pivot2world;
}
static void constructStatic(){
m_state = GlobalShaderCache().capture( "$POINT" );
#if defined( DEBUG_SELECTION )
g_state_clipped = GlobalShaderCache().capture( "$DEBUG_CLIPPED" );
#endif
TranslateManipulator::m_state_wire = GlobalShaderCache().capture( "$WIRE_OVERLAY" );
TranslateManipulator::m_state_fill = GlobalShaderCache().capture( "$FLATSHADE_OVERLAY" );
RotateManipulator::m_state_outer = GlobalShaderCache().capture( "$WIRE_OVERLAY" );
}
static void destroyStatic(){
#if defined( DEBUG_SELECTION )
GlobalShaderCache().release( "$DEBUG_CLIPPED" );
#endif
GlobalShaderCache().release( "$WIRE_OVERLAY" );
GlobalShaderCache().release( "$FLATSHADE_OVERLAY" );
GlobalShaderCache().release( "$WIRE_OVERLAY" );
GlobalShaderCache().release( "$POINT" );
}
};
Shader* RadiantSelectionSystem::m_state = 0;
namespace
{
RadiantSelectionSystem* g_RadiantSelectionSystem;
inline RadiantSelectionSystem& getSelectionSystem(){
return *g_RadiantSelectionSystem;
}
}
#include "map.h"
class testselect_entity_visible : public scene::Graph::Walker
{
Selector& m_selector;
SelectionTest& m_test;
public:
testselect_entity_visible( Selector& selector, SelectionTest& test )
: m_selector( selector ), m_test( test ){
}
bool pre( const scene::Path& path, scene::Instance& instance ) const {
if( path.top().get_pointer() == Map_GetWorldspawn( g_map ) ||
node_is_group( path.top().get() ) ){
return false;
}
Selectable* selectable = Instance_getSelectable( instance );
if ( selectable != 0
&& Node_isEntity( path.top() ) ) {
m_selector.pushSelectable( *selectable );
}
SelectionTestable* selectionTestable = Instance_getSelectionTestable( instance );
if ( selectionTestable ) {
selectionTestable->testSelect( m_selector, m_test );
}
return true;
}
void post( const scene::Path& path, scene::Instance& instance ) const {
Selectable* selectable = Instance_getSelectable( instance );
if ( selectable != 0
&& Node_isEntity( path.top() ) ) {
m_selector.popSelectable();
}
}
};
class testselect_primitive_visible : public scene::Graph::Walker
{
Selector& m_selector;
SelectionTest& m_test;
public:
testselect_primitive_visible( Selector& selector, SelectionTest& test )
: m_selector( selector ), m_test( test ){
}
bool pre( const scene::Path& path, scene::Instance& instance ) const {
Selectable* selectable = Instance_getSelectable( instance );
if ( selectable != 0 ) {
m_selector.pushSelectable( *selectable );
}
SelectionTestable* selectionTestable = Instance_getSelectionTestable( instance );
if ( selectionTestable ) {
selectionTestable->testSelect( m_selector, m_test );
}
return true;
}
void post( const scene::Path& path, scene::Instance& instance ) const {
Selectable* selectable = Instance_getSelectable( instance );
if ( selectable != 0 ) {
m_selector.popSelectable();
}
}
};
class testselect_component_visible : public scene::Graph::Walker
{
Selector& m_selector;
SelectionTest& m_test;
SelectionSystem::EComponentMode m_mode;
public:
testselect_component_visible( Selector& selector, SelectionTest& test, SelectionSystem::EComponentMode mode )
: m_selector( selector ), m_test( test ), m_mode( mode ){
}
bool pre( const scene::Path& path, scene::Instance& instance ) const {
ComponentSelectionTestable* componentSelectionTestable = Instance_getComponentSelectionTestable( instance );
if ( componentSelectionTestable ) {
componentSelectionTestable->testSelectComponents( m_selector, m_test, m_mode );
}
return true;
}
};
class testselect_component_visible_selected : public scene::Graph::Walker
{
Selector& m_selector;
SelectionTest& m_test;
SelectionSystem::EComponentMode m_mode;
public:
testselect_component_visible_selected( Selector& selector, SelectionTest& test, SelectionSystem::EComponentMode mode )
: m_selector( selector ), m_test( test ), m_mode( mode ){
}
bool pre( const scene::Path& path, scene::Instance& instance ) const {
Selectable* selectable = Instance_getSelectable( instance );
if ( selectable != 0 && selectable->isSelected() ) {
ComponentSelectionTestable* componentSelectionTestable = Instance_getComponentSelectionTestable( instance );
if ( componentSelectionTestable ) {
componentSelectionTestable->testSelectComponents( m_selector, m_test, m_mode );
}
}
return true;
}
};
void Scene_TestSelect_Primitive( Selector& selector, SelectionTest& test, const VolumeTest& volume ){
Scene_forEachVisible( GlobalSceneGraph(), volume, testselect_primitive_visible( selector, test ) );
}
void Scene_TestSelect_Component_Selected( Selector& selector, SelectionTest& test, const VolumeTest& volume, SelectionSystem::EComponentMode componentMode ){
Scene_forEachVisible( GlobalSceneGraph(), volume, testselect_component_visible_selected( selector, test, componentMode ) );
}
void Scene_TestSelect_Component( Selector& selector, SelectionTest& test, const VolumeTest& volume, SelectionSystem::EComponentMode componentMode ){
Scene_forEachVisible( GlobalSceneGraph(), volume, testselect_component_visible( selector, test, componentMode ) );
}
void RadiantSelectionSystem::Scene_TestSelect( Selector& selector, SelectionTest& test, const View& view, SelectionSystem::EMode mode, SelectionSystem::EComponentMode componentMode ){
switch ( mode )
{
case eEntity:
{
Scene_forEachVisible( GlobalSceneGraph(), view, testselect_entity_visible( selector, test ) );
}
break;
case ePrimitive:
Scene_TestSelect_Primitive( selector, test, view );
break;
case eComponent:
Scene_TestSelect_Component_Selected( selector, test, view, componentMode );
break;
}
}
class FreezeTransforms : public scene::Graph::Walker
{
public:
bool pre( const scene::Path& path, scene::Instance& instance ) const {
TransformNode* transformNode = Node_getTransformNode( path.top() );
if ( transformNode != 0 ) {
Transformable* transform = Instance_getTransformable( instance );
if ( transform != 0 ) {
transform->freezeTransform();
}
}
return true;
}
};
void RadiantSelectionSystem::freezeTransforms(){
GlobalSceneGraph().traverse( FreezeTransforms() );
}
void RadiantSelectionSystem::endMove(){
freezeTransforms();
if ( Mode() == ePrimitive ) {
if ( ManipulatorMode() == eDrag ) {
g_bTmpComponentMode = false;
if( g_bAltResize_AltSelect ){
Scene_SelectAll_Component( false, SelectionSystem::eVertex );
}
else{
Scene_SelectAll_Component( false, SelectionSystem::eFace );
}
}
}
m_pivot_moving = false;
pivotChanged();
SceneChangeNotify();
if ( m_undo_begun ) {
StringOutputStream command;
if ( ManipulatorMode() == eTranslate ) {
command << "translateTool";
outputTranslation( command );
}
else if ( ManipulatorMode() == eRotate ) {
command << "rotateTool";
outputRotation( command );
}
else if ( ManipulatorMode() == eScale ) {
command << "scaleTool";
outputScale( command );
}
else if ( ManipulatorMode() == eDrag ) {
command << "dragTool";
}
GlobalUndoSystem().finish( command.c_str() );
}
}
inline AABB Instance_getPivotBounds( scene::Instance& instance ){
Entity* entity = Node_getEntity( instance.path().top() );
if ( entity != 0
&& ( entity->getEntityClass().fixedsize
|| !node_is_group( instance.path().top() ) ) ) {
Editable* editable = Node_getEditable( instance.path().top() );
if ( editable != 0 ) {
return AABB( vector4_to_vector3( matrix4_multiplied_by_matrix4( instance.localToWorld(), editable->getLocalPivot() ).t() ), Vector3( 0, 0, 0 ) );
}
else
{
return AABB( vector4_to_vector3( instance.localToWorld().t() ), Vector3( 0, 0, 0 ) );
}
}
return instance.worldAABB();
}
class bounds_selected : public scene::Graph::Walker
{
AABB& m_bounds;
public:
bounds_selected( AABB& bounds )
: m_bounds( bounds ){
m_bounds = AABB();
}
bool pre( const scene::Path& path, scene::Instance& instance ) const {
Selectable* selectable = Instance_getSelectable( instance );
if ( selectable != 0
&& selectable->isSelected() ) {
aabb_extend_by_aabb_safe( m_bounds, Instance_getPivotBounds( instance ) );
}
return true;
}
};
class bounds_selected_component : public scene::Graph::Walker
{
AABB& m_bounds;
public:
bounds_selected_component( AABB& bounds )
: m_bounds( bounds ){
m_bounds = AABB();
}
bool pre( const scene::Path& path, scene::Instance& instance ) const {
Selectable* selectable = Instance_getSelectable( instance );
if ( selectable != 0
&& selectable->isSelected() ) {
ComponentEditable* componentEditable = Instance_getComponentEditable( instance );
if ( componentEditable ) {
aabb_extend_by_aabb_safe( m_bounds, aabb_for_oriented_aabb_safe( componentEditable->getSelectedComponentsBounds(), instance.localToWorld() ) );
}
}
return true;
}
};
void Scene_BoundsSelected( scene::Graph& graph, AABB& bounds ){
graph.traverse( bounds_selected( bounds ) );
}
void Scene_BoundsSelectedComponent( scene::Graph& graph, AABB& bounds ){
graph.traverse( bounds_selected_component( bounds ) );
}
#if 0
inline void pivot_for_node( Matrix4& pivot, scene::Node& node, scene::Instance& instance ){
ComponentEditable* componentEditable = Instance_getComponentEditable( instance );
if ( GlobalSelectionSystem().Mode() == SelectionSystem::eComponent
&& componentEditable != 0 ) {
pivot = matrix4_translation_for_vec3( componentEditable->getSelectedComponentsBounds().origin );
}
else
{
Bounded* bounded = Instance_getBounded( instance );
if ( bounded != 0 ) {
pivot = matrix4_translation_for_vec3( bounded->localAABB().origin );
}
else
{
pivot = g_matrix4_identity;
}
}
}
#endif
void RadiantSelectionSystem::ConstructPivot() const {
if ( !m_pivotChanged || m_pivot_moving || m_pivotIsCustom ) {
return;
}
m_pivotChanged = false;
Vector3 m_object_pivot;
if ( !nothingSelected() ) {
{
AABB bounds;
if ( Mode() == eComponent ) {
Scene_BoundsSelectedComponent( GlobalSceneGraph(), bounds );
}
else
{
Scene_BoundsSelected( GlobalSceneGraph(), bounds );
}
m_object_pivot = bounds.origin;
}
//vector3_snap( m_object_pivot, GetSnapGridSize() );
//globalOutputStream() << m_object_pivot << "\n";
m_pivot2world = matrix4_translation_for_vec3( m_object_pivot );
switch ( m_manipulator_mode )
{
case eTranslate:
break;
case eRotate:
if ( Mode() == eComponent ) {
matrix4_assign_rotation_for_pivot( m_pivot2world, m_component_selection.back() );
}
else
{
matrix4_assign_rotation_for_pivot( m_pivot2world, m_selection.back() );
}
break;
case eScale:
if ( Mode() == eComponent ) {
matrix4_assign_rotation_for_pivot( m_pivot2world, m_component_selection.back() );
}
else
{
matrix4_assign_rotation_for_pivot( m_pivot2world, m_selection.back() );
}
break;
default:
break;
}
}
}
void RadiantSelectionSystem::setCustomPivotOrigin( Vector3& point ) const {
if ( !nothingSelected() && ( m_manipulator_mode == eTranslate || m_manipulator_mode == eRotate || m_manipulator_mode == eScale ) ) {
AABB bounds;
if ( Mode() == eComponent ) {
Scene_BoundsSelectedComponent( GlobalSceneGraph(), bounds );
}
else
{
Scene_BoundsSelected( GlobalSceneGraph(), bounds );
}
//globalOutputStream() << point << "\n";
for( std::size_t i = 0; i < 3; i++ ){
if( point[i] < 900000.0f ){
float bestsnapDist = fabs( bounds.origin[i] - point[i] );
float bestsnapTo = bounds.origin[i];
float othersnapDist = fabs( bounds.origin[i] + bounds.extents[i] - point[i] );
if( othersnapDist < bestsnapDist ){
bestsnapDist = othersnapDist;
bestsnapTo = bounds.origin[i] + bounds.extents[i];
}
othersnapDist = fabs( bounds.origin[i] - bounds.extents[i] - point[i] );
if( othersnapDist < bestsnapDist ){
bestsnapDist = othersnapDist;
bestsnapTo = bounds.origin[i] - bounds.extents[i];
}
othersnapDist = fabs( float_snapped( point[i], GetSnapGridSize() ) - point[i] );
if( othersnapDist < bestsnapDist ){
bestsnapDist = othersnapDist;
bestsnapTo = float_snapped( point[i], GetSnapGridSize() );
}
point[i] = bestsnapTo;
m_pivot2world[i + 12] = point[i]; //m_pivot2world.tx() .ty() .tz()
}
}
switch ( m_manipulator_mode )
{
case eTranslate:
break;
case eRotate:
if ( Mode() == eComponent ) {
matrix4_assign_rotation_for_pivot( m_pivot2world, m_component_selection.back() );
}
else
{
matrix4_assign_rotation_for_pivot( m_pivot2world, m_selection.back() );
}
break;
case eScale:
if ( Mode() == eComponent ) {
matrix4_assign_rotation_for_pivot( m_pivot2world, m_component_selection.back() );
}
else
{
matrix4_assign_rotation_for_pivot( m_pivot2world, m_selection.back() );
}
break;
default:
break;
}
m_pivotIsCustom = true;
}
}
AABB RadiantSelectionSystem::getSelectionAABB() const {
AABB bounds;
if ( !nothingSelected() ) {
if ( Mode() == eComponent || g_bTmpComponentMode ) {
Scene_BoundsSelectedComponent( GlobalSceneGraph(), bounds );
}
else
{
Scene_BoundsSelected( GlobalSceneGraph(), bounds );
}
}
return bounds;
}
void RadiantSelectionSystem::renderSolid( Renderer& renderer, const VolumeTest& volume ) const {
//if(view->TestPoint(m_object_pivot))
if ( !nothingSelected() ) {
renderer.Highlight( Renderer::ePrimitive, false );
renderer.Highlight( Renderer::eFace, false );
renderer.SetState( m_state, Renderer::eWireframeOnly );
renderer.SetState( m_state, Renderer::eFullMaterials );
m_manipulator->render( renderer, volume, GetPivot2World() );
}
#if defined( DEBUG_SELECTION )
renderer.SetState( g_state_clipped, Renderer::eWireframeOnly );
renderer.SetState( g_state_clipped, Renderer::eFullMaterials );
renderer.addRenderable( g_render_clipped, g_render_clipped.m_world );
#endif
}
#include "preferencesystem.h"
#include "preferences.h"
bool g_bLeftMouseClickSelector = true;
void SelectionSystem_constructPreferences( PreferencesPage& page ){
page.appendCheckBox( "", "Prefer point entities in 2D", getSelectionSystem().m_bPreferPointEntsIn2D );
page.appendCheckBox( "", "Left mouse click tunnel selector", g_bLeftMouseClickSelector );
}
void SelectionSystem_constructPage( PreferenceGroup& group ){
PreferencesPage page( group.createPage( "Selection", "Selection System Settings" ) );
SelectionSystem_constructPreferences( page );
}
void SelectionSystem_registerPreferencesPage(){
PreferencesDialog_addSettingsPage( FreeCaller1<PreferenceGroup&, SelectionSystem_constructPage>() );
}
void SelectionSystem_OnBoundsChanged(){
getSelectionSystem().pivotChanged();
}
SignalHandlerId SelectionSystem_boundsChanged;
void SelectionSystem_Construct(){
RadiantSelectionSystem::constructStatic();
g_RadiantSelectionSystem = new RadiantSelectionSystem;
SelectionSystem_boundsChanged = GlobalSceneGraph().addBoundsChangedCallback( FreeCaller<SelectionSystem_OnBoundsChanged>() );
GlobalShaderCache().attachRenderable( getSelectionSystem() );
GlobalPreferenceSystem().registerPreference( "PreferPointEntsIn2D", BoolImportStringCaller( getSelectionSystem().m_bPreferPointEntsIn2D ), BoolExportStringCaller( getSelectionSystem().m_bPreferPointEntsIn2D ) );
GlobalPreferenceSystem().registerPreference( "LeftMouseClickSelector", BoolImportStringCaller( g_bLeftMouseClickSelector ), BoolExportStringCaller( g_bLeftMouseClickSelector ) );
SelectionSystem_registerPreferencesPage();
}
void SelectionSystem_Destroy(){
GlobalShaderCache().detachRenderable( getSelectionSystem() );
GlobalSceneGraph().removeBoundsChangedCallback( SelectionSystem_boundsChanged );
delete g_RadiantSelectionSystem;
RadiantSelectionSystem::destroyStatic();
}
inline float screen_normalised( float pos, std::size_t size ){
return ( ( 2.0f * pos ) / size ) - 1.0f;
}
typedef Vector2 DeviceVector;
inline DeviceVector window_to_normalised_device( WindowVector window, std::size_t width, std::size_t height ){
return DeviceVector( screen_normalised( window.x(), width ), screen_normalised( height - 1 - window.y(), height ) );
}
inline float device_constrained( float pos ){
return std::min( 1.0f, std::max( -1.0f, pos ) );
}
inline DeviceVector device_constrained( DeviceVector device ){
return DeviceVector( device_constrained( device.x() ), device_constrained( device.y() ) );
}
inline float window_constrained( float pos, std::size_t origin, std::size_t size ){
return std::min( static_cast<float>( origin + size ), std::max( static_cast<float>( origin ), pos ) );
}
inline WindowVector window_constrained( WindowVector window, std::size_t x, std::size_t y, std::size_t width, std::size_t height ){
return WindowVector( window_constrained( window.x(), x, width ), window_constrained( window.y(), y, height ) );
}
typedef Callback1<DeviceVector> MouseEventCallback;
Single<MouseEventCallback> g_mouseMovedCallback;
Single<MouseEventCallback> g_mouseUpCallback;
#if 1
const ButtonIdentifier c_button_select = c_buttonLeft;
const ButtonIdentifier c_button_select2 = c_buttonRight;
const ModifierFlags c_modifier_manipulator = c_modifierNone;
const ModifierFlags c_modifier_toggle = c_modifierShift;
const ModifierFlags c_modifier_replace = c_modifierShift | c_modifierAlt;
const ModifierFlags c_modifier_face = c_modifierControl;
#else
const ButtonIdentifier c_button_select = c_buttonLeft;
const ModifierFlags c_modifier_manipulator = c_modifierNone;
const ModifierFlags c_modifier_toggle = c_modifierControl;
const ModifierFlags c_modifier_replace = c_modifierNone;
const ModifierFlags c_modifier_face = c_modifierShift;
#endif
const ModifierFlags c_modifier_toggle_face = c_modifier_toggle | c_modifier_face;
const ModifierFlags c_modifier_replace_face = c_modifier_replace | c_modifier_face;
const ButtonIdentifier c_button_texture = c_buttonMiddle;
const ModifierFlags c_modifier_apply_texture1_project = c_modifierControl | c_modifierShift;
const ModifierFlags c_modifier_apply_texture2_seamless = c_modifierControl;
const ModifierFlags c_modifier_apply_texture3 = c_modifierShift;
const ModifierFlags c_modifier_copy_texture = c_modifierNone;
void Scene_copyClosestTexture( SelectionTest& test );
void Scene_applyClosestTexture( SelectionTest& test, bool seamless, bool project, bool texturize_selected = false );
void Scene_projectClosestTexture( SelectionTest& test );
class TexManipulator_
{
public:
DeviceVector m_epsilon;
const View* m_view;
ModifierFlags m_state;
bool m_undo_begun;
TexManipulator_() : m_state( c_modifierNone ), m_undo_begun( false ){
}
void mouseDown( DeviceVector position ){
View scissored( *m_view );
ConstructSelectionTest( scissored, SelectionBoxForPoint( &position[0], &m_epsilon[0] ) );
SelectionVolume volume( scissored );
if ( m_state == c_modifier_apply_texture1_project || m_state == c_modifier_apply_texture2_seamless || m_state == c_modifier_apply_texture3 ) {
m_undo_begun = true;
GlobalUndoSystem().start();
Scene_applyClosestTexture( volume, m_state == c_modifier_apply_texture2_seamless, m_state == c_modifier_apply_texture1_project, true );
}
else if ( m_state == c_modifier_copy_texture ) {
Scene_copyClosestTexture( volume );
}
}
void mouseMoved( DeviceVector position ){
if( m_undo_begun ){
View scissored( *m_view );
ConstructSelectionTest( scissored, SelectionBoxForPoint( &device_constrained( position )[0], &m_epsilon[0] ) );
SelectionVolume volume( scissored );
Scene_applyClosestTexture( volume, m_state == c_modifier_apply_texture2_seamless, m_state == c_modifier_apply_texture1_project );
}
}
typedef MemberCaller1<TexManipulator_, DeviceVector, &TexManipulator_::mouseMoved> MouseMovedCaller;
void mouseUp( DeviceVector position ){
if( m_undo_begun ){
GlobalUndoSystem().finish( ( m_state == c_modifier_apply_texture1_project )? "projectTexture" : ( m_state == c_modifier_apply_texture2_seamless )? "paintTextureSeamless" : "paintTexture&Projection" );
m_undo_begun = false;
}
g_mouseMovedCallback.clear();
g_mouseUpCallback.clear();
}
typedef MemberCaller1<TexManipulator_, DeviceVector, &TexManipulator_::mouseUp> MouseUpCaller;
void setState( ModifierFlags state ){
m_state = state;
}
ModifierFlags getState() const {
return m_state;
}
void modifierEnable( ModifierFlags type ){
setState( bitfield_enable( getState(), type ) );
}
void modifierDisable( ModifierFlags type ){
setState( bitfield_disable( getState(), type ) );
}
};
class Selector_
{
RadiantSelectionSystem::EModifier modifier_for_state( ModifierFlags state ){
if ( ( state == c_modifier_toggle || state == c_modifier_toggle_face || state == c_modifier_face || state == c_modifierAlt ) ) {
if( m_mouse2 ){
return RadiantSelectionSystem::eReplace;
}
else{
return RadiantSelectionSystem::eToggle;
}
}
return RadiantSelectionSystem::eManipulator;
}
rect_t getDeviceArea() const {
DeviceVector delta( m_current - m_start );
if ( selecting() && fabs( delta.x() ) > m_epsilon.x() && fabs( delta.y() ) > m_epsilon.y() ) {
return SelectionBoxForArea( &m_start[0], &delta[0] );
}
else
{
rect_t default_area = { { 0, 0, }, { 0, 0, }, };
return default_area;
}
}
public:
DeviceVector m_start;
DeviceVector m_current;
DeviceVector m_epsilon;
ModifierFlags m_state;
bool m_mouse2;
bool m_mouseMoved;
bool m_mouseMovedWhilePressed;
bool m_paintSelect;
const View* m_view;
RectangleCallback m_window_update;
Selector_() : m_start( 0.0f, 0.0f ), m_current( 0.0f, 0.0f ), m_state( c_modifierNone ), m_mouse2( false ), m_mouseMoved( false ), m_mouseMovedWhilePressed( false ){
}
void draw_area(){
m_window_update( getDeviceArea() );
}
void testSelect( DeviceVector position ){
RadiantSelectionSystem::EModifier modifier = modifier_for_state( m_state );
if ( modifier != RadiantSelectionSystem::eManipulator ) {
DeviceVector delta( position - m_start );
if ( fabs( delta.x() ) > m_epsilon.x() && fabs( delta.y() ) > m_epsilon.y() ) {
DeviceVector delta( position - m_start );
//getSelectionSystem().SelectArea( *m_view, &m_start[0], &delta[0], modifier, ( m_state & c_modifier_face ) != c_modifierNone );
getSelectionSystem().SelectArea( *m_view, &m_start[0], &delta[0], RadiantSelectionSystem::eToggle, ( m_state & c_modifier_face ) != c_modifierNone );
}
else if( !m_mouseMovedWhilePressed ){
if ( modifier == RadiantSelectionSystem::eReplace && !m_mouseMoved ) {
modifier = RadiantSelectionSystem::eCycle;
}
getSelectionSystem().SelectPoint( *m_view, &position[0], &m_epsilon[0], modifier, ( m_state & c_modifier_face ) != c_modifierNone );
}
}
m_start = m_current = DeviceVector( 0.0f, 0.0f );
draw_area();
}
void testSelect_simpleM1( DeviceVector position ){
/*RadiantSelectionSystem::EModifier modifier = RadiantSelectionSystem::eReplace;
DeviceVector delta( position - m_start );
if ( fabs( delta.x() ) < m_epsilon.x() && fabs( delta.y() ) < m_epsilon.y() ) {
modifier = RadiantSelectionSystem::eCycle;
}
getSelectionSystem().SelectPoint( *m_view, &position[0], &m_epsilon[0], modifier, false );*/
if( g_bLeftMouseClickSelector ){
getSelectionSystem().SelectPoint( *m_view, &position[0], &m_epsilon[0], m_mouseMoved ? RadiantSelectionSystem::eReplace : RadiantSelectionSystem::eCycle, false );
}
m_start = m_current = device_constrained( position );
}
bool selecting() const {
return m_state != c_modifier_manipulator && m_mouse2;
}
void setState( ModifierFlags state ){
bool was_selecting = selecting();
m_state = state;
if ( was_selecting ^ selecting() ) {
draw_area();
}
}
ModifierFlags getState() const {
return m_state;
}
void modifierEnable( ModifierFlags type ){
setState( bitfield_enable( getState(), type ) );
}
void modifierDisable( ModifierFlags type ){
setState( bitfield_disable( getState(), type ) );
}
void mouseDown( DeviceVector position ){
m_start = m_current = device_constrained( position );
if( !m_mouse2 && m_state != c_modifierNone ){
m_paintSelect = getSelectionSystem().SelectPoint_InitPaint( *m_view, &position[0], &m_epsilon[0], ( m_state & c_modifier_face ) != c_modifierNone );
}
}
void mouseMoved( DeviceVector position ){
m_current = device_constrained( position );
m_mouseMovedWhilePressed = true;
if( m_mouse2 ){
draw_area();
}
else if( m_state != c_modifier_manipulator ){
getSelectionSystem().SelectPoint( *m_view, &m_current[0], &m_epsilon[0],
m_paintSelect ? RadiantSelectionSystem::eSelect : RadiantSelectionSystem::eDeselect,
( m_state & c_modifier_face ) != c_modifierNone );
}
}
typedef MemberCaller1<Selector_, DeviceVector, &Selector_::mouseMoved> MouseMovedCaller;
void mouseUp( DeviceVector position ){
if( m_mouse2 ){
testSelect( device_constrained( position ) );
}
else{
m_start = m_current = DeviceVector( 0.0f, 0.0f );
}
g_mouseMovedCallback.clear();
g_mouseUpCallback.clear();
}
typedef MemberCaller1<Selector_, DeviceVector, &Selector_::mouseUp> MouseUpCaller;
};
class Manipulator_
{
public:
DeviceVector m_epsilon;
const View* m_view;
ModifierFlags m_state;
Manipulator_() : m_state( c_modifierNone ){
}
bool mouseDown( DeviceVector position ){
return getSelectionSystem().SelectManipulator( *m_view, &position[0], &m_epsilon[0] );
}
void mouseMoved( DeviceVector position ){
getSelectionSystem().MoveSelected( *m_view, &position[0], ( m_state & c_modifierShift ) == c_modifierShift, ( m_state & c_modifierControl ) == c_modifierControl );
}
typedef MemberCaller1<Manipulator_, DeviceVector, &Manipulator_::mouseMoved> MouseMovedCaller;
void mouseUp( DeviceVector position ){
getSelectionSystem().endMove();
g_mouseMovedCallback.clear();
g_mouseUpCallback.clear();
}
typedef MemberCaller1<Manipulator_, DeviceVector, &Manipulator_::mouseUp> MouseUpCaller;
void setState( ModifierFlags state ){
m_state = state;
}
ModifierFlags getState() const {
return m_state;
}
void modifierEnable( ModifierFlags type ){
setState( bitfield_enable( getState(), type ) );
}
void modifierDisable( ModifierFlags type ){
setState( bitfield_disable( getState(), type ) );
}
};
class RadiantWindowObserver : public SelectionSystemWindowObserver
{
enum
{
SELECT_EPSILON = 8,
};
int m_width;
int m_height;
bool m_mouse_down;
public:
Selector_ m_selector;
Manipulator_ m_manipulator;
TexManipulator_ m_texmanipulator;
RadiantWindowObserver() : m_mouse_down( false ){
}
void release(){
delete this;
}
void setView( const View& view ){
m_selector.m_view = &view;
m_manipulator.m_view = &view;
m_texmanipulator.m_view = &view;
}
void setRectangleDrawCallback( const RectangleCallback& callback ){
m_selector.m_window_update = callback;
}
void onSizeChanged( int width, int height ){
m_width = width;
m_height = height;
DeviceVector epsilon( SELECT_EPSILON / static_cast<float>( m_width ), SELECT_EPSILON / static_cast<float>( m_height ) );
m_selector.m_epsilon = m_manipulator.m_epsilon = m_texmanipulator.m_epsilon = epsilon;
}
void onMouseDown( const WindowVector& position, ButtonIdentifier button, ModifierFlags modifiers ){
if ( button == c_button_select || ( button == c_button_select2 && modifiers != c_modifierNone ) ) {
m_mouse_down = true;
//m_selector.m_mouseMoved = false;
DeviceVector devicePosition( window_to_normalised_device( position, m_width, m_height ) );
g_bAltResize_AltSelect = ( modifiers == c_modifierAlt ) ? true : false;
if ( ( modifiers == c_modifier_manipulator || ( modifiers == c_modifierAlt && getSelectionSystem().Mode() != SelectionSystem::eComponent ) ) && m_manipulator.mouseDown( devicePosition ) ) {
g_mouseMovedCallback.insert( MouseEventCallback( Manipulator_::MouseMovedCaller( m_manipulator ) ) );
g_mouseUpCallback.insert( MouseEventCallback( Manipulator_::MouseUpCaller( m_manipulator ) ) );
}
else
{
m_selector.m_mouse2 = ( button == c_button_select ) ? false : true;
m_selector.mouseDown( devicePosition );
g_mouseMovedCallback.insert( MouseEventCallback( Selector_::MouseMovedCaller( m_selector ) ) );
g_mouseUpCallback.insert( MouseEventCallback( Selector_::MouseUpCaller( m_selector ) ) );
}
}
else if ( button == c_button_texture ) {
m_mouse_down = true;
DeviceVector devicePosition( device_constrained( window_to_normalised_device( position, m_width, m_height ) ) );
m_texmanipulator.mouseDown( devicePosition );
g_mouseMovedCallback.insert( MouseEventCallback( TexManipulator_::MouseMovedCaller( m_texmanipulator ) ) );
g_mouseUpCallback.insert( MouseEventCallback( TexManipulator_::MouseUpCaller( m_texmanipulator ) ) );
}
}
void onMouseMotion( const WindowVector& position, ModifierFlags modifiers ){
m_selector.m_mouseMoved = true;
if ( m_mouse_down && !g_mouseMovedCallback.empty() ) {
m_selector.m_mouseMovedWhilePressed = true;
g_mouseMovedCallback.get() ( window_to_normalised_device( position, m_width, m_height ) );
}
}
void onMouseUp( const WindowVector& position, ButtonIdentifier button, ModifierFlags modifiers ){
if ( ( button == c_button_select || button == c_button_select2 || button == c_button_texture ) && !g_mouseUpCallback.empty() ) {
m_mouse_down = false;
g_mouseUpCallback.get() ( window_to_normalised_device( position, m_width, m_height ) );
}
//L button w/o scene changed = tunnel selection
if( // !getSelectionSystem().m_undo_begun &&
modifiers == c_modifierNone && button == c_button_select &&
//( !m_selector.m_mouseMoved || !m_mouse_down ) &&
!m_selector.m_mouseMovedWhilePressed &&
( getSelectionSystem().Mode() != SelectionSystem::eComponent || getSelectionSystem().ManipulatorMode() != SelectionSystem::eDrag ) ){
m_selector.testSelect_simpleM1( device_constrained( window_to_normalised_device( position, m_width, m_height ) ) );
}
//getSelectionSystem().m_undo_begun = false;
m_selector.m_mouseMoved = false;
m_selector.m_mouseMovedWhilePressed = false;
}
void onModifierDown( ModifierFlags type ){
m_selector.modifierEnable( type );
m_manipulator.modifierEnable( type );
m_texmanipulator.modifierEnable( type );
}
void onModifierUp( ModifierFlags type ){
m_selector.modifierDisable( type );
m_manipulator.modifierDisable( type );
m_texmanipulator.modifierDisable( type );
}
};
SelectionSystemWindowObserver* NewWindowObserver(){
return new RadiantWindowObserver;
}
#include "modulesystem/singletonmodule.h"
#include "modulesystem/moduleregistry.h"
class SelectionDependencies :
public GlobalSceneGraphModuleRef,
public GlobalShaderCacheModuleRef,
public GlobalOpenGLModuleRef
{
};
class SelectionAPI : public TypeSystemRef
{
SelectionSystem* m_selection;
public:
typedef SelectionSystem Type;
STRING_CONSTANT( Name, "*" );
SelectionAPI(){
SelectionSystem_Construct();
m_selection = &getSelectionSystem();
}
~SelectionAPI(){
SelectionSystem_Destroy();
}
SelectionSystem* getTable(){
return m_selection;
}
};
typedef SingletonModule<SelectionAPI, SelectionDependencies> SelectionModule;
typedef Static<SelectionModule> StaticSelectionModule;
StaticRegisterModule staticRegisterSelection( StaticSelectionModule::instance() );