netradiant-custom/radiant/brush.cpp

390 lines
10 KiB
C++

/*
Copyright (C) 1999-2006 Id Software, Inc. and contributors.
For a list of contributors, see the accompanying CONTRIBUTORS file.
This file is part of GtkRadiant.
GtkRadiant is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
GtkRadiant is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GtkRadiant; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "brush.h"
#include "signal/signal.h"
Signal0 g_brushTextureChangedCallbacks;
void Brush_addTextureChangedCallback( const SignalHandler& handler ){
g_brushTextureChangedCallbacks.connectLast( handler );
}
void Brush_textureChanged(){
g_brushTextureChangedCallbacks();
}
QuantiseFunc Face::m_quantise;
EBrushType Face::m_type;
EBrushType FacePlane::m_type;
bool g_brush_texturelock_enabled = false;
bool g_brush_textureVertexlock_enabled = false;
EBrushType Brush::m_type;
double Brush::m_maxWorldCoord = 0;
Shader* Brush::m_state_point;
Shader* BrushClipPlane::m_state = 0;
Shader* BrushInstance::m_state_selpoint;
Counter* BrushInstance::m_counter = 0;
FaceInstanceSet g_SelectedFaceInstances;
struct SListNode
{
SListNode* m_next;
};
class ProximalVertex
{
public:
const SListNode* m_vertices;
ProximalVertex( const SListNode* next )
: m_vertices( next ){
}
bool operator<( const ProximalVertex& other ) const {
if ( !( operator==( other ) ) ) {
return m_vertices < other.m_vertices;
}
return false;
}
bool operator==( const ProximalVertex& other ) const {
const SListNode* v = m_vertices;
std::size_t DEBUG_LOOP = 0;
do
{
if ( v == other.m_vertices ) {
return true;
}
v = v->m_next;
//ASSERT_MESSAGE(DEBUG_LOOP < c_brush_maxFaces, "infinite loop");
if ( !( DEBUG_LOOP < c_brush_maxFaces ) ) {
break;
}
++DEBUG_LOOP;
}
while ( v != m_vertices );
return false;
}
};
typedef Array<SListNode> ProximalVertexArray;
std::size_t ProximalVertexArray_index( const ProximalVertexArray& array, const ProximalVertex& vertex ){
return vertex.m_vertices - array.data();
}
inline bool Brush_isBounded( const Brush& brush ){
for ( Brush::const_iterator i = brush.begin(); i != brush.end(); ++i )
{
if ( !( *i )->is_bounded() ) {
return false;
}
}
return true;
}
void Brush::buildBRep(){
bool degenerate = buildWindings();
std::size_t faces_size = 0;
std::size_t faceVerticesCount = 0;
for ( Faces::const_iterator i = m_faces.begin(); i != m_faces.end(); ++i )
{
if ( ( *i )->contributes() ) {
++faces_size;
}
faceVerticesCount += ( *i )->getWinding().numpoints;
}
if ( degenerate || faces_size < 4 || faceVerticesCount != ( faceVerticesCount >> 1 ) << 1 ) { // sum of vertices for each face of a valid polyhedron is always even
m_uniqueVertexPoints.resize( 0 );
vertex_clear();
edge_clear();
m_edge_indices.resize( 0 );
m_edge_faces.resize( 0 );
m_faceCentroidPoints.resize( 0 );
m_uniqueEdgePoints.resize( 0 );
m_uniqueVertexPoints.resize( 0 );
for ( Faces::iterator i = m_faces.begin(); i != m_faces.end(); ++i )
{
( *i )->getWinding().resize( 0 );
}
}
else
{
{
typedef std::vector<FaceVertexId> FaceVertices;
FaceVertices faceVertices;
faceVertices.reserve( faceVerticesCount );
{
for ( std::size_t i = 0; i != m_faces.size(); ++i )
{
for ( std::size_t j = 0; j < m_faces[i]->getWinding().numpoints; ++j )
{
faceVertices.push_back( FaceVertexId( i, j ) );
}
}
}
IndexBuffer uniqueEdgeIndices;
typedef VertexBuffer<ProximalVertex> UniqueEdges;
UniqueEdges uniqueEdges;
uniqueEdgeIndices.reserve( faceVertices.size() );
uniqueEdges.reserve( faceVertices.size() );
{
ProximalVertexArray edgePairs;
edgePairs.resize( faceVertices.size() );
{
for ( std::size_t i = 0; i < faceVertices.size(); ++i )
{
edgePairs[i].m_next = edgePairs.data() + absoluteIndex( next_edge( m_faces, faceVertices[i] ) );
}
}
{
UniqueVertexBuffer<ProximalVertex> inserter( uniqueEdges );
for ( ProximalVertexArray::iterator i = edgePairs.begin(); i != edgePairs.end(); ++i )
{
uniqueEdgeIndices.insert( inserter.insert( ProximalVertex( &( *i ) ) ) );
}
}
{
edge_clear();
m_select_edges.reserve( uniqueEdges.size() );
for ( UniqueEdges::iterator i = uniqueEdges.begin(); i != uniqueEdges.end(); ++i )
{
edge_push_back( faceVertices[ProximalVertexArray_index( edgePairs, *i )] );
}
}
{
m_edge_faces.resize( uniqueEdges.size() );
for ( std::size_t i = 0; i < uniqueEdges.size(); ++i )
{
FaceVertexId faceVertex = faceVertices[ProximalVertexArray_index( edgePairs, uniqueEdges[i] )];
m_edge_faces[i] = EdgeFaces( faceVertex.getFace(), m_faces[faceVertex.getFace()]->getWinding()[faceVertex.getVertex()].adjacent );
}
}
{
m_uniqueEdgePoints.resize( uniqueEdges.size() );
for ( std::size_t i = 0; i < uniqueEdges.size(); ++i )
{
FaceVertexId faceVertex = faceVertices[ProximalVertexArray_index( edgePairs, uniqueEdges[i] )];
const Winding& w = m_faces[faceVertex.getFace()]->getWinding();
Vector3 edge = vector3_mid( w[faceVertex.getVertex()].vertex, w[Winding_next( w, faceVertex.getVertex() )].vertex );
m_uniqueEdgePoints[i] = pointvertex_for_windingpoint( edge, colour_vertex );
}
}
}
IndexBuffer uniqueVertexIndices;
typedef VertexBuffer<ProximalVertex> UniqueVertices;
UniqueVertices uniqueVertices;
uniqueVertexIndices.reserve( faceVertices.size() );
uniqueVertices.reserve( faceVertices.size() );
{
ProximalVertexArray vertexRings;
vertexRings.resize( faceVertices.size() );
{
for ( std::size_t i = 0; i < faceVertices.size(); ++i )
{
vertexRings[i].m_next = vertexRings.data() + absoluteIndex( next_vertex( m_faces, faceVertices[i] ) );
}
}
{
UniqueVertexBuffer<ProximalVertex> inserter( uniqueVertices );
for ( ProximalVertexArray::iterator i = vertexRings.begin(); i != vertexRings.end(); ++i )
{
uniqueVertexIndices.insert( inserter.insert( ProximalVertex( &( *i ) ) ) );
}
}
{
vertex_clear();
m_select_vertices.reserve( uniqueVertices.size() );
for ( UniqueVertices::iterator i = uniqueVertices.begin(); i != uniqueVertices.end(); ++i )
{
vertex_push_back( faceVertices[ProximalVertexArray_index( vertexRings, ( *i ) )] );
}
}
{
m_uniqueVertexPoints.resize( uniqueVertices.size() );
for ( std::size_t i = 0; i < uniqueVertices.size(); ++i )
{
FaceVertexId faceVertex = faceVertices[ProximalVertexArray_index( vertexRings, uniqueVertices[i] )];
const Winding& winding = m_faces[faceVertex.getFace()]->getWinding();
m_uniqueVertexPoints[i] = pointvertex_for_windingpoint( winding[faceVertex.getVertex()].vertex, colour_vertex );
}
}
}
if ( ( uniqueVertices.size() + faces_size ) - uniqueEdges.size() != 2 ) {
globalErrorStream() << "Final B-Rep: inconsistent vertex count\n";
}
#if BRUSH_CONNECTIVITY_DEBUG
if ( ( uniqueVertices.size() + faces_size ) - uniqueEdges.size() != 2 ) {
for ( Faces::iterator i = m_faces.begin(); i != m_faces.end(); ++i )
{
std::size_t faceIndex = std::distance( m_faces.begin(), i );
if ( !( *i )->contributes() ) {
globalOutputStream() << "face: " << Unsigned( faceIndex ) << " does not contribute\n";
}
Winding_printConnectivity( ( *i )->getWinding() );
}
}
#endif
// edge-index list for wireframe rendering
{
m_edge_indices.resize( uniqueEdgeIndices.size() );
for ( std::size_t i = 0, count = 0; i < m_faces.size(); ++i )
{
const Winding& winding = m_faces[i]->getWinding();
for ( std::size_t j = 0; j < winding.numpoints; ++j )
{
const RenderIndex edge_index = uniqueEdgeIndices[count + j];
m_edge_indices[edge_index].first = uniqueVertexIndices[count + j];
m_edge_indices[edge_index].second = uniqueVertexIndices[count + Winding_next( winding, j )];
}
count += winding.numpoints;
}
}
}
{
m_faceCentroidPoints.resize( m_faces.size() );
for ( std::size_t i = 0; i < m_faces.size(); ++i )
{
m_faces[i]->construct_centroid();
m_faceCentroidPoints[i] = pointvertex_for_windingpoint( m_faces[i]->centroid(), colour_vertex );
}
}
}
}
class FaceFilterWrapper : public Filter
{
FaceFilter& m_filter;
bool m_active;
bool m_invert;
public:
FaceFilterWrapper( FaceFilter& filter, bool invert ) :
m_filter( filter ),
m_invert( invert ){
}
void setActive( bool active ){
m_active = active;
}
bool active(){
return m_active;
}
bool filter( const Face& face ){
return m_invert ^ m_filter.filter( face );
}
};
typedef std::list<FaceFilterWrapper> FaceFilters;
FaceFilters g_faceFilters;
void add_face_filter( FaceFilter& filter, int mask, bool invert ){
g_faceFilters.push_back( FaceFilterWrapper( filter, invert ) );
GlobalFilterSystem().addFilter( g_faceFilters.back(), mask );
}
bool face_filtered( Face& face ){
for ( FaceFilters::iterator i = g_faceFilters.begin(); i != g_faceFilters.end(); ++i )
{
if ( ( *i ).active() && ( *i ).filter( face ) ) {
return true;
}
}
return false;
}
class BrushFilterWrapper : public Filter
{
bool m_active;
bool m_invert;
BrushFilter& m_filter;
public:
BrushFilterWrapper( BrushFilter& filter, bool invert ) : m_invert( invert ), m_filter( filter ){
}
void setActive( bool active ){
m_active = active;
}
bool active(){
return m_active;
}
bool filter( const Brush& brush ){
return m_invert ^ m_filter.filter( brush );
}
};
typedef std::list<BrushFilterWrapper> BrushFilters;
BrushFilters g_brushFilters;
void add_brush_filter( BrushFilter& filter, int mask, bool invert ){
g_brushFilters.push_back( BrushFilterWrapper( filter, invert ) );
GlobalFilterSystem().addFilter( g_brushFilters.back(), mask );
}
bool brush_filtered( Brush& brush ){
for ( BrushFilters::iterator i = g_brushFilters.begin(); i != g_brushFilters.end(); ++i )
{
if ( ( *i ).active() && ( *i ).filter( brush ) ) {
return true;
}
}
return false;
}