netradiant-custom/tools/quake3/q3map2/mesh.cpp
2021-10-26 18:16:24 +03:00

717 lines
19 KiB
C++

/* -------------------------------------------------------------------------------
Copyright (C) 1999-2007 id Software, Inc. and contributors.
For a list of contributors, see the accompanying CONTRIBUTORS file.
This file is part of GtkRadiant.
GtkRadiant is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
GtkRadiant is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GtkRadiant; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
----------------------------------------------------------------------------------
This code has been altered significantly from its original form, to support
several games based on the Quake III Arena engine, in the form of "Q3Map2."
------------------------------------------------------------------------------- */
/* dependencies */
#include "q3map2.h"
/*
LerpDrawVert()
returns an 50/50 interpolated vert
*/
void LerpDrawVert( const bspDrawVert_t *a, const bspDrawVert_t *b, bspDrawVert_t *out ){
out->xyz = vector3_mid( a->xyz, b->xyz );
out->st = vector2_mid( a->st, b->st );
for ( int k = 0; k < MAX_LIGHTMAPS; k++ )
{
out->lightmap[ k ] = vector2_mid( a->lightmap[ k ], b->lightmap[ k ] );
for( int i = 0; i < 4; ++i )
out->color[ k ][ i ] = ( a->color[ k ][ i ] + b->color[ k ][ i ] ) >> 1;
}
/* ydnar: added normal interpolation */
out->normal = vector3_mid( a->normal, b->normal );
/* if the interpolant created a bogus normal, just copy the normal from a */
if ( VectorNormalize( out->normal ) == 0 ) {
out->normal = a->normal;
}
}
/*
LerpDrawVertAmount()
returns a biased interpolated vert
*/
void LerpDrawVertAmount( bspDrawVert_t *a, bspDrawVert_t *b, float amount, bspDrawVert_t *out ){
out->xyz = a->xyz + ( b->xyz - a->xyz ) * amount;
out->st = a->st + ( b->st - a->st ) * amount;
for ( int k = 0; k < MAX_LIGHTMAPS; k++ )
{
out->lightmap[ k ] = a->lightmap[ k ] + ( b->lightmap[ k ] - a->lightmap[ k ] ) * amount;
for( int i = 0; i < 4; ++i )
out->color[ k ][ i ] = a->color[ k ][ i ] + amount * ( b->color[ k ][ i ] - a->color[ k ][ i ] );
}
out->normal = a->normal + ( b->normal - a->normal ) * amount;
/* if the interpolant created a bogus normal, just copy the normal from a */
if ( VectorNormalize( out->normal ) == 0 ) {
out->normal = a->normal;
}
}
void FreeMesh( mesh_t *m ) {
free( m->verts );
free( m );
}
void PrintMesh( mesh_t *m ) {
for ( int i = 0; i < m->height; ++i ) {
for ( int j = 0; j < m->width; ++j ) {
Sys_Printf( "(%5.2f %5.2f %5.2f) "
, m->verts[i * m->width + j].xyz[0]
, m->verts[i * m->width + j].xyz[1]
, m->verts[i * m->width + j].xyz[2] );
}
Sys_Printf( "\n" );
}
}
mesh_t *CopyMesh( mesh_t *mesh ) {
mesh_t *out = safe_malloc( sizeof( *out ) );
out->width = mesh->width;
out->height = mesh->height;
const int size = out->width * out->height * sizeof( *out->verts );
out->verts = safe_malloc( size );
memcpy( out->verts, mesh->verts, size );
return out;
}
/*
TransposeMesh()
returns a transposed copy of the mesh, freeing the original
*/
mesh_t *TransposeMesh( mesh_t *in ) {
mesh_t *out = safe_malloc( sizeof( *out ) );
out->width = in->height;
out->height = in->width;
out->verts = safe_malloc( out->width * out->height * sizeof( bspDrawVert_t ) );
for ( int h = 0; h < in->height; ++h ) {
for ( int w = 0; w < in->width; ++w ) {
out->verts[ w * in->height + h ] = in->verts[ h * in->width + w ];
}
}
FreeMesh( in );
return out;
}
void InvertMesh( mesh_t *in ) {
for ( int h = 0; h < in->height; ++h ) {
for ( int w = 0; w < in->width / 2; ++w ) {
std::swap(
in->verts[ h * in->width + w ],
in->verts[ h * in->width + in->width - 1 - w ]
);
}
}
}
/*
=================
MakeMeshNormals
=================
*/
void MakeMeshNormals( mesh_t in ){
int i, j, k, dist;
int count;
int x, y;
bspDrawVert_t *dv;
Vector3 around[8];
bool good[8];
bool wrapWidth, wrapHeight;
int neighbors[8][2] =
{
{0,1}, {1,1}, {1,0}, {1,-1}, {0,-1}, {-1,-1}, {-1,0}, {-1,1}
};
wrapWidth = false;
for ( i = 0; i < in.height; ++i ) {
if ( vector3_length( in.verts[i * in.width].xyz - in.verts[i * in.width + in.width - 1].xyz ) > 1.0 ) {
break;
}
}
if ( i == in.height ) {
wrapWidth = true;
}
wrapHeight = false;
for ( i = 0; i < in.width; ++i ) {
if ( vector3_length( in.verts[i].xyz - in.verts[i + ( in.height - 1 ) * in.width].xyz ) > 1.0 ) {
break;
}
}
if ( i == in.width ) {
wrapHeight = true;
}
for ( i = 0; i < in.width; ++i ) {
for ( j = 0; j < in.height; ++j ) {
count = 0;
dv = &in.verts[j * in.width + i];
const Vector3 base( dv->xyz );
for ( k = 0; k < 8; ++k ) {
around[k].set( 0 );
good[k] = false;
for ( dist = 1; dist <= 3; ++dist ) {
x = i + neighbors[k][0] * dist;
y = j + neighbors[k][1] * dist;
if ( wrapWidth ) {
if ( x < 0 ) {
x = in.width - 1 + x;
}
else if ( x >= in.width ) {
x = 1 + x - in.width;
}
}
if ( wrapHeight ) {
if ( y < 0 ) {
y = in.height - 1 + y;
}
else if ( y >= in.height ) {
y = 1 + y - in.height;
}
}
if ( x < 0 || x >= in.width || y < 0 || y >= in.height ) {
break; // edge of patch
}
Vector3 temp = in.verts[y * in.width + x].xyz - base;
if ( VectorNormalize( temp ) == 0 ) {
continue; // degenerate edge, get more dist
}
else {
good[k] = true;
around[k] = temp;
break; // good edge
}
}
}
Vector3 sum( 0 );
for ( k = 0; k < 8; ++k ) {
if ( !good[k] || !good[( k + 1 ) & 7] ) {
continue; // didn't get two points
}
Vector3 normal = vector3_cross( around[( k + 1 ) & 7], around[k] );
if ( VectorNormalize( normal ) == 0 ) {
continue;
}
sum += normal;
count++;
}
if ( count == 0 ) {
//Sys_Printf("bad normal\n");
count = 1;
}
dv->normal = VectorNormalized( sum );
}
}
}
/*
PutMeshOnCurve()
drops the aproximating points onto the curve
ydnar: fixme: make this use LerpDrawVert() rather than this complicated mess
*/
void PutMeshOnCurve( mesh_t in ) {
// put all the aproximating points on the curve
for ( int i = 0; i < in.width; ++i ) {
for ( int j = 1; j < in.height; j += 2 ) {
const int idx = j * in.width + i;
const int idprev = ( j + 1 ) * in.width + i;
const int idnext = ( j - 1 ) * in.width + i;
in.verts[idx].xyz = vector3_mid( vector3_mid( in.verts[idx].xyz, in.verts[idprev].xyz ),
vector3_mid( in.verts[idx].xyz, in.verts[idnext].xyz ) );
/* ydnar: interpolating st coords */
in.verts[idx].st = vector2_mid( vector2_mid( in.verts[idx].st, in.verts[idprev].st ),
vector2_mid( in.verts[idx].st, in.verts[idnext].st ) );
for ( int m = 0; m < MAX_LIGHTMAPS; ++m )
{
in.verts[idx].lightmap[ m ] = vector2_mid( vector2_mid( in.verts[idx].lightmap[ m ], in.verts[idprev].lightmap[ m ] ),
vector2_mid( in.verts[idx].lightmap[ m ], in.verts[idnext].lightmap[ m ] ) );
}
}
}
for ( int j = 0; j < in.height; ++j ) {
for ( int i = 1; i < in.width; i += 2 ) {
const int idx = j * in.width + i;
in.verts[idx].xyz = vector3_mid( vector3_mid( in.verts[idx].xyz, in.verts[idx + 1].xyz ),
vector3_mid( in.verts[idx].xyz, in.verts[idx - 1].xyz ) );
/* ydnar: interpolating st coords */
in.verts[idx].st = vector2_mid( vector2_mid( in.verts[idx].st, in.verts[idx + 1].st ),
vector2_mid( in.verts[idx].st, in.verts[idx - 1].st ) );
for ( int m = 0; m < MAX_LIGHTMAPS; ++m )
{
in.verts[idx].lightmap[ m ] = vector2_mid( vector2_mid( in.verts[idx].lightmap[ m ], in.verts[idx + 1].lightmap[ m ] ),
vector2_mid( in.verts[idx].lightmap[ m ], in.verts[idx - 1].lightmap[ m ] ) );
}
}
}
}
/*
=================
SubdivideMesh
=================
*/
mesh_t *SubdivideMesh( mesh_t in, float maxError, float minLength ){
int i, j, k;
bspDrawVert_t prev, next, mid;
Vector3 prevxyz, nextxyz, midxyz;
mesh_t out;
bspDrawVert_t expand[MAX_EXPANDED_AXIS][MAX_EXPANDED_AXIS];
out.width = in.width;
out.height = in.height;
for ( i = 0; i < in.width; ++i ) {
for ( j = 0; j < in.height; ++j ) {
expand[j][i] = in.verts[j * in.width + i];
}
}
// horizontal subdivisions
for ( j = 0; j + 2 < out.width; j += 2 ) {
// check subdivided midpoints against control points
for ( i = 0; i < out.height; ++i ) {
prevxyz = expand[i][j + 1].xyz - expand[i][j].xyz;
nextxyz = expand[i][j + 2].xyz - expand[i][j + 1].xyz;
midxyz = ( expand[i][j].xyz + expand[i][j + 1].xyz * 2 + expand[i][j + 2].xyz ) * 0.25;
// if the span length is too long, force a subdivision
if ( vector3_length( prevxyz ) > minLength
|| vector3_length( nextxyz ) > minLength ) {
break;
}
// see if this midpoint is off far enough to subdivide
if ( vector3_length( expand[i][j + 1].xyz - midxyz ) > maxError ) {
break;
}
}
if ( out.width + 2 >= MAX_EXPANDED_AXIS ) {
break; // can't subdivide any more
}
if ( i == out.height ) {
continue; // didn't need subdivision
}
// insert two columns and replace the peak
out.width += 2;
for ( i = 0; i < out.height; ++i ) {
LerpDrawVert( &expand[i][j], &expand[i][j + 1], &prev );
LerpDrawVert( &expand[i][j + 1], &expand[i][j + 2], &next );
LerpDrawVert( &prev, &next, &mid );
for ( k = out.width - 1; k > j + 3; --k ) {
expand[i][k] = expand[i][k - 2];
}
expand[i][j + 1] = prev;
expand[i][j + 2] = mid;
expand[i][j + 3] = next;
}
// back up and recheck this set again, it may need more subdivision
j -= 2;
}
// vertical subdivisions
for ( j = 0; j + 2 < out.height; j += 2 ) {
// check subdivided midpoints against control points
for ( i = 0; i < out.width; ++i ) {
prevxyz = expand[j + 1][i].xyz - expand[j][i].xyz;
nextxyz = expand[j + 2][i].xyz - expand[j + 1][i].xyz;
midxyz = ( expand[j][i].xyz + expand[j + 1][i].xyz * 2 + expand[j + 2][i].xyz ) * 0.25;
// if the span length is too long, force a subdivision
if ( vector3_length( prevxyz ) > minLength
|| vector3_length( nextxyz ) > minLength ) {
break;
}
// see if this midpoint is off far enough to subdivide
if ( vector3_length( expand[j + 1][i].xyz - midxyz ) > maxError ) {
break;
}
}
if ( out.height + 2 >= MAX_EXPANDED_AXIS ) {
break; // can't subdivide any more
}
if ( i == out.width ) {
continue; // didn't need subdivision
}
// insert two columns and replace the peak
out.height += 2;
for ( i = 0; i < out.width; ++i ) {
LerpDrawVert( &expand[j][i], &expand[j + 1][i], &prev );
LerpDrawVert( &expand[j + 1][i], &expand[j + 2][i], &next );
LerpDrawVert( &prev, &next, &mid );
for ( k = out.height - 1; k > j + 3; --k ) {
expand[k][i] = expand[k - 2][i];
}
expand[j + 1][i] = prev;
expand[j + 2][i] = mid;
expand[j + 3][i] = next;
}
// back up and recheck this set again, it may need more subdivision
j -= 2;
}
// collapse the verts
out.verts = &expand[0][0];
for ( i = 1; i < out.height; ++i ) {
memmove( &out.verts[i * out.width], expand[i], out.width * sizeof( bspDrawVert_t ) );
}
return CopyMesh( &out );
}
/*
IterationsForCurve() - ydnar
given a curve of a certain length, return the number of subdivision iterations
note: this is affected by subdivision amount
*/
int IterationsForCurve( float len, int subdivisions ){
int iterations, facets;
/* calculate the number of subdivisions */
for ( iterations = 0; iterations < 3; iterations++ )
{
facets = subdivisions * 16 * pow( 2, iterations );
if ( facets >= len ) {
break;
}
}
/* return to caller */
return iterations;
}
/*
SubdivideMesh2() - ydnar
subdivides each mesh quad a specified number of times
*/
mesh_t *SubdivideMesh2( mesh_t in, int iterations ){
int i, j, k;
bspDrawVert_t prev, next, mid;
mesh_t out;
bspDrawVert_t expand[ MAX_EXPANDED_AXIS ][ MAX_EXPANDED_AXIS ];
/* initial setup */
out.width = in.width;
out.height = in.height;
for ( i = 0; i < in.width; i++ )
{
for ( j = 0; j < in.height; j++ )
expand[ j ][ i ] = in.verts[ j * in.width + i ];
}
/* keep chopping */
for ( ; iterations > 0; --iterations )
{
/* horizontal subdivisions */
for ( j = 0; j + 2 < out.width; j += 4 )
{
/* check size limit */
if ( out.width + 2 >= MAX_EXPANDED_AXIS ) {
break;
}
/* insert two columns and replace the peak */
out.width += 2;
for ( i = 0; i < out.height; i++ )
{
LerpDrawVert( &expand[ i ][ j ], &expand[ i ][ j + 1 ], &prev );
LerpDrawVert( &expand[ i ][ j + 1 ], &expand[ i ][ j + 2 ], &next );
LerpDrawVert( &prev, &next, &mid );
for ( k = out.width - 1; k > j + 3; --k )
expand [ i ][ k ] = expand[ i ][ k - 2 ];
expand[ i ][ j + 1 ] = prev;
expand[ i ][ j + 2 ] = mid;
expand[ i ][ j + 3 ] = next;
}
}
/* vertical subdivisions */
for ( j = 0; j + 2 < out.height; j += 4 )
{
/* check size limit */
if ( out.height + 2 >= MAX_EXPANDED_AXIS ) {
break;
}
/* insert two columns and replace the peak */
out.height += 2;
for ( i = 0; i < out.width; i++ )
{
LerpDrawVert( &expand[ j ][ i ], &expand[ j + 1 ][ i ], &prev );
LerpDrawVert( &expand[ j + 1 ][ i ], &expand[ j + 2 ][ i ], &next );
LerpDrawVert( &prev, &next, &mid );
for ( k = out.height - 1; k > j + 3; k-- )
expand[ k ][ i ] = expand[ k - 2 ][ i ];
expand[ j + 1 ][ i ] = prev;
expand[ j + 2 ][ i ] = mid;
expand[ j + 3 ][ i ] = next;
}
}
}
/* collapse the verts */
out.verts = &expand[ 0 ][ 0 ];
for ( i = 1; i < out.height; i++ )
memmove( &out.verts[ i * out.width ], expand[ i ], out.width * sizeof( bspDrawVert_t ) );
/* return to sender */
return CopyMesh( &out );
}
/*
================
ProjectPointOntoVector
================
*/
Vector3 ProjectPointOntoVector( const Vector3& point, const Vector3& vStart, const Vector3& vEnd ){
const Vector3 pVec = point - vStart;
const Vector3 vec = VectorNormalized( vEnd - vStart );
// project onto the directional vector for this segment
return ( vStart + vec * vector3_dot( pVec, vec ) );
}
/*
================
RemoveLinearMeshColumsRows
================
*/
mesh_t *RemoveLinearMeshColumnsRows( mesh_t *in ) {
int i, j, k;
mesh_t out;
bspDrawVert_t expand[MAX_EXPANDED_AXIS][MAX_EXPANDED_AXIS];
out.width = in->width;
out.height = in->height;
for ( i = 0; i < in->width; ++i ) {
for ( j = 0; j < in->height; ++j ) {
expand[j][i] = in->verts[j * in->width + i];
}
}
for ( j = 1; j < out.width - 1; ++j ) {
double maxLength = 0;
for ( i = 0; i < out.height; ++i ) {
value_maximize( maxLength, vector3_length( expand[i][j].xyz - ProjectPointOntoVector( expand[i][j].xyz, expand[i][j - 1].xyz, expand[i][j + 1].xyz ) ) );
}
if ( maxLength < 0.1 ) {
out.width--;
for ( i = 0; i < out.height; ++i ) {
for ( k = j; k < out.width; ++k ) {
expand[i][k] = expand[i][k + 1];
}
}
j--;
}
}
for ( j = 1; j < out.height - 1; ++j ) {
double maxLength = 0;
for ( i = 0; i < out.width; ++i ) {
value_maximize( maxLength, vector3_length( expand[j][i].xyz - ProjectPointOntoVector( expand[j][i].xyz, expand[j - 1][i].xyz, expand[j + 1][i].xyz ) ) );
}
if ( maxLength < 0.1 ) {
out.height--;
for ( i = 0; i < out.width; ++i ) {
for ( k = j; k < out.height; k++ ) {
expand[k][i] = expand[k + 1][i];
}
}
j--;
}
}
// collapse the verts
out.verts = &expand[0][0];
for ( i = 1; i < out.height; ++i ) {
memmove( &out.verts[i * out.width], expand[i], out.width * sizeof( bspDrawVert_t ) );
}
return CopyMesh( &out );
}
/*
=================
SubdivideMeshQuads
=================
*/
mesh_t *SubdivideMeshQuads( mesh_t *in, float minLength, int maxsize, int *widthtable, int *heighttable ){
int i, j, k, w, h, maxsubdivisions, subdivisions;
mesh_t out;
bspDrawVert_t expand[MAX_EXPANDED_AXIS][MAX_EXPANDED_AXIS];
out.width = in->width;
out.height = in->height;
for ( i = 0; i < in->width; ++i ) {
for ( j = 0; j < in->height; ++j ) {
expand[j][i] = in->verts[j * in->width + i];
}
}
if ( maxsize > MAX_EXPANDED_AXIS ) {
Error( "SubdivideMeshQuads: maxsize > MAX_EXPANDED_AXIS" );
}
// horizontal subdivisions
maxsubdivisions = ( maxsize - in->width ) / ( in->width - 1 );
for ( w = 0, j = 0; w < in->width - 1; ++w, j += subdivisions + 1 ) {
double maxLength = 0;
for ( i = 0; i < out.height; ++i ) {
value_maximize( maxLength, vector3_length( expand[i][j + 1].xyz - expand[i][j].xyz ) );
}
subdivisions = std::min( (int) ( maxLength / minLength ), maxsubdivisions );
widthtable[w] = subdivisions + 1;
if ( subdivisions <= 0 ) {
continue;
}
out.width += subdivisions;
for ( i = 0; i < out.height; ++i ) {
for ( k = out.width - 1; k > j + subdivisions; --k ) {
expand[i][k] = expand[i][k - subdivisions];
}
for ( k = 1; k <= subdivisions; ++k )
{
const float amount = (float) k / ( subdivisions + 1 );
LerpDrawVertAmount( &expand[i][j], &expand[i][j + subdivisions + 1], amount, &expand[i][j + k] );
}
}
}
maxsubdivisions = ( maxsize - in->height ) / ( in->height - 1 );
for ( h = 0, j = 0; h < in->height - 1; ++h, j += subdivisions + 1 ) {
double maxLength = 0;
for ( i = 0; i < out.width; ++i ) {
value_maximize( maxLength, vector3_length( expand[j + 1][i].xyz - expand[j][i].xyz ) );
}
subdivisions = std::min( (int) ( maxLength / minLength ), maxsubdivisions );
heighttable[h] = subdivisions + 1;
if ( subdivisions <= 0 ) {
continue;
}
out.height += subdivisions;
for ( i = 0; i < out.width; ++i ) {
for ( k = out.height - 1; k > j + subdivisions; --k ) {
expand[k][i] = expand[k - subdivisions][i];
}
for ( k = 1; k <= subdivisions; ++k )
{
const float amount = (float) k / ( subdivisions + 1 );
LerpDrawVertAmount( &expand[j][i], &expand[j + subdivisions + 1][i], amount, &expand[j + k][i] );
}
}
}
// collapse the verts
out.verts = &expand[0][0];
for ( i = 1; i < out.height; ++i ) {
memmove( &out.verts[i * out.width], expand[i], out.width * sizeof( bspDrawVert_t ) );
}
return CopyMesh( &out );
}