netradiant-custom/radiant/winding.cpp

388 lines
13 KiB
C++

/*
Copyright (C) 1999-2006 Id Software, Inc. and contributors.
For a list of contributors, see the accompanying CONTRIBUTORS file.
This file is part of GtkRadiant.
GtkRadiant is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
GtkRadiant is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GtkRadiant; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "winding.h"
#include <algorithm>
#include "math/line.h"
#if 0
#include "math/aabb.h"
void windingTestInfinity(){
static std::size_t windingTestInfinityI = 0;
static std::size_t windingTestInfinity_badNormal = 0;
static std::size_t windingTestInfinity_planeOuttaWorld = 0;
static std::size_t windingTestInfinity_OK = 0;
static std::size_t windingTestInfinity_FAIL = 0;
const double maxWorldCoord = 64 * 1024;
AABB world( g_vector3_identity, Vector3( maxWorldCoord, maxWorldCoord, maxWorldCoord ) );
Plane3 worldplanes[6];
aabb_planes( world, worldplanes );
world.extents += Vector3( 99, 99, 99 );
const std::size_t iterations = 9999999;
if( windingTestInfinityI >= iterations )
return;
while( windingTestInfinityI < iterations )
{
Plane3 plane;
plane.d = ( (double)rand() / (double)RAND_MAX ) * maxWorldCoord * 2;
plane.a = ( (double)rand() / (double)RAND_MAX );
plane.b = ( (double)rand() / (double)RAND_MAX );
plane.c = ( (double)rand() / (double)RAND_MAX );
if( vector3_length( plane.normal() ) != 0 ){
vector3_normalise( plane.normal() );
}
else{
++windingTestInfinity_badNormal;
continue;
}
FixedWinding buffer[2];
bool swap = false;
// get a poly that covers an effectively infinite area
Winding_createInfinite( buffer[swap], plane, maxWorldCoord * 8.0 );
// chop the poly by positive world box faces
for ( std::size_t i = 0; i < 3; ++i )
{
if( buffer[swap].points.empty() ){
break;
}
buffer[!swap].clear();
{
// flip the plane, because we want to keep the back side
const Plane3 clipPlane( -g_vector3_axes[i], -maxWorldCoord );
Winding_Clip( buffer[swap], plane, clipPlane, 0, buffer[!swap] );
}
swap = !swap;
}
if( buffer[swap].points.empty() ){
++windingTestInfinity_planeOuttaWorld;
continue;
}
++windingTestInfinityI;
FixedWinding winding;
// Winding_createInfinite( winding, plane, maxWorldCoord * sqrt( 2.75 ) ); //is ok for normalized vecs inside of Winding_createInfinite
Winding_createInfinite( winding, plane, maxWorldCoord * 2.22 ); //ok for no normalization
std::size_t i = 0;
for( ; i < winding.size(); ++i ){
for( std::size_t j = 0; j < 6; ++j ){
if( vector3_dot( winding[i].edge.direction, worldplanes[j].normal() ) != 0 ){
const DoubleVector3 v = ray_intersect_plane( winding[i].edge, worldplanes[j] );
if( aabb_intersects_point( world, v ) ){
// globalWarningStream() << " INFINITE POINT INSIDE WORLD\n";
++windingTestInfinity_FAIL;
goto fail;
}
}
}
}
if( i == winding.size() ){
++windingTestInfinity_OK;
}
fail:
;
}
globalWarningStream() << windingTestInfinity_badNormal << " windingTestInfinity_badNormal\n";
globalWarningStream() << windingTestInfinity_planeOuttaWorld << " windingTestInfinity_planeOuttaWorld\n";
globalWarningStream() << windingTestInfinity_OK << " windingTestInfinity_OK\n";
globalWarningStream() << windingTestInfinity_FAIL << " windingTestInfinity_FAIL\n";
}
#endif
/// \brief Keep the value of \p infinity as small as possible to improve precision in Winding_Clip.
void Winding_createInfinite( FixedWinding& winding, const Plane3& plane, double infinity ){
#if 0
double max = -infinity;
int x = -1;
for ( int i = 0; i < 3; i++ )
{
double d = fabs( plane.normal()[i] );
if ( d > max ) {
x = i;
max = d;
}
}
if ( x == -1 ) {
globalErrorStream() << "invalid plane\n";
return;
}
DoubleVector3 vup = g_vector3_identity;
switch ( x )
{
case 0:
case 1:
vup[2] = 1;
break;
case 2:
vup[0] = 1;
break;
}
vector3_add( vup, vector3_scaled( plane.normal(), -vector3_dot( vup, plane.normal() ) ) );
vector3_normalise( vup );
DoubleVector3 org = vector3_scaled( plane.normal(), plane.dist() );
DoubleVector3 vright = vector3_cross( vup, plane.normal() );
vector3_scale( vup, infinity );
vector3_scale( vright, infinity );
// project a really big axis aligned box onto the plane
DoubleRay r1, r2, r3, r4;
r1.origin = vector3_added( vector3_subtracted( org, vright ), vup );
r1.direction = vector3_normalised( vright );
winding.push_back( FixedWindingVertex( r1.origin, r1, c_brush_maxFaces ) );
r2.origin = vector3_added( vector3_added( org, vright ), vup );
r2.direction = vector3_normalised( vector3_negated( vup ) );
winding.push_back( FixedWindingVertex( r2.origin, r2, c_brush_maxFaces ) );
r3.origin = vector3_subtracted( vector3_added( org, vright ), vup );
r3.direction = vector3_normalised( vector3_negated( vright ) );
winding.push_back( FixedWindingVertex( r3.origin, r3, c_brush_maxFaces ) );
r4.origin = vector3_subtracted( vector3_subtracted( org, vright ), vup );
r4.direction = vector3_normalised( vup );
winding.push_back( FixedWindingVertex( r4.origin, r4, c_brush_maxFaces ) );
#else
const auto normal = plane.normal();
const auto maxi = vector3_max_abs_component_index( normal );
if ( !std::isnormal( normal[maxi] ) ) {
globalErrorStream() << "invalid plane\n";
return;
}
const DoubleVector3 vup0 = ( maxi == 2 )? DoubleVector3( 0, -normal[2], normal[1] )
: DoubleVector3( -normal[1], normal[0], 0 );
const DoubleVector3 vright0 = vector3_cross( vup0, normal );
const DoubleVector3 org = normal * plane.dist();
const DoubleVector3 vup = vup0 * infinity * 2.22;
const DoubleVector3 vright = vright0 * infinity * 2.22;
// project a really big axis aligned box onto the plane
DoubleRay ray;
ray.origin = org - vright + vup;
ray.direction = vector3_normalised( vright0 );
winding.push_back( FixedWindingVertex( ray.origin, ray, c_brush_maxFaces ) );
ray.origin = org + vright + vup;
ray.direction = vector3_normalised( -vup0 );
winding.push_back( FixedWindingVertex( ray.origin, ray, c_brush_maxFaces ) );
ray.origin = org + vright - vup;
ray.direction = vector3_normalised( -vright0 );
winding.push_back( FixedWindingVertex( ray.origin, ray, c_brush_maxFaces ) );
ray.origin = org - vright - vup;
ray.direction = vector3_normalised( vup0 );
winding.push_back( FixedWindingVertex( ray.origin, ray, c_brush_maxFaces ) );
#endif
}
inline PlaneClassification Winding_ClassifyDistance( const double distance, const double epsilon ){
if ( distance > epsilon ) {
return ePlaneFront;
}
if ( distance < -epsilon ) {
return ePlaneBack;
}
return ePlaneOn;
}
/// \brief Returns true if
/// !flipped && winding is completely BACK or ON
/// or flipped && winding is completely FRONT or ON
bool Winding_TestPlane( const Winding& winding, const Plane3& plane, bool flipped ){
const int test = ( flipped ) ? ePlaneBack : ePlaneFront;
for ( Winding::const_iterator i = winding.begin(); i != winding.end(); ++i )
{
if ( test == Winding_ClassifyDistance( plane3_distance_to_point( plane, ( *i ).vertex ), ON_EPSILON ) ) {
return false;
}
}
return true;
}
/// \brief Returns true if any point in \p w1 is in front of plane2, or any point in \p w2 is in front of plane1
bool Winding_PlanesConcave( const Winding& w1, const Winding& w2, const Plane3& plane1, const Plane3& plane2 ){
return !Winding_TestPlane( w1, plane2, false ) || !Winding_TestPlane( w2, plane1, false );
}
brushsplit_t Winding_ClassifyPlane( const Winding& winding, const Plane3& plane ){
brushsplit_t split;
for ( Winding::const_iterator i = winding.begin(); i != winding.end(); ++i )
{
++split.counts[Winding_ClassifyDistance( plane3_distance_to_point( plane, ( *i ).vertex ), ON_EPSILON )];
}
return split;
}
void WindingVertex_ClassifyPlane( const DoubleVector3& vertex, const Plane3& plane, brushsplit_t& split ){
++split.counts[Winding_ClassifyDistance( plane3_distance_to_point( plane, vertex ), ON_EPSILON )];
}
const double ON_EPSILON_CLIP = 1.0 / ( 1 << 12 );
/// \brief Clip \p winding which lies on \p plane by \p clipPlane, resulting in \p clipped.
/// If \p winding is completely in front of the plane, \p clipped will be identical to \p winding.
/// If \p winding is completely in back of the plane, \p clipped will be empty.
/// If \p winding intersects the plane, the edge of \p clipped which lies on \p clipPlane will store the value of \p adjacent.
void Winding_Clip( const FixedWinding& winding, const Plane3& plane, const Plane3& clipPlane, std::size_t adjacent, FixedWinding& clipped ){
PlaneClassification classification = Winding_ClassifyDistance( plane3_distance_to_point( clipPlane, winding.back().vertex ), ON_EPSILON_CLIP );
PlaneClassification nextClassification;
// for each edge
for ( std::size_t next = 0, i = winding.size() - 1; next != winding.size(); i = next, ++next, classification = nextClassification )
{
nextClassification = Winding_ClassifyDistance( plane3_distance_to_point( clipPlane, winding[next].vertex ), ON_EPSILON_CLIP );
const FixedWindingVertex& vertex = winding[i];
// if first vertex of edge is ON
if ( classification == ePlaneOn ) {
// append first vertex to output winding
if ( nextClassification == ePlaneBack ) {
// this edge lies on the clip plane
clipped.push_back( FixedWindingVertex( vertex.vertex, plane3_intersect_plane3( plane, clipPlane ), adjacent ) );
}
else
{
clipped.push_back( vertex );
}
continue;
}
// if first vertex of edge is FRONT
if ( classification == ePlaneFront ) {
// add first vertex to output winding
clipped.push_back( vertex );
}
// if second vertex of edge is ON
if ( nextClassification == ePlaneOn ) {
continue;
}
// else if second vertex of edge is same as first
else if ( nextClassification == classification ) {
continue;
}
// else if first vertex of edge is FRONT and there are only two edges
else if ( classification == ePlaneFront && winding.size() == 2 ) {
continue;
}
// else first vertex is FRONT and second is BACK or vice versa
else
{
// append intersection point of line and plane to output winding
DoubleVector3 mid( ray_intersect_plane( vertex.edge, clipPlane ) );
if ( classification == ePlaneFront ) {
// this edge lies on the clip plane
clipped.push_back( FixedWindingVertex( mid, plane3_intersect_plane3( plane, clipPlane ), adjacent ) );
}
else
{
clipped.push_back( FixedWindingVertex( mid, vertex.edge, vertex.adjacent ) );
}
}
}
}
std::size_t Winding_FindAdjacent( const Winding& winding, std::size_t face ){
for ( std::size_t i = 0; i < winding.numpoints; ++i )
{
ASSERT_MESSAGE( winding[i].adjacent != c_brush_maxFaces, "edge connectivity data is invalid" );
if ( winding[i].adjacent == face ) {
return i;
}
}
return c_brush_maxFaces;
}
std::size_t Winding_Opposite( const Winding& winding, const std::size_t index, const std::size_t other ){
ASSERT_MESSAGE( index < winding.numpoints && other < winding.numpoints, "Winding_Opposite: index out of range" );
double dist_best = 0;
std::size_t index_best = c_brush_maxFaces;
const DoubleRay edge( ray_for_points( winding[index].vertex, winding[other].vertex ) );
for ( std::size_t i = 0; i < winding.numpoints; ++i )
{
if ( i == index || i == other ) {
continue;
}
const double dist_squared = ray_squared_distance_to_point( edge, winding[i].vertex );
if ( dist_squared > dist_best ) {
dist_best = dist_squared;
index_best = i;
}
}
return index_best;
}
std::size_t Winding_Opposite( const Winding& winding, const std::size_t index ){
return Winding_Opposite( winding, index, Winding_next( winding, index ) );
}
/// \brief Calculate the \p centroid of the polygon defined by \p winding which lies on plane \p plane.
void Winding_Centroid( const Winding& winding, const Plane3& plane, Vector3& centroid ){
double area2 = 0, x_sum = 0, y_sum = 0;
const ProjectionAxis axis = projectionaxis_for_normal( plane.normal() );
const indexremap_t remap = indexremap_for_projectionaxis( axis );
for ( std::size_t i = winding.numpoints - 1, j = 0; j < winding.numpoints; i = j, ++j )
{
const double ai = winding[i].vertex[remap.x] * winding[j].vertex[remap.y] - winding[j].vertex[remap.x] * winding[i].vertex[remap.y];
area2 += ai;
x_sum += ( winding[j].vertex[remap.x] + winding[i].vertex[remap.x] ) * ai;
y_sum += ( winding[j].vertex[remap.y] + winding[i].vertex[remap.y] ) * ai;
}
centroid[remap.x] = x_sum / ( 3 * area2 );
centroid[remap.y] = y_sum / ( 3 * area2 );
{
Ray ray( Vector3( 0, 0, 0 ), Vector3( 0, 0, 0 ) );
ray.origin[remap.x] = centroid[remap.x];
ray.origin[remap.y] = centroid[remap.y];
ray.direction[remap.z] = 1;
centroid[remap.z] = ray_distance_to_plane( ray, plane );
}
// windingTestInfinity();
}