netradiant-custom/radiant/brush.cpp
2022-10-27 09:10:31 +03:00

584 lines
17 KiB
C++

/*
Copyright (C) 1999-2006 Id Software, Inc. and contributors.
For a list of contributors, see the accompanying CONTRIBUTORS file.
This file is part of GtkRadiant.
GtkRadiant is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
GtkRadiant is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GtkRadiant; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "brush.h"
#include "signal/signal.h"
Signal0 g_brushTextureChangedCallbacks;
void Brush_addTextureChangedCallback( const SignalHandler& handler ){
g_brushTextureChangedCallbacks.connectLast( handler );
}
void Brush_textureChanged(){
g_brushTextureChangedCallbacks();
}
QuantiseFunc Face::m_quantise;
EBrushType Face::m_type;
EBrushType FacePlane::m_type;
bool g_brush_texturelock_enabled = false;
bool g_brush_textureVertexlock_enabled = false;
EBrushType Brush::m_type;
double Brush::m_maxWorldCoord = 0;
Shader* Brush::m_state_point;
Shader* Brush::m_state_deeppoint;
Shader* BrushClipPlane::m_state = 0;
Shader* BrushInstance::m_state_selpoint;
Counter* BrushInstance::m_counter = 0;
FaceInstanceSet g_SelectedFaceInstances;
struct SListNode
{
SListNode* m_next;
};
class ProximalVertex
{
public:
const SListNode* m_vertices;
ProximalVertex( const SListNode* next )
: m_vertices( next ){
}
bool operator<( const ProximalVertex& other ) const {
if ( !( operator==( other ) ) ) {
return m_vertices < other.m_vertices;
}
return false;
}
bool operator==( const ProximalVertex& other ) const {
const SListNode* v = m_vertices;
std::size_t DEBUG_LOOP = 0;
do
{
if ( v == other.m_vertices ) {
return true;
}
v = v->m_next;
//ASSERT_MESSAGE(DEBUG_LOOP < c_brush_maxFaces, "infinite loop");
if ( !( DEBUG_LOOP < c_brush_maxFaces ) ) {
break;
}
++DEBUG_LOOP;
}
while ( v != m_vertices );
return false;
}
};
typedef Array<SListNode> ProximalVertexArray;
std::size_t ProximalVertexArray_index( const ProximalVertexArray& array, const ProximalVertex& vertex ){
return vertex.m_vertices - array.data();
}
inline bool Brush_isBounded( const Brush& brush ){
for ( Brush::const_iterator i = brush.begin(); i != brush.end(); ++i )
{
if ( !( *i )->is_bounded() ) {
return false;
}
}
return true;
}
void Brush::buildBRep(){
m_BRep_evaluation = true;
bool degenerate = buildWindings();
std::size_t faces_size = 0;
std::size_t faceVerticesCount = 0;
for ( Faces::const_iterator i = m_faces.begin(); i != m_faces.end(); ++i )
{
if ( ( *i )->contributes() ) {
++faces_size;
}
faceVerticesCount += ( *i )->getWinding().numpoints;
}
if ( degenerate || faces_size < 4 || faceVerticesCount != ( faceVerticesCount >> 1 ) << 1 ) { // sum of vertices for each face of a valid polyhedron is always even
m_uniqueVertexPoints.resize( 0 );
vertex_clear();
edge_clear();
m_edge_indices.resize( 0 );
m_edge_faces.resize( 0 );
m_faceCentroidPoints.resize( 0 );
m_uniqueEdgePoints.resize( 0 );
m_uniqueVertexPoints.resize( 0 );
for ( Faces::iterator i = m_faces.begin(); i != m_faces.end(); ++i )
{
( *i )->getWinding().resize( 0 );
}
}
else
{
{
typedef std::vector<FaceVertexId> FaceVertices;
FaceVertices faceVertices;
faceVertices.reserve( faceVerticesCount );
{
for ( std::size_t i = 0; i != m_faces.size(); ++i )
{
for ( std::size_t j = 0; j < m_faces[i]->getWinding().numpoints; ++j )
{
faceVertices.push_back( FaceVertexId( i, j ) );
}
}
}
IndexBuffer uniqueEdgeIndices;
typedef VertexBuffer<ProximalVertex> UniqueEdges;
UniqueEdges uniqueEdges;
uniqueEdgeIndices.reserve( faceVertices.size() );
uniqueEdges.reserve( faceVertices.size() );
{
ProximalVertexArray edgePairs;
edgePairs.resize( faceVertices.size() );
{
for ( std::size_t i = 0; i < faceVertices.size(); ++i )
{
edgePairs[i].m_next = edgePairs.data() + absoluteIndex( next_edge( m_faces, faceVertices[i] ) );
}
}
{
UniqueVertexBuffer<ProximalVertex> inserter( uniqueEdges );
for ( ProximalVertexArray::iterator i = edgePairs.begin(); i != edgePairs.end(); ++i )
{
uniqueEdgeIndices.insert( inserter.insert( ProximalVertex( &( *i ) ) ) );
}
}
{
edge_clear();
m_select_edges.reserve( uniqueEdges.size() );
for ( UniqueEdges::iterator i = uniqueEdges.begin(); i != uniqueEdges.end(); ++i )
{
edge_push_back( faceVertices[ProximalVertexArray_index( edgePairs, *i )] );
}
}
{
m_edge_faces.resize( uniqueEdges.size() );
for ( std::size_t i = 0; i < uniqueEdges.size(); ++i )
{
FaceVertexId faceVertex = faceVertices[ProximalVertexArray_index( edgePairs, uniqueEdges[i] )];
m_edge_faces[i] = EdgeFaces( faceVertex.getFace(), m_faces[faceVertex.getFace()]->getWinding()[faceVertex.getVertex()].adjacent );
}
}
{
m_uniqueEdgePoints.resize( uniqueEdges.size() );
for ( std::size_t i = 0; i < uniqueEdges.size(); ++i )
{
FaceVertexId faceVertex = faceVertices[ProximalVertexArray_index( edgePairs, uniqueEdges[i] )];
const Winding& w = m_faces[faceVertex.getFace()]->getWinding();
Vector3 edge = vector3_mid( w[faceVertex.getVertex()].vertex, w[Winding_next( w, faceVertex.getVertex() )].vertex );
m_uniqueEdgePoints[i] = pointvertex_for_windingpoint( edge, colour_vertex );
}
}
}
IndexBuffer uniqueVertexIndices;
typedef VertexBuffer<ProximalVertex> UniqueVertices;
UniqueVertices uniqueVertices;
uniqueVertexIndices.reserve( faceVertices.size() );
uniqueVertices.reserve( faceVertices.size() );
{
ProximalVertexArray vertexRings;
vertexRings.resize( faceVertices.size() );
{
for ( std::size_t i = 0; i < faceVertices.size(); ++i )
{
vertexRings[i].m_next = vertexRings.data() + absoluteIndex( next_vertex( m_faces, faceVertices[i] ) );
}
}
{
UniqueVertexBuffer<ProximalVertex> inserter( uniqueVertices );
for ( ProximalVertexArray::iterator i = vertexRings.begin(); i != vertexRings.end(); ++i )
{
uniqueVertexIndices.insert( inserter.insert( ProximalVertex( &( *i ) ) ) );
}
}
{
vertex_clear();
m_select_vertices.reserve( uniqueVertices.size() );
for ( UniqueVertices::iterator i = uniqueVertices.begin(); i != uniqueVertices.end(); ++i )
{
vertex_push_back( faceVertices[ProximalVertexArray_index( vertexRings, ( *i ) )] );
}
}
{
m_uniqueVertexPoints.resize( uniqueVertices.size() );
for ( std::size_t i = 0; i < uniqueVertices.size(); ++i )
{
FaceVertexId faceVertex = faceVertices[ProximalVertexArray_index( vertexRings, uniqueVertices[i] )];
const Winding& winding = m_faces[faceVertex.getFace()]->getWinding();
m_uniqueVertexPoints[i] = depthtested_pointvertex_for_windingpoint( winding[faceVertex.getVertex()].vertex, colour_vertex );
}
}
}
if ( ( uniqueVertices.size() + faces_size ) - uniqueEdges.size() != 2 ) {
globalErrorStream() << "Final B-Rep: inconsistent vertex count\n";
}
#if BRUSH_CONNECTIVITY_DEBUG
if ( ( uniqueVertices.size() + faces_size ) - uniqueEdges.size() != 2 ) {
for ( Faces::iterator i = m_faces.begin(); i != m_faces.end(); ++i )
{
std::size_t faceIndex = std::distance( m_faces.begin(), i );
if ( !( *i )->contributes() ) {
globalOutputStream() << "face: " << faceIndex << " does not contribute\n";
}
Winding_printConnectivity( ( *i )->getWinding() );
}
}
#endif
// edge-index list for wireframe rendering
{
m_edge_indices.resize( uniqueEdgeIndices.size() );
for ( std::size_t i = 0, count = 0; i < m_faces.size(); ++i )
{
const Winding& winding = m_faces[i]->getWinding();
for ( std::size_t j = 0; j < winding.numpoints; ++j )
{
const RenderIndex edge_index = uniqueEdgeIndices[count + j];
m_edge_indices[edge_index].first = uniqueVertexIndices[count + j];
m_edge_indices[edge_index].second = uniqueVertexIndices[count + Winding_next( winding, j )];
}
count += winding.numpoints;
}
}
}
{
m_faceCentroidPoints.resize( m_faces.size() );
for ( std::size_t i = 0; i < m_faces.size(); ++i )
{
m_faces[i]->construct_centroid();
m_faceCentroidPoints[i] = pointvertex_for_windingpoint( m_faces[i]->centroid(), colour_vertex );
}
}
if( m_vertexModeOn ){
for ( Observers::iterator o = m_observers.begin(); o != m_observers.end(); ++o )
( *o )->vertex_select();
}
}
m_BRep_evaluation = false;
}
class FaceFilterWrapper : public Filter
{
FaceFilter& m_filter;
bool m_active;
bool m_invert;
public:
FaceFilterWrapper( FaceFilter& filter, bool invert ) :
m_filter( filter ),
m_invert( invert ){
}
void setActive( bool active ){
m_active = active;
}
bool active(){
return m_active;
}
bool filter( const Face& face ){
return m_invert ^ m_filter.filter( face );
}
};
typedef std::list<FaceFilterWrapper> FaceFilters;
FaceFilters g_faceFilters;
void add_face_filter( FaceFilter& filter, int mask, bool invert ){
g_faceFilters.push_back( FaceFilterWrapper( filter, invert ) );
GlobalFilterSystem().addFilter( g_faceFilters.back(), mask );
}
bool face_filtered( Face& face ){
for ( FaceFilters::iterator i = g_faceFilters.begin(); i != g_faceFilters.end(); ++i )
{
if ( ( *i ).active() && ( *i ).filter( face ) ) {
return true;
}
}
return false;
}
class BrushFilterWrapper : public Filter
{
bool m_active;
bool m_invert;
BrushFilter& m_filter;
public:
BrushFilterWrapper( BrushFilter& filter, bool invert ) : m_invert( invert ), m_filter( filter ){
}
void setActive( bool active ){
m_active = active;
}
bool active(){
return m_active;
}
bool filter( const Brush& brush ){
return m_invert ^ m_filter.filter( brush );
}
};
typedef std::list<BrushFilterWrapper> BrushFilters;
BrushFilters g_brushFilters;
void add_brush_filter( BrushFilter& filter, int mask, bool invert ){
g_brushFilters.push_back( BrushFilterWrapper( filter, invert ) );
GlobalFilterSystem().addFilter( g_brushFilters.back(), mask );
}
bool brush_filtered( Brush& brush ){
for ( BrushFilters::iterator i = g_brushFilters.begin(); i != g_brushFilters.end(); ++i )
{
if ( ( *i ).active() && ( *i ).filter( brush ) ) {
return true;
}
}
return false;
}
class VertexModePlane
{
public:
Plane3 m_plane;
const Face* m_face;
const Brush::VertexModeVertex* const m_v[3];
bool m_transformed;
VertexModePlane( const Plane3& plane, const Face* face,
const Brush::VertexModeVertex* v1, const Brush::VertexModeVertex* v2, const Brush::VertexModeVertex* v3,
bool transformed ) : m_plane( plane ), m_face( face ), m_v{ v1, v2, v3 }, m_transformed( transformed ){
}
};
class VertexModePlanes
{
typedef std::vector<VertexModePlane> Planes;
Planes m_planes;
public:
typedef Planes::const_iterator const_iterator;
typedef Planes::iterator iterator;
void push_back( const VertexModePlane& plane ){
m_planes.push_back( plane );
}
iterator find( const Plane3& plane ){
return std::find_if( begin(), end(), [&plane]( const VertexModePlane& pla ){ return plane3_equal( plane, pla.m_plane ); } );
}
const_iterator begin() const {
return m_planes.begin();
}
const_iterator end() const {
return m_planes.end();
}
iterator begin() {
return m_planes.begin();
}
iterator end() {
return m_planes.end();
}
std::size_t size() const {
return m_planes.size();
}
};
const Face* vertex_mode_find_common_face( const Brush::VertexModeVertex& v1, const Brush::VertexModeVertex& v2, const Brush::VertexModeVertex& v3 ){
for( const Face* face : v1.m_faces ){
if( std::find( v2.m_faces.begin(), v2.m_faces.end(), face ) != v2.m_faces.end()
&& std::find( v3.m_faces.begin(), v3.m_faces.end(), face ) != v3.m_faces.end() ){
return face;
}
}
return nullptr;
}
#include "quickhull/QuickHull.hpp"
void Brush::vertexModeBuildHull( bool allTransformed /*= false*/ ){
quickhull::QuickHull<double> quickhull;
std::vector<quickhull::Vector3<double>> pointCloud;
pointCloud.reserve( m_vertexModeVertices.size() );
for( auto& i : m_vertexModeVertices ){
pointCloud.push_back( quickhull::Vector3<double>( i.m_vertexTransformed.x(),
i.m_vertexTransformed.y(),
i.m_vertexTransformed.z() ) );
}
auto hull = quickhull.getConvexHull( pointCloud, true, true );
const auto& indexBuffer = hull.getIndexBuffer();
const size_t triangleCount = indexBuffer.size() / 3;
VertexModePlanes vertexModePlanes;
for( size_t i = 0; i < triangleCount; ++i ) {
const Brush::VertexModeVertex* v[3];
bool transformed = allTransformed;
for( size_t j = 0; j < 3; ++j ){
v[j] = &m_vertexModeVertices[indexBuffer[i * 3 + j]];
transformed |= v[j]->m_selected;
}
const Plane3 plane = plane3_for_points( v[0]->m_vertexTransformed, v[1]->m_vertexTransformed, v[2]->m_vertexTransformed );
if( plane3_valid( plane ) ){
VertexModePlanes::iterator it = vertexModePlanes.find( plane );
if( it == vertexModePlanes.end() ){ //not found, add new plane
const Face* face = vertex_mode_find_common_face( *v[0], *v[1], *v[2] );
if( !face ){ //no common face, use some
face = v[0]->m_faces[0];
transformed = true;
}
if( vector3_dot( plane.normal(), face->getPlane().plane3().normal() ) < 0 ){ //likely reversed plane
transformed = true;
}
vertexModePlanes.push_back( VertexModePlane( plane, face, v[0], v[1], v[2], transformed ) );
}
else{
it->m_transformed |= transformed;
}
}
}
if( vertexModePlanes.size() >=4 ){ //avoid obvious transform to degenerate
const bool isdetail = isDetail();
clear();
for( const auto& i : vertexModePlanes ){
const Face& face = *i.m_face;
if( i.m_transformed ){
TextureProjection projection( face.getTexdef().m_projection );
if( g_brush_textureVertexlock_enabled ){
Matrix4 local2tex;
Texdef_Construct_local2tex( face.getTexdef().m_projection, face.getShader().width(), face.getShader().height(), face.getPlane().plane3().normal(), local2tex );
const DoubleVector3 st[3]{ matrix4_transformed_point( local2tex, i.m_v[0]->m_vertex ),
matrix4_transformed_point( local2tex, i.m_v[1]->m_vertex ),
matrix4_transformed_point( local2tex, i.m_v[2]->m_vertex ) };
const DoubleVector3 points[3]{ i.m_v[0]->m_vertexTransformed, i.m_v[1]->m_vertexTransformed, i.m_v[2]->m_vertexTransformed };
Texdef_from_ST( projection, points, st, face.getShader().width(), face.getShader().height() );
}
Face* newFace = addPlane( i.m_v[0]->m_vertexTransformed, i.m_v[1]->m_vertexTransformed, i.m_v[2]->m_vertexTransformed, face.GetShader(), TextureProjection() );
if( newFace ){
newFace->getTexdef().m_projection = projection; //set TextureProjection later, addPlane() resets Valve220 basis
newFace->revertTexdef();
newFace->setDetail( isdetail );
}
}
else{
addFace( face );
}
}
}
}
void Brush::vertexModeTransform( const Matrix4& matrix ){
for( auto& i : m_vertexModeVertices )
if( i.m_selected )
i.m_vertexTransformed = matrix4_transformed_point( matrix, i.m_vertex );
vertexModeBuildHull();
}
void Brush::vertexModeSnap( const float snap, bool all ){
for( auto& i : m_vertexModeVertices )
if( all || i.m_selected )
vector3_snap( i.m_vertexTransformed, snap );
vertexModeBuildHull( all );
}
#include "grid.h"
void BrushInstance::transformComponents( const Matrix4& matrix ){
auto transform = [this]( const Matrix4& matrix ){
for ( auto& fi : m_faceInstances )
fi.transformComponents( matrix );
};
transform( matrix );
const Vector3 translation = matrix4_get_translation_vec3( matrix );
if( translation != g_vector3_identity ){ //has translation
Matrix4 ma( matrix );
Vector3& tra = ma.t().vec3();
tra = g_vector3_identity;
if( g_matrix4_identity == ma ){ //only translation
for ( const auto& fi : m_faceInstances ){
if( fi.isSelected() ){ //has faces selected
if( !m_brush.contributes() ){ //do binary search of worthy transform
for( std::size_t axis = 0; axis < 3; ++axis ){
const float grid = translation[axis] < 0? -GetGridSize() : GetGridSize();
int maxI = static_cast<int>( translation[axis] / grid + .5f );
int minI = 0;
while( maxI > minI ){
const int curI = minI + ( maxI - minI + 1 ) / 2;
tra[axis] = curI * grid;
m_brush.revertTransform();
transform( ma );
if( m_brush.contributes() ){
minI = curI;
}
else{
maxI = curI - 1;
}
}
tra[axis] = minI * grid;
}
m_brush.revertTransform();
transform( ma );
}
break;
}
}
}
}
}