netradiant-custom/libs/dragplanes.h
2021-10-22 02:19:50 +03:00

382 lines
13 KiB
C++

/*
Copyright (C) 2001-2006, William Joseph.
All Rights Reserved.
This file is part of GtkRadiant.
GtkRadiant is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
GtkRadiant is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GtkRadiant; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#pragma once
#include "selectable.h"
#include "cullable.h"
#include "selectionlib.h"
#include "math/aabb.h"
#include "math/line.h"
// local must be a pure rotation
inline Vector3 translation_to_local( const Vector3& translation, const Matrix4& local ){
return matrix4_get_translation_vec3(
matrix4_multiplied_by_matrix4(
matrix4_translated_by_vec3( matrix4_transposed( local ), translation ),
local
)
);
}
// local must be a pure rotation
inline Vector3 translation_from_local( const Vector3& translation, const Matrix4& local ){
return matrix4_get_translation_vec3(
matrix4_multiplied_by_matrix4(
matrix4_translated_by_vec3( local, translation ),
matrix4_transposed( local )
)
);
}
class DragPlanes
{
ObservedSelectable m_selectables[6];
public:
mutable AABB m_bounds;
DragPlanes( const SelectionChangeCallback& onchanged ) :
m_selectables{ ObservedSelectable( onchanged ),
ObservedSelectable( onchanged ),
ObservedSelectable( onchanged ),
ObservedSelectable( onchanged ),
ObservedSelectable( onchanged ),
ObservedSelectable( onchanged ) }{
}
bool isSelected() const {
for ( std::size_t i = 0; i < 6; ++i )
if( m_selectables[i].isSelected() )
return true;
return false;
}
void setSelected( bool selected ){
for ( std::size_t i = 0; i < 6; ++i )
m_selectables[i].setSelected( selected );
}
void selectPlanes( const AABB& aabb, Selector& selector, SelectionTest& test, const PlaneCallback& selectedPlaneCallback, const Matrix4& rotation = g_matrix4_identity ){
Vector3 corners[8];
aabb_corners_oriented( aabb, rotation, corners );
Plane3 planes[6];
aabb_planes_oriented( aabb, rotation, planes );
const std::size_t indices[24] = {
2, 1, 5, 6, //+x //right
3, 7, 4, 0, //-x //left
1, 0, 4, 5, //+y //front
3, 2, 6, 7, //-y //back
0, 1, 2, 3, //+z //top
7, 6, 5, 4, //-z //bottom
};
const Vector3 viewdir( test.getVolume().getViewDir() );
double bestDot = 1;
ObservedSelectable* selectable = 0;
ObservedSelectable* selectable2 = 0;
for ( std::size_t i = 0; i < 6; ++i ){
const std::size_t index = i * 4;
const Vector3 centroid = vector3_mid( corners[indices[index]], corners[indices[index + 2]] );
const Vector3 projected = vector4_projected( matrix4_transformed_vector4( test.getVolume().GetViewMatrix(), Vector4( centroid, 1 ) ) );
const Vector3 closest_point = vector4_projected( matrix4_transformed_vector4( test.getScreen2world(), Vector4( 0, 0, projected[2], 1 ) ) );
if ( vector3_dot( planes[i].normal(), closest_point - corners[indices[index]] ) > 0
&& vector3_dot( planes[i].normal(), closest_point - corners[indices[index + 1]] ) > 0
&& vector3_dot( planes[i].normal(), closest_point - corners[indices[index + 2]] ) > 0
&& vector3_dot( planes[i].normal(), closest_point - corners[indices[index + 3]] ) > 0 ) {
const double dot = fabs( vector3_dot( planes[i].normal(), viewdir ) );
const double diff = bestDot - dot;
if( diff > 0.03 ){
bestDot = dot;
selectable = &m_selectables[i];
selectable2 = 0;
}
else if( fabs( diff ) <= 0.03 ){
selectable2 = &m_selectables[i];
}
}
}
if( test.getVolume().fill() ) // select only plane in camera
selectable2 = 0;
for ( std::size_t i = 0; i < 6; ++i )
if( &m_selectables[i] == selectable || &m_selectables[i] == selectable2 ){
Selector_add( selector, m_selectables[i] );
selectedPlaneCallback( planes[i] );
}
m_bounds = aabb;
}
void selectReversedPlanes( const AABB& aabb, Selector& selector, const SelectedPlanes& selectedPlanes, const Matrix4& rotation = g_matrix4_identity ){
Plane3 planes[6];
aabb_planes_oriented( aabb, rotation, planes );
for ( std::size_t i = 0; i < 6; ++i )
if ( selectedPlanes.contains( plane3_flipped( planes[i] ) ) )
Selector_add( selector, m_selectables[i] );
}
void bestPlaneDirect( const AABB& aabb, SelectionTest& test, Plane3& plane, SelectionIntersection& intersection, const Matrix4& rotation = g_matrix4_identity ) const {
AABB aabb_ = aabb;
for( std::size_t i = 0; i < 3; ++i ) /* make sides of flat patches more selectable */
if( aabb_.extents[i] < 1 )
aabb_.extents[i] = 4;
Vector3 corners[8];
aabb_corners_oriented( aabb_, rotation, corners );
Plane3 planes[6];
aabb_planes_oriented( aabb_, rotation, planes );
const IndexPointer::index_type indices[24] = {
2, 1, 5, 6, //+x //right
3, 7, 4, 0, //-x //left
1, 0, 4, 5, //+y //front
3, 2, 6, 7, //-y //back
0, 1, 2, 3, //+z //top
7, 6, 5, 4, //-z //bottom
};
for ( std::size_t i = 0; i < 6; ++i ){
const std::size_t index = i * 4;
SelectionIntersection intersection_new;
test.TestQuads( VertexPointer( reinterpret_cast<VertexPointer::pointer>( corners ), sizeof( Vector3 ) ), IndexPointer( &indices[index], 4 ), intersection_new );
if( SelectionIntersection_closer( intersection_new, intersection ) ){
intersection = intersection_new;
plane = planes[i];
}
}
m_bounds = aabb;
}
void bestPlaneIndirect( const AABB& aabb, SelectionTest& test, Plane3& plane, Vector3& intersection, float& dist, const Matrix4& rotation = g_matrix4_identity ) const {
Vector3 corners[8];
aabb_corners_oriented( aabb, rotation, corners );
Plane3 planes[6];
aabb_planes_oriented( aabb, rotation, planes );
/*
const std::size_t indices[24] = {
2, 1, 5, 6, //+x //right
3, 7, 4, 0, //-x //left
1, 0, 4, 5, //+y //front
3, 2, 6, 7, //-y //back
0, 1, 2, 3, //+z //top
7, 6, 5, 4, //-z //bottom
};
*/
/*
0 ----- 1
/| /|
/ | / |
/ | / |
3 ----- 2 |
| 4|_|___|5
| / | /
| / | /
|/ | /
7|_____|/6
*/
const std::size_t edges[24] = {
0, 1, // x
3, 2,
7, 6,
4, 5,
2, 1, // y
3, 0,
6, 5,
7, 4,
4, 0, // z
5, 1,
6, 2,
7, 3,
};
const std::size_t adjacent_planes[24] = {
4, 2,
4, 3,
5, 3,
5, 2,
4, 0,
4, 1,
5, 0,
5, 1,
1, 2,
2, 0,
0, 3,
3, 1,
};
float dot = 1;
const bool some_extent_zero = aabb.extents[0] == 0 || aabb.extents[1] == 0 || aabb.extents[2] == 0;
for ( std::size_t i = 0; i < 24; ++++i ){
Line line( corners[edges[i]], corners[edges[i + 1]] );
if( aabb.extents[i / 8] != 0.f && matrix4_clip_line_by_nearplane( test.getVolume().GetViewMatrix(), line ) == 2 ){
const Vector3 intersection_new = line_closest_point( line, g_vector3_identity );
const float dist_new = vector3_length_squared( intersection_new );
const float dot_new = fabs( vector3_dot( vector3_normalised( intersection_new ), vector3_normalised( line.end - line.start ) ) );
//effective epsilon is rather big: optimized 32 bit build is using doubles implicitly (floats might be straightly checked for equality); same code in brush.h is cool with way smaller epsilon
if( dist - dist_new > 1e-2f // new dist noticeably smaller
|| ( float_equal_epsilon( dist_new, dist, 1e-2f ) && dot_new < dot ) ){ // or ambiguous case. Resolve it by dot comparison
const Plane3& plane1 = planes[adjacent_planes[i]];
const Plane3& plane2 = planes[adjacent_planes[i + 1]];
auto assign_plane = [&plane, &intersection, intersection_new, &dist, dist_new, &dot, dot_new]( const Plane3& plane_new ){
plane = plane_new;
intersection = intersection_new;
dist = dist_new;
dot = dot_new;
};
if( test.getVolume().fill() ){
if( plane3_distance_to_point( plane1, test.getVolume().getViewer() ) <= 0 ){
if( aabb.extents[adjacent_planes[i] / 2] == 0 ) /* select the other, if zero bound */
assign_plane( plane2 );
else
assign_plane( plane1 );
}
else if( plane3_distance_to_point( plane2, test.getVolume().getViewer() ) <= 0 ){
if( aabb.extents[adjacent_planes[i + 1] / 2] == 0 ) /* select the other, if zero bound */
assign_plane( plane1 );
else
assign_plane( plane2 );
}
}
else if( some_extent_zero || fabs( vector3_length_squared( line.end - line.start ) ) > 1e-3 ){
if( fabs( vector3_dot( plane1.normal(), test.getVolume().getViewDir() ) ) < fabs( vector3_dot( plane2.normal(), test.getVolume().getViewDir() ) ) ){
if( aabb.extents[adjacent_planes[i] / 2] == 0 ) /* select the other, if zero bound */
assign_plane( plane2 );
else
assign_plane( plane1 );
}
else{
if( aabb.extents[adjacent_planes[i + 1] / 2] == 0 ) /* select the other, if zero bound */
assign_plane( plane1 );
else
assign_plane( plane2 );
}
}
}
}
}
m_bounds = aabb;
}
void selectByPlane( const AABB& aabb, const Plane3& plane, const Matrix4& rotation = g_matrix4_identity ){
Plane3 planes[6];
aabb_planes_oriented( aabb, rotation, planes );
for ( std::size_t i = 0; i < 6; ++i ){
if( plane3_equal( plane, planes[i] ) || plane3_equal( plane, plane3_flipped( planes[i] ) ) ){
m_selectables[i].setSelected( true );
return;
}
}
}
void gatherPolygonsByPlane( const AABB& aabb, const Plane3& plane, std::vector<std::vector<Vector3>>& polygons, const Matrix4& rotation = g_matrix4_identity ) const {
Vector3 corners[8];
aabb_corners_oriented( aabb, rotation, corners );
Plane3 planes[6];
aabb_planes_oriented( aabb, rotation, planes );
const std::size_t indices[24] = {
2, 1, 5, 6, //+x //right
3, 7, 4, 0, //-x //left
1, 0, 4, 5, //+y //front
3, 2, 6, 7, //-y //back
0, 1, 2, 3, //+z //top
7, 6, 5, 4, //-z //bottom
};
for ( std::size_t i = 0; i < 6; ++i ){
if( plane3_equal( plane, planes[i] ) || plane3_equal( plane, plane3_flipped( planes[i] ) ) ){
const std::size_t index = i * 4;
polygons.emplace_back( std::initializer_list<Vector3>( { corners[indices[index]],
corners[indices[index + 1]],
corners[indices[index + 2]],
corners[indices[index + 3]] } ) );
return;
}
}
}
AABB evaluateResize( const Vector3& translation ) const {
Vector3 min = m_bounds.origin - m_bounds.extents;
Vector3 max = m_bounds.origin + m_bounds.extents;
for ( std::size_t i = 0; i < 3; ++i )
if ( m_bounds.extents[i] != 0 ){
if ( m_selectables[i * 2].isSelected() )
max[i] += translation[i];
if ( m_selectables[i * 2 + 1].isSelected() )
min[i] += translation[i];
}
return AABB( vector3_mid( min, max ), vector3_scaled( vector3_subtracted( max, min ), 0.5 ) );
}
AABB evaluateResize( const Vector3& translation, const Matrix4& rotation ) const {
AABB aabb( evaluateResize( translation_to_local( translation, rotation ) ) );
aabb.origin = m_bounds.origin + translation_from_local( aabb.origin - m_bounds.origin, rotation );
return aabb;
}
Matrix4 evaluateTransform( const Vector3& translation ) const {
AABB aabb( evaluateResize( translation ) );
Vector3 scale(
m_bounds.extents[0] != 0 ? aabb.extents[0] / m_bounds.extents[0] : 1,
m_bounds.extents[1] != 0 ? aabb.extents[1] / m_bounds.extents[1] : 1,
m_bounds.extents[2] != 0 ? aabb.extents[2] / m_bounds.extents[2] : 1
);
Matrix4 matrix( matrix4_translation_for_vec3( aabb.origin - m_bounds.origin ) );
matrix4_pivoted_scale_by_vec3( matrix, scale, m_bounds.origin );
return matrix;
}
};
class ScaleRadius {
ObservedSelectable m_selectable;
public:
static inline Matrix4 m_model;
ScaleRadius( const SelectionChangeCallback& onchanged ) :
m_selectable( onchanged ) {
}
bool isSelected() const {
return m_selectable.isSelected();
}
void setSelected( bool selected ) {
m_selectable.setSelected( selected );
}
void selectPlanes( Selector& selector, SelectionTest& test, const PlaneCallback& selectedPlaneCallback ) {
m_model = test.getVolume().GetModelview();
Selector_add( selector, m_selectable );
selectedPlaneCallback( Plane3( 2, 0, 0, 0 ) );
}
float evaluateResize( const Vector3& translation ) const {
const float len = vector3_length( translation );
if( len == 0 )
return 0;
Vector3 tra = matrix4_transformed_direction( m_model, translation );
vector3_normalise( tra );
return tra[0] * len;
}
};