/* Copyright (C) 2001-2006, William Joseph. All Rights Reserved. This file is part of GtkRadiant. GtkRadiant is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. GtkRadiant is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GtkRadiant; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #if !defined( INCLUDED_NAMEDENTITY_H ) #define INCLUDED_NAMEDENTITY_H #include "entitylib.h" #include "eclasslib.h" #include "generic/callback.h" #include "nameable.h" #include "entity.h" #include class NameCallbackSet { typedef std::set NameCallbacks; NameCallbacks m_callbacks; public: void insert( const NameCallback& callback ){ m_callbacks.insert( callback ); } void erase( const NameCallback& callback ){ m_callbacks.erase( callback ); } void changed( const char* name ) const { for ( NameCallbacks::const_iterator i = m_callbacks.begin(); i != m_callbacks.end(); ++i ) { ( *i )( name ); } } }; class NamedEntity : public Nameable { EntityKeyValues& m_entity; NameCallbackSet m_changed; CopiedString m_name; public: NamedEntity( EntityKeyValues& entity ) : m_entity( entity ){ } const char* name() const { if ( string_empty( m_name.c_str() ) ) { return m_entity.getEntityClass().name(); } return m_name.c_str(); } const char* classname() const { return m_entity.getEntityClass().name(); } const Colour3& color() const { return m_entity.getEntityClass().color; } void attach( const NameCallback& callback ){ m_changed.insert( callback ); } void detach( const NameCallback& callback ){ m_changed.erase( callback ); } void identifierChanged( const char* value ){ if ( string_empty( value ) ) { m_changed.changed( m_entity.getEntityClass().name() ); } else { m_changed.changed( value ); } m_name = value; } typedef MemberCaller1 IdentifierChangedCaller; }; #include "renderable.h" //#include "pivot.h" //#include "math/frustum.h" #include "cullable.h" class RenderableNamedEntity : public OpenGLRenderable { enum ENameMode{ eNameNormal = 0, eNameSelected = 1, eNameChildSelected = 2, }; mutable ENameMode m_nameMode; NamedEntity& m_named; const Vector3& m_position; GLuint m_tex; int m_width; int m_height; mutable float m_screenPos[2]; const char* m_exclude; public: typedef Static StaticShader; static Shader* getShader() { return StaticShader::instance(); } RenderableNamedEntity( NamedEntity& named, const Vector3& position, const char* exclude = 0 ) : m_named( named ), m_position( position ), m_tex( 0 ), m_exclude( exclude ) { // construct_textures( g_showTargetNames ? m_named.name() : m_named.classname() ); construct_textures( m_named.name() ); m_named.attach( IdentifierChangedCaller( *this ) ); } bool excluded_not() const { return m_tex > 0; } private: void construct_textures( const char* name ){ if( m_exclude && string_equal( m_exclude, name ) ) return; glGenTextures( 1, &m_tex ); if( m_tex > 0 ) { unsigned int colour[3]; colour[0] = static_cast( m_named.color()[0] * 255.f ); colour[1] = static_cast( m_named.color()[1] * 255.f ); colour[2] = static_cast( m_named.color()[2] * 255.f ); GlobalOpenGL().m_font->renderString( name, m_tex, colour, m_width, m_height ); } } void delete_textures(){ glDeleteTextures( 1, &m_tex ); m_tex = 0; } void setMode( bool selected, bool childSelected ) const{ if( selected ){ m_nameMode = eNameSelected; } else if( childSelected ){ m_nameMode = eNameChildSelected; } else{ m_nameMode = eNameNormal; } } public: void render( RenderStateFlags state ) const { if( m_tex > 0 ){ glBindTexture( GL_TEXTURE_2D, m_tex ); //Here we draw the texturemaped quads. //The bitmap that we got from FreeType was not //oriented quite like we would like it to be, //so we need to link the texture to the quad //so that the result will be properly aligned. glBegin( GL_QUADS ); float xoffset0 = m_nameMode / 3.f; float xoffset1 = ( m_nameMode + 1 ) / 3.f; glTexCoord2f( xoffset0, 1 ); glVertex2f( m_screenPos[0], m_screenPos[1] ); glTexCoord2f( xoffset0, 0 ); glVertex2f( m_screenPos[0], m_screenPos[1] + m_height + .01f ); glTexCoord2f( xoffset1, 0 ); glVertex2f( m_screenPos[0] + m_width + .01f, m_screenPos[1] + m_height + .01f ); glTexCoord2f( xoffset1, 1 ); glVertex2f( m_screenPos[0] + m_width + .01f, m_screenPos[1] ); glEnd(); glBindTexture( GL_TEXTURE_2D, 0 ); } } void render( Renderer& renderer, const VolumeTest& volume, const Matrix4& localToWorld, bool selected, bool childSelected = false ) const{ setMode( selected, childSelected ); if( volume.fill() ){ // globalOutputStream() << localToWorld << " localToWorld\n"; // globalOutputStream() << volume.GetModelview() << " modelview\n"; // globalOutputStream() << volume.GetProjection() << " Projection\n"; // globalOutputStream() << volume.GetViewport() << " Viewport\n"; //Matrix4 viewproj = matrix4_multiplied_by_matrix4( volume.GetProjection(), volume.GetModelview() ); const Matrix4& viewproj = volume.GetViewMatrix(); //Vector3 viewer = vector4_to_vector3( viewer_from_viewproj( viewproj ) ); const Vector3 pos_in_world = matrix4_transformed_point( localToWorld, m_position ); if( viewproj[3] * pos_in_world[0] + viewproj[7] * pos_in_world[1] + viewproj[11] * pos_in_world[2] + viewproj[15] < 3e-5 ) //z < 0: behind nearplane return; if( m_nameMode == eNameNormal && vector3_length_squared( pos_in_world - volume.getViewer() ) > static_cast( g_showNamesDist ) * static_cast( g_showNamesDist ) ) return; //globalOutputStream() << viewer[0] << " " << viewer[1] << " " << viewer[2] << " Viewer\n"; //globalOutputStream() << m_position[0] << " " << m_position[1] << " " << m_position[2] << " m_position\n"; //globalOutputStream() << pos_in_world[0] << " " << pos_in_world[1] << " " << pos_in_world[2] << " pos_in_world\n"; } Vector4 position( m_position, 1.f ); #if 0 // globalOutputStream() << position[0] << " " << position[1] << " " << position[2] << " " << position[3] << " position\n"; matrix4_transform_vector4( localToWorld, position ); // globalOutputStream() << position[0] << " " << position[1] << " " << position[2] << " " << position[3] << " localToWorld\n"; matrix4_transform_vector4( volume.GetModelview(), position ); // globalOutputStream() << position[0] << " " << position[1] << " " << position[2] << " " << position[3] << " Modelview\n"; matrix4_transform_vector4( volume.GetProjection(), position ); // globalOutputStream() << position[0] << " " << position[1] << " " << position[2] << " " << position[3] << " Projection\n"; position[0] /= position[3]; position[1] /= position[3]; position[2] /= position[3]; // globalOutputStream() << position[0] << " " << position[1] << " " << position[2] << " " << position[3] << " Projection division\n"; matrix4_transform_vector4( volume.GetViewport(), position ); // globalOutputStream() << position[0] << " " << position[1] << " " << position[2] << " " << position[3] << " Viewport\n"; #else //Matrix4 object2screen = volume.GetProjection(); Matrix4 object2screen( volume.GetViewMatrix() ); //matrix4_multiply_by_matrix4( object2screen, volume.GetModelview() ); matrix4_multiply_by_matrix4( object2screen, localToWorld ); // globalOutputStream() << position[0] << " " << position[1] << " " << position[2] << " " << position[3] << " position\n"; matrix4_transform_vector4( object2screen, position ); // globalOutputStream() << position[0] << " " << position[1] << " " << position[2] << " " << position[3] << " Projection\n"; position[0] /= position[3]; position[1] /= position[3]; position[2] /= position[3]; // globalOutputStream() << position[0] << " " << position[1] << " " << position[2] << " " << position[3] << " Projection division\n"; matrix4_transform_vector4( volume.GetViewport(), position ); // globalOutputStream() << position[0] << " " << position[1] << " " << position[2] << " " << position[3] << " Viewport\n"; #endif //globalOutputStream() << volume.GetViewport()[0] << " " << volume.GetViewport()[5] << " Viewport size\n"; m_screenPos[0] = position[0]; m_screenPos[1] = position[1]; //globalOutputStream() << m_screenPos[0] << " " << m_screenPos[1] << "\n"; renderer.PushState(); // Pivot2World_viewplaneSpace( m_localToWorld, localToWorld, volume.GetModelview(), volume.GetProjection(), volume.GetViewport() ); renderer.Highlight( Renderer::ePrimitive, false ); renderer.Highlight( Renderer::eFace, false ); renderer.SetState( getShader(), Renderer::eWireframeOnly ); renderer.SetState( getShader(), Renderer::eFullMaterials ); // m_localToWorld = volume.GetViewport(); // matrix4_full_invert( m_localToWorld ); renderer.addRenderable( *this, g_matrix4_identity ); renderer.PopState(); } ~RenderableNamedEntity(){ m_named.detach( IdentifierChangedCaller( *this ) ); delete_textures(); } void identifierChanged( const char* value ){ delete_textures(); // construct_textures( g_showTargetNames ? value : m_named.classname() ); construct_textures( value ); } typedef MemberCaller1 IdentifierChangedCaller; }; /* class RenderableNamedEntity : public OpenGLRenderable { const NamedEntity& m_named; const Vector3& m_position; public: RenderableNamedEntity( const NamedEntity& named, const Vector3& position ) : m_named( named ), m_position( position ){ } void render( RenderStateFlags state ) const { glRasterPos3fv( vector3_to_array( m_position ) ); GlobalOpenGL().drawString( g_showTargetNames ? m_named.name() : m_named.classname() ); } }; */ #endif