#include "QuickHull.hpp" #include "MathUtils.hpp" #include #include #include #include #include #include #include "Structs/Mesh.hpp" namespace quickhull { template<> const float QuickHull::Epsilon = 0.0001f; template<> const double QuickHull::Epsilon = 0.0000001; /* * Implementation of the algorithm */ template ConvexHull QuickHull::getConvexHull(const std::vector>& pointCloud, bool CCW, bool useOriginalIndices, T epsilon) { VertexDataSource vertexDataSource(pointCloud); return getConvexHull(vertexDataSource,CCW,useOriginalIndices,epsilon); } template ConvexHull QuickHull::getConvexHull(const Vector3* vertexData, size_t vertexCount, bool CCW, bool useOriginalIndices, T epsilon) { VertexDataSource vertexDataSource(vertexData,vertexCount); return getConvexHull(vertexDataSource,CCW,useOriginalIndices,epsilon); } template ConvexHull QuickHull::getConvexHull(const T* vertexData, size_t vertexCount, bool CCW, bool useOriginalIndices, T epsilon) { VertexDataSource vertexDataSource((const vec3*)vertexData,vertexCount); return getConvexHull(vertexDataSource,CCW,useOriginalIndices,epsilon); } template HalfEdgeMesh QuickHull::getConvexHullAsMesh(const FloatType* vertexData, size_t vertexCount, bool CCW, FloatType epsilon) { VertexDataSource vertexDataSource((const vec3*)vertexData,vertexCount); buildMesh(vertexDataSource, CCW, false, epsilon); return HalfEdgeMesh(m_mesh, m_vertexData); } template void QuickHull::buildMesh(const VertexDataSource& pointCloud, bool CCW, bool useOriginalIndices, T epsilon) { if (pointCloud.size()==0) { m_mesh = MeshBuilder(); return; } m_vertexData = pointCloud; // Very first: find extreme values and use them to compute the scale of the point cloud. m_extremeValues = getExtremeValues(); m_scale = getScale(m_extremeValues); // Epsilon we use depends on the scale m_epsilon = epsilon*m_scale; m_epsilonSquared = m_epsilon*m_epsilon; // Reset diagnostics m_diagnostics = DiagnosticsData(); m_planar = false; // The planar case happens when all the points appear to lie on a two dimensional subspace of R^3. createConvexHalfEdgeMesh(); if (m_planar) { const size_t extraPointIndex = m_planarPointCloudTemp.size()-1; for (auto& he : m_mesh.m_halfEdges) { if (he.m_endVertex == extraPointIndex) { he.m_endVertex = 0; } } m_vertexData = pointCloud; m_planarPointCloudTemp.clear(); } } template ConvexHull QuickHull::getConvexHull(const VertexDataSource& pointCloud, bool CCW, bool useOriginalIndices, T epsilon) { buildMesh(pointCloud,CCW,useOriginalIndices,epsilon); return ConvexHull(m_mesh,m_vertexData, CCW, useOriginalIndices); } template void QuickHull::createConvexHalfEdgeMesh() { // Temporary variables used during iteration std::vector visibleFaces; std::vector horizonEdges; struct FaceData { IndexType m_faceIndex; IndexType m_enteredFromHalfEdge; // If the face turns out not to be visible, this half edge will be marked as horizon edge FaceData(IndexType fi, IndexType he) : m_faceIndex(fi),m_enteredFromHalfEdge(he) {} }; std::vector possiblyVisibleFaces; // Compute base tetrahedron m_mesh = getInitialTetrahedron(); assert(m_mesh.m_faces.size()==4); // Init face stack with those faces that have points assigned to them std::deque faceList; for (size_t i=0;i < 4;i++) { auto& f = m_mesh.m_faces[i]; if (f.m_pointsOnPositiveSide && f.m_pointsOnPositiveSide->size()>0) { faceList.push_back(i); f.m_inFaceStack = 1; } } // Process faces until the face list is empty. size_t iter = 0; while (!faceList.empty()) { iter++; if (iter == std::numeric_limits::max()) { // Visible face traversal marks visited faces with iteration counter (to mark that the face has been visited on this iteration) and the max value represents unvisited faces. At this point we have to reset iteration counter. This shouldn't be an // issue on 64 bit machines. iter = 0; } const IndexType topFaceIndex = faceList.front(); faceList.pop_front(); auto& tf = m_mesh.m_faces[topFaceIndex]; tf.m_inFaceStack = 0; assert(!tf.m_pointsOnPositiveSide || tf.m_pointsOnPositiveSide->size()>0); if (!tf.m_pointsOnPositiveSide || tf.isDisabled()) { continue; } // Pick the most distant point to this triangle plane as the point to which we extrude const vec3& activePoint = m_vertexData[tf.m_mostDistantPoint]; const size_t activePointIndex = tf.m_mostDistantPoint; // Find out the faces that have our active point on their positive side (these are the "visible faces"). The face on top of the stack of course is one of them. At the same time, we create a list of horizon edges. horizonEdges.clear(); possiblyVisibleFaces.clear(); visibleFaces.clear(); possiblyVisibleFaces.emplace_back(topFaceIndex,std::numeric_limits::max()); while (possiblyVisibleFaces.size()) { const auto faceData = possiblyVisibleFaces.back(); possiblyVisibleFaces.pop_back(); auto& pvf = m_mesh.m_faces[faceData.m_faceIndex]; assert(!pvf.isDisabled()); if (pvf.m_visibilityCheckedOnIteration == iter) { if (pvf.m_isVisibleFaceOnCurrentIteration) { continue; } } else { const Plane& P = pvf.m_P; pvf.m_visibilityCheckedOnIteration = iter; const T d = P.m_N.dotProduct(activePoint)+P.m_D; if (d>0) { pvf.m_isVisibleFaceOnCurrentIteration = 1; pvf.m_horizonEdgesOnCurrentIteration = 0; visibleFaces.push_back(faceData.m_faceIndex); for (auto heIndex : m_mesh.getHalfEdgeIndicesOfFace(pvf)) { if (m_mesh.m_halfEdges[heIndex].m_opp != faceData.m_enteredFromHalfEdge) { possiblyVisibleFaces.emplace_back( m_mesh.m_halfEdges[m_mesh.m_halfEdges[heIndex].m_opp].m_face,heIndex ); } } continue; } assert(faceData.m_faceIndex != topFaceIndex); } // The face is not visible. Therefore, the halfedge we came from is part of the horizon edge. pvf.m_isVisibleFaceOnCurrentIteration = 0; horizonEdges.push_back(faceData.m_enteredFromHalfEdge); // Store which half edge is the horizon edge. The other half edges of the face will not be part of the final mesh so their data slots can by recycled. const auto halfEdges = m_mesh.getHalfEdgeIndicesOfFace(m_mesh.m_faces[m_mesh.m_halfEdges[faceData.m_enteredFromHalfEdge].m_face]); const std::int8_t ind = (halfEdges[0]==faceData.m_enteredFromHalfEdge) ? 0 : (halfEdges[1]==faceData.m_enteredFromHalfEdge ? 1 : 2); m_mesh.m_faces[m_mesh.m_halfEdges[faceData.m_enteredFromHalfEdge].m_face].m_horizonEdgesOnCurrentIteration |= (1<begin(),tf.m_pointsOnPositiveSide->end(),activePointIndex); tf.m_pointsOnPositiveSide->erase(it); if (tf.m_pointsOnPositiveSide->size()==0) { reclaimToIndexVectorPool(tf.m_pointsOnPositiveSide); } continue; } // Except for the horizon edges, all half edges of the visible faces can be marked as disabled. Their data slots will be reused. // The faces will be disabled as well, but we need to remember the points that were on the positive side of them - therefore // we save pointers to them. m_newFaceIndices.clear(); m_newHalfEdgeIndices.clear(); m_disabledFacePointVectors.clear(); size_t disableCounter = 0; for (auto faceIndex : visibleFaces) { auto& disabledFace = m_mesh.m_faces[faceIndex]; auto halfEdges = m_mesh.getHalfEdgeIndicesOfFace(disabledFace); for (size_t j=0;j<3;j++) { if ((disabledFace.m_horizonEdgesOnCurrentIteration & (1<size()); // Because we should not assign point vectors to faces unless needed... m_disabledFacePointVectors.push_back(std::move(t)); } } if (disableCounter < horizonEdgeCount*2) { const size_t newHalfEdgesNeeded = horizonEdgeCount*2-disableCounter; for (size_t i=0;i planeNormal = mathutils::getTriangleNormal(m_vertexData[A],m_vertexData[B],activePoint); newFace.m_P = Plane(planeNormal,activePoint); newFace.m_he = AB; m_mesh.m_halfEdges[CA].m_opp = m_newHalfEdgeIndices[i>0 ? i*2-1 : 2*horizonEdgeCount-1]; m_mesh.m_halfEdges[BC].m_opp = m_newHalfEdgeIndices[((i+1)*2) % (horizonEdgeCount*2)]; } // Assign points that were on the positive side of the disabled faces to the new faces. for (auto& disabledPoints : m_disabledFacePointVectors) { assert(disabledPoints); for (const auto& point : *(disabledPoints)) { if (point == activePointIndex) { continue; } for (size_t j=0;jsize()>0); if (!newFace.m_inFaceStack) { faceList.push_back(newFaceIndex); newFace.m_inFaceStack = 1; } } } } // Cleanup m_indexVectorPool.clear(); } /* * Private helper functions */ template std::array QuickHull::getExtremeValues() { std::array outIndices{0,0,0,0,0,0}; T extremeVals[6] = {m_vertexData[0].x,m_vertexData[0].x,m_vertexData[0].y,m_vertexData[0].y,m_vertexData[0].z,m_vertexData[0].z}; const size_t vCount = m_vertexData.size(); for (size_t i=1;i& pos = m_vertexData[i]; if (pos.x>extremeVals[0]) { extremeVals[0]=pos.x; outIndices[0]=(IndexType)i; } else if (pos.xextremeVals[2]) { extremeVals[2]=pos.y; outIndices[2]=(IndexType)i; } else if (pos.yextremeVals[4]) { extremeVals[4]=pos.z; outIndices[4]=(IndexType)i; } else if (pos.z bool QuickHull::reorderHorizonEdges(std::vector& horizonEdges) { const size_t horizonEdgeCount = horizonEdges.size(); for (size_t i=0;i T QuickHull::getScale(const std::array& extremeValues) { T s = 0; for (size_t i=0;i<6;i++) { const T* v = (const T*)(&m_vertexData[extremeValues[i]]); v += i/2; auto a = std::abs(*v); if (a>s) { s = a; } } return s; } template MeshBuilder QuickHull::getInitialTetrahedron() { const size_t vertexCount = m_vertexData.size(); // If we have at most 4 points, just return a degenerate tetrahedron: if (vertexCount <= 4) { IndexType v[4] = {0,std::min((size_t)1,vertexCount-1),std::min((size_t)2,vertexCount-1),std::min((size_t)3,vertexCount-1)}; const Vector3 N = mathutils::getTriangleNormal(m_vertexData[v[0]],m_vertexData[v[1]],m_vertexData[v[2]]); const Plane trianglePlane(N,m_vertexData[v[0]]); if (trianglePlane.isPointOnPositiveSide(m_vertexData[v[3]])) { std::swap(v[0],v[1]); } return MeshBuilder(v[0],v[1],v[2],v[3]); } // Find two most distant extreme points. T maxD = m_epsilonSquared; std::pair selectedPoints; for (size_t i=0;i<6;i++) { for (size_t j=i+1;j<6;j++) { const T d = m_vertexData[ m_extremeValues[i] ].getSquaredDistanceTo( m_vertexData[ m_extremeValues[j] ] ); if (d > maxD) { maxD=d; selectedPoints={m_extremeValues[i],m_extremeValues[j]}; } } } if (maxD == m_epsilonSquared) { // A degenerate case: the point cloud seems to consists of a single point return MeshBuilder(0,std::min((size_t)1,vertexCount-1),std::min((size_t)2,vertexCount-1),std::min((size_t)3,vertexCount-1)); } assert(selectedPoints.first != selectedPoints.second); // Find the most distant point to the line between the two chosen extreme points. const Ray r(m_vertexData[selectedPoints.first], (m_vertexData[selectedPoints.second] - m_vertexData[selectedPoints.first])); maxD = m_epsilonSquared; size_t maxI=std::numeric_limits::max(); const size_t vCount = m_vertexData.size(); for (size_t i=0;i maxD) { maxD=distToRay; maxI=i; } } if (maxD == m_epsilonSquared) { // It appears that the point cloud belongs to a 1 dimensional subspace of R^3: convex hull has no volume => return a thin triangle // Pick any point other than selectedPoints.first and selectedPoints.second as the third point of the triangle auto it = std::find_if(m_vertexData.begin(),m_vertexData.end(),[&](const vec3& ve) { return ve != m_vertexData[selectedPoints.first] && ve != m_vertexData[selectedPoints.second]; }); const IndexType thirdPoint = (it == m_vertexData.end()) ? selectedPoints.first : std::distance(m_vertexData.begin(),it); it = std::find_if(m_vertexData.begin(),m_vertexData.end(),[&](const vec3& ve) { return ve != m_vertexData[selectedPoints.first] && ve != m_vertexData[selectedPoints.second] && ve != m_vertexData[thirdPoint]; }); const IndexType fourthPoint = (it == m_vertexData.end()) ? selectedPoints.first : std::distance(m_vertexData.begin(),it); return MeshBuilder(selectedPoints.first,selectedPoints.second,thirdPoint,fourthPoint); } // These three points form the base triangle for our tetrahedron. assert(selectedPoints.first != maxI && selectedPoints.second != maxI); std::array baseTriangle{selectedPoints.first, selectedPoints.second, maxI}; const Vector3 baseTriangleVertices[]={ m_vertexData[baseTriangle[0]], m_vertexData[baseTriangle[1]], m_vertexData[baseTriangle[2]] }; // Next step is to find the 4th vertex of the tetrahedron. We naturally choose the point farthest away from the triangle plane. maxD=m_epsilon; maxI=0; const Vector3 N = mathutils::getTriangleNormal(baseTriangleVertices[0],baseTriangleVertices[1],baseTriangleVertices[2]); Plane trianglePlane(N,baseTriangleVertices[0]); for (size_t i=0;imaxD) { maxD=d; maxI=i; } } if (maxD == m_epsilon) { // All the points seem to lie on a 2D subspace of R^3. How to handle this? Well, let's add one extra point to the point cloud so that the convex hull will have volume. m_planar = true; const vec3 N = mathutils::getTriangleNormal(baseTriangleVertices[1],baseTriangleVertices[2],baseTriangleVertices[0]); m_planarPointCloudTemp.clear(); m_planarPointCloudTemp.insert(m_planarPointCloudTemp.begin(),m_vertexData.begin(),m_vertexData.end()); const vec3 extraPoint = N + m_vertexData[0]; m_planarPointCloudTemp.push_back(extraPoint); maxI = m_planarPointCloudTemp.size()-1; m_vertexData = VertexDataSource(m_planarPointCloudTemp); } // Enforce CCW orientation (if user prefers clockwise orientation, swap two vertices in each triangle when final mesh is created) const Plane triPlane(N,baseTriangleVertices[0]); if (triPlane.isPointOnPositiveSide(m_vertexData[maxI])) { std::swap(baseTriangle[0],baseTriangle[1]); } // Create a tetrahedron half edge mesh and compute planes defined by each triangle MeshBuilder mesh(baseTriangle[0],baseTriangle[1],baseTriangle[2],maxI); for (auto& f : mesh.m_faces) { auto v = mesh.getVertexIndicesOfFace(f); const Vector3& va = m_vertexData[v[0]]; const Vector3& vb = m_vertexData[v[1]]; const Vector3& vc = m_vertexData[v[2]]; const Vector3 N = mathutils::getTriangleNormal(va, vb, vc); const Plane trianglePlane(N,va); f.m_P = trianglePlane; } // Finally we assign a face for each vertex outside the tetrahedron (vertices inside the tetrahedron have no role anymore) for (size_t i=0;i; template class QuickHull; }