/* Copyright (C) 1999-2006 Id Software, Inc. and contributors. For a list of contributors, see the accompanying CONTRIBUTORS file. This file is part of GtkRadiant. GtkRadiant is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. GtkRadiant is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GtkRadiant; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include "winding.h" #include #include "math/line.h" #if 0 #include "math/aabb.h" void windingTestInfinity(){ static std::size_t windingTestInfinityI = 0; static std::size_t windingTestInfinity_badNormal = 0; static std::size_t windingTestInfinity_planeOuttaWorld = 0; static std::size_t windingTestInfinity_OK = 0; static std::size_t windingTestInfinity_FAIL = 0; const double maxWorldCoord = 64 * 1024; AABB world( g_vector3_identity, Vector3( maxWorldCoord, maxWorldCoord, maxWorldCoord ) ); Plane3 worldplanes[6]; aabb_planes( world, worldplanes ); world.extents += Vector3( 99, 99, 99 ); const std::size_t iterations = 9999999; if( windingTestInfinityI >= iterations ) return; while( windingTestInfinityI < iterations ) { Plane3 plane; plane.d = ( (double)rand() / (double)RAND_MAX ) * maxWorldCoord * 2; plane.a = ( (double)rand() / (double)RAND_MAX ); plane.b = ( (double)rand() / (double)RAND_MAX ); plane.c = ( (double)rand() / (double)RAND_MAX ); if( vector3_length( plane.normal() ) != 0 ){ vector3_normalise( plane.normal() ); } else{ ++windingTestInfinity_badNormal; continue; } FixedWinding buffer[2]; bool swap = false; // get a poly that covers an effectively infinite area Winding_createInfinite( buffer[swap], plane, maxWorldCoord * 8.0 ); // chop the poly by positive world box faces for ( std::size_t i = 0; i < 3; ++i ) { if( buffer[swap].points.empty() ){ break; } buffer[!swap].clear(); { // flip the plane, because we want to keep the back side const Plane3 clipPlane( -g_vector3_axes[i], -maxWorldCoord ); Winding_Clip( buffer[swap], plane, clipPlane, 0, buffer[!swap] ); } swap = !swap; } if( buffer[swap].points.empty() ){ ++windingTestInfinity_planeOuttaWorld; continue; } ++windingTestInfinityI; FixedWinding winding; // Winding_createInfinite( winding, plane, maxWorldCoord * sqrt( 2.75 ) ); //is ok for normalized vecs inside of Winding_createInfinite Winding_createInfinite( winding, plane, maxWorldCoord * 2.22 ); //ok for no normalization std::size_t i = 0; for( ; i < winding.size(); ++i ){ for( std::size_t j = 0; j < 6; ++j ){ if( vector3_dot( winding[i].edge.direction, worldplanes[j].normal() ) != 0 ){ const DoubleVector3 v = ray_intersect_plane( winding[i].edge, worldplanes[j] ); if( aabb_intersects_point( world, v ) ){ // globalWarningStream() << " INFINITE POINT INSIDE WORLD\n"; ++windingTestInfinity_FAIL; goto fail; } } } } if( i == winding.size() ){ ++windingTestInfinity_OK; } fail: ; } globalWarningStream() << windingTestInfinity_badNormal << " windingTestInfinity_badNormal\n"; globalWarningStream() << windingTestInfinity_planeOuttaWorld << " windingTestInfinity_planeOuttaWorld\n"; globalWarningStream() << windingTestInfinity_OK << " windingTestInfinity_OK\n"; globalWarningStream() << windingTestInfinity_FAIL << " windingTestInfinity_FAIL\n"; } #endif /// \brief Keep the value of \p infinity as small as possible to improve precision in Winding_Clip. void Winding_createInfinite( FixedWinding& winding, const Plane3& plane, double infinity ){ #if 0 double max = -infinity; int x = -1; for ( int i = 0 ; i < 3; i++ ) { double d = fabs( plane.normal()[i] ); if ( d > max ) { x = i; max = d; } } if ( x == -1 ) { globalErrorStream() << "invalid plane\n"; return; } DoubleVector3 vup = g_vector3_identity; switch ( x ) { case 0: case 1: vup[2] = 1; break; case 2: vup[0] = 1; break; } vector3_add( vup, vector3_scaled( plane.normal(), -vector3_dot( vup, plane.normal() ) ) ); vector3_normalise( vup ); DoubleVector3 org = vector3_scaled( plane.normal(), plane.dist() ); DoubleVector3 vright = vector3_cross( vup, plane.normal() ); vector3_scale( vup, infinity ); vector3_scale( vright, infinity ); // project a really big axis aligned box onto the plane DoubleRay r1, r2, r3, r4; r1.origin = vector3_added( vector3_subtracted( org, vright ), vup ); r1.direction = vector3_normalised( vright ); winding.push_back( FixedWindingVertex( r1.origin, r1, c_brush_maxFaces ) ); r2.origin = vector3_added( vector3_added( org, vright ), vup ); r2.direction = vector3_normalised( vector3_negated( vup ) ); winding.push_back( FixedWindingVertex( r2.origin, r2, c_brush_maxFaces ) ); r3.origin = vector3_subtracted( vector3_added( org, vright ), vup ); r3.direction = vector3_normalised( vector3_negated( vright ) ); winding.push_back( FixedWindingVertex( r3.origin, r3, c_brush_maxFaces ) ); r4.origin = vector3_subtracted( vector3_subtracted( org, vright ), vup ); r4.direction = vector3_normalised( vup ); winding.push_back( FixedWindingVertex( r4.origin, r4, c_brush_maxFaces ) ); #else const auto normal = plane.normal(); const auto maxi = vector3_max_abs_component_index( normal ); if ( !std::isnormal( normal[maxi] ) ) { globalErrorStream() << "invalid plane\n"; return; } const DoubleVector3 vup0 = ( maxi == 2 )? DoubleVector3( 0, -normal[2], normal[1] ) : DoubleVector3( -normal[1], normal[0], 0 ); const DoubleVector3 vright0 = vector3_cross( vup0, normal ); const DoubleVector3 org = normal * plane.dist(); const DoubleVector3 vup = vup0 * infinity * 2.22; const DoubleVector3 vright = vright0 * infinity * 2.22; // project a really big axis aligned box onto the plane DoubleRay ray; ray.origin = org - vright + vup; ray.direction = vector3_normalised( vright0 ); winding.push_back( FixedWindingVertex( ray.origin, ray, c_brush_maxFaces ) ); ray.origin = org + vright + vup; ray.direction = vector3_normalised( -vup0 ); winding.push_back( FixedWindingVertex( ray.origin, ray, c_brush_maxFaces ) ); ray.origin = org + vright - vup; ray.direction = vector3_normalised( -vright0 ); winding.push_back( FixedWindingVertex( ray.origin, ray, c_brush_maxFaces ) ); ray.origin = org - vright - vup; ray.direction = vector3_normalised( vup0 ); winding.push_back( FixedWindingVertex( ray.origin, ray, c_brush_maxFaces ) ); #endif } inline PlaneClassification Winding_ClassifyDistance( const double distance, const double epsilon ){ if ( distance > epsilon ) { return ePlaneFront; } if ( distance < -epsilon ) { return ePlaneBack; } return ePlaneOn; } /// \brief Returns true if /// !flipped && winding is completely BACK or ON /// or flipped && winding is completely FRONT or ON bool Winding_TestPlane( const Winding& winding, const Plane3& plane, bool flipped ){ const int test = ( flipped ) ? ePlaneBack : ePlaneFront; for ( Winding::const_iterator i = winding.begin(); i != winding.end(); ++i ) { if ( test == Winding_ClassifyDistance( plane3_distance_to_point( plane, ( *i ).vertex ), ON_EPSILON ) ) { return false; } } return true; } /// \brief Returns true if any point in \p w1 is in front of plane2, or any point in \p w2 is in front of plane1 bool Winding_PlanesConcave( const Winding& w1, const Winding& w2, const Plane3& plane1, const Plane3& plane2 ){ return !Winding_TestPlane( w1, plane2, false ) || !Winding_TestPlane( w2, plane1, false ); } brushsplit_t Winding_ClassifyPlane( const Winding& winding, const Plane3& plane ){ brushsplit_t split; for ( Winding::const_iterator i = winding.begin(); i != winding.end(); ++i ) { ++split.counts[Winding_ClassifyDistance( plane3_distance_to_point( plane, ( *i ).vertex ), ON_EPSILON )]; } return split; } void WindingVertex_ClassifyPlane( const Vector3& vertex, const Plane3& plane, brushsplit_t& split ){ ++split.counts[Winding_ClassifyDistance( plane3_distance_to_point( plane, vertex ), ON_EPSILON )]; } const double ON_EPSILON_CLIP = 1.0 / ( 1 << 12 ); /// \brief Clip \p winding which lies on \p plane by \p clipPlane, resulting in \p clipped. /// If \p winding is completely in front of the plane, \p clipped will be identical to \p winding. /// If \p winding is completely in back of the plane, \p clipped will be empty. /// If \p winding intersects the plane, the edge of \p clipped which lies on \p clipPlane will store the value of \p adjacent. void Winding_Clip( const FixedWinding& winding, const Plane3& plane, const Plane3& clipPlane, std::size_t adjacent, FixedWinding& clipped ){ PlaneClassification classification = Winding_ClassifyDistance( plane3_distance_to_point( clipPlane, winding.back().vertex ), ON_EPSILON_CLIP ); PlaneClassification nextClassification; // for each edge for ( std::size_t next = 0, i = winding.size() - 1; next != winding.size(); i = next, ++next, classification = nextClassification ) { nextClassification = Winding_ClassifyDistance( plane3_distance_to_point( clipPlane, winding[next].vertex ), ON_EPSILON_CLIP ); const FixedWindingVertex& vertex = winding[i]; // if first vertex of edge is ON if ( classification == ePlaneOn ) { // append first vertex to output winding if ( nextClassification == ePlaneBack ) { // this edge lies on the clip plane clipped.push_back( FixedWindingVertex( vertex.vertex, plane3_intersect_plane3( plane, clipPlane ), adjacent ) ); } else { clipped.push_back( vertex ); } continue; } // if first vertex of edge is FRONT if ( classification == ePlaneFront ) { // add first vertex to output winding clipped.push_back( vertex ); } // if second vertex of edge is ON if ( nextClassification == ePlaneOn ) { continue; } // else if second vertex of edge is same as first else if ( nextClassification == classification ) { continue; } // else if first vertex of edge is FRONT and there are only two edges else if ( classification == ePlaneFront && winding.size() == 2 ) { continue; } // else first vertex is FRONT and second is BACK or vice versa else { // append intersection point of line and plane to output winding DoubleVector3 mid( ray_intersect_plane( vertex.edge, clipPlane ) ); if ( classification == ePlaneFront ) { // this edge lies on the clip plane clipped.push_back( FixedWindingVertex( mid, plane3_intersect_plane3( plane, clipPlane ), adjacent ) ); } else { clipped.push_back( FixedWindingVertex( mid, vertex.edge, vertex.adjacent ) ); } } } } std::size_t Winding_FindAdjacent( const Winding& winding, std::size_t face ){ for ( std::size_t i = 0; i < winding.numpoints; ++i ) { ASSERT_MESSAGE( winding[i].adjacent != c_brush_maxFaces, "edge connectivity data is invalid" ); if ( winding[i].adjacent == face ) { return i; } } return c_brush_maxFaces; } std::size_t Winding_Opposite( const Winding& winding, const std::size_t index, const std::size_t other ){ ASSERT_MESSAGE( index < winding.numpoints && other < winding.numpoints, "Winding_Opposite: index out of range" ); double dist_best = 0; std::size_t index_best = c_brush_maxFaces; Ray edge( ray_for_points( winding[index].vertex, winding[other].vertex ) ); for ( std::size_t i = 0; i < winding.numpoints; ++i ) { if ( i == index || i == other ) { continue; } double dist_squared = ray_squared_distance_to_point( edge, winding[i].vertex ); if ( dist_squared > dist_best ) { dist_best = dist_squared; index_best = i; } } return index_best; } std::size_t Winding_Opposite( const Winding& winding, const std::size_t index ){ return Winding_Opposite( winding, index, Winding_next( winding, index ) ); } /// \brief Calculate the \p centroid of the polygon defined by \p winding which lies on plane \p plane. void Winding_Centroid( const Winding& winding, const Plane3& plane, Vector3& centroid ){ double area2 = 0, x_sum = 0, y_sum = 0; const ProjectionAxis axis = projectionaxis_for_normal( plane.normal() ); const indexremap_t remap = indexremap_for_projectionaxis( axis ); for ( std::size_t i = winding.numpoints - 1, j = 0; j < winding.numpoints; i = j, ++j ) { const double ai = static_cast( winding[i].vertex[remap.x] ) * winding[j].vertex[remap.y] - static_cast( winding[j].vertex[remap.x] ) * winding[i].vertex[remap.y]; area2 += ai; x_sum += ( static_cast( winding[j].vertex[remap.x] ) + winding[i].vertex[remap.x] ) * ai; y_sum += ( static_cast( winding[j].vertex[remap.y] ) + winding[i].vertex[remap.y] ) * ai; } centroid[remap.x] = static_cast( x_sum / ( 3 * area2 ) ); centroid[remap.y] = static_cast( y_sum / ( 3 * area2 ) ); { Ray ray( Vector3( 0, 0, 0 ), Vector3( 0, 0, 0 ) ); ray.origin[remap.x] = centroid[remap.x]; ray.origin[remap.y] = centroid[remap.y]; ray.direction[remap.z] = 1; centroid[remap.z] = static_cast( ray_distance_to_plane( ray, plane ) ); } // windingTestInfinity(); }