/* Copyright (C) 1999-2006 Id Software, Inc. and contributors. For a list of contributors, see the accompanying CONTRIBUTORS file. This file is part of GtkRadiant. GtkRadiant is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. GtkRadiant is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GtkRadiant; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include "brush_primit.h" #include "debugging/debugging.h" #include "itexdef.h" #include "itextures.h" #include #include "stringio.h" #include "texturelib.h" #include "math/matrix.h" #include "math/plane.h" #include "math/aabb.h" #include "winding.h" #include "preferences.h" bp_globals_t g_bp_globals; float g_texdef_default_scale; /*! \brief Construct a transform from XYZ space to ST space (3d to 2d). This will be one of three axis-aligned spaces, depending on the surface normal. NOTE: could also be done by swapping values. */ void Normal_GetTransform( const Vector3& normal, Matrix4& transform ){ switch ( projectionaxis_for_normal( normal ) ) { case eProjectionAxisZ: transform[0] = 1; transform[1] = 0; transform[2] = 0; transform[4] = 0; transform[5] = 1; transform[6] = 0; transform[8] = 0; transform[9] = 0; transform[10] = 1; break; case eProjectionAxisY: transform[0] = 1; transform[1] = 0; transform[2] = 0; transform[4] = 0; transform[5] = 0; transform[6] = -1; transform[8] = 0; transform[9] = 1; transform[10] = 0; break; case eProjectionAxisX: transform[0] = 0; transform[1] = 0; transform[2] = 1; transform[4] = 1; transform[5] = 0; transform[6] = 0; transform[8] = 0; transform[9] = 1; transform[10] = 0; break; } transform[3] = transform[7] = transform[11] = transform[12] = transform[13] = transform[14] = 0; transform[15] = 1; } /*! \brief Construct a transform in ST space from the texdef. Transforms constructed from quake's texdef format are (-shift)*(1/scale)*(-rotate) with x translation sign flipped. This would really make more sense if it was inverseof(shift*rotate*scale).. oh well. */ inline void Texdef_toTransform( const texdef_t& texdef, float width, float height, Matrix4& transform ){ double inverse_scale[2]; // transform to texdef shift/scale/rotate inverse_scale[0] = 1 / ( texdef.scale[0] * width ); inverse_scale[1] = 1 / ( texdef.scale[1] * -height ); transform[12] = texdef.shift[0] / width; transform[13] = -texdef.shift[1] / -height; double c = cos( degrees_to_radians( -texdef.rotate ) ); double s = sin( degrees_to_radians( -texdef.rotate ) ); transform[0] = static_cast( c * inverse_scale[0] ); transform[1] = static_cast( s * inverse_scale[1] ); transform[4] = static_cast( -s * inverse_scale[0] ); transform[5] = static_cast( c * inverse_scale[1] ); transform[2] = transform[3] = transform[6] = transform[7] = transform[8] = transform[9] = transform[11] = transform[14] = 0; transform[10] = transform[15] = 1; } inline void Valve220Texdef_toTransform( const texdef_t& texdef, float width, float height, Matrix4& transform ){ transform = g_matrix4_identity; transform[12] = texdef.shift[0] / width; transform[13] = -texdef.shift[1] / -height; transform[0] = 1 / ( texdef.scale[0] * width ); transform[5] = 1 / ( texdef.scale[1] * -height ); } inline void BPTexdef_toTransform( const brushprimit_texdef_t& bp_texdef, Matrix4& transform ){ transform = g_matrix4_identity; transform.xx() = bp_texdef.coords[0][0]; transform.yx() = bp_texdef.coords[0][1]; transform.tx() = bp_texdef.coords[0][2]; transform.xy() = bp_texdef.coords[1][0]; transform.yy() = bp_texdef.coords[1][1]; transform.ty() = bp_texdef.coords[1][2]; } inline void Texdef_toTransform( const TextureProjection& projection, float width, float height, Matrix4& transform ){ switch ( g_bp_globals.m_texdefTypeId ) { case TEXDEFTYPEID_BRUSHPRIMITIVES: BPTexdef_toTransform( projection.m_brushprimit_texdef, transform ); break; case TEXDEFTYPEID_VALVE: Valve220Texdef_toTransform( projection.m_texdef, width, height, transform ); break; default: //case TEXDEFTYPEID_QUAKE: Texdef_toTransform( projection.m_texdef, width, height, transform ); break; } } // handles degenerate cases, just in case library atan2 doesn't inline double arctangent_yx( double y, double x ){ if ( fabs( x ) > 1.0E-6 ) { return atan2( y, x ); } else if ( y > 0 ) { return c_half_pi; } else { return -c_half_pi; } } inline void Texdef_fromTransform( texdef_t& texdef, float width, float height, const Matrix4& transform ){ texdef.scale[0] = static_cast( ( 1.0 / vector2_length( Vector2( transform[0], transform[4] ) ) ) / width ); texdef.scale[1] = static_cast( ( 1.0 / vector2_length( Vector2( transform[1], transform[5] ) ) ) / height ); texdef.rotate = static_cast( -radians_to_degrees( arctangent_yx( -transform[4], transform[0] ) ) ); if ( texdef.rotate == -180.0f ) { texdef.rotate = 180.0f; } texdef.shift[0] = transform[12] * width; texdef.shift[1] = transform[13] * height; // If the 2d cross-product of the x and y axes is positive, one of the axes has a negative scale. if ( vector2_cross( Vector2( transform[0], transform[4] ), Vector2( transform[1], transform[5] ) ) > 0 ) { if ( texdef.rotate >= 180.0f ) { texdef.rotate -= 180.0f; texdef.scale[0] = -texdef.scale[0]; } else { texdef.scale[1] = -texdef.scale[1]; } } //globalOutputStream() << "fromTransform: " << texdef.shift[0] << " " << texdef.shift[1] << " " << texdef.scale[0] << " " << texdef.scale[1] << " " << texdef.rotate << "\n"; } inline void BPTexdef_fromTransform( brushprimit_texdef_t& bp_texdef, const Matrix4& transform ){ bp_texdef.coords[0][0] = transform.xx(); bp_texdef.coords[0][1] = transform.yx(); bp_texdef.coords[0][2] = transform.tx(); bp_texdef.coords[1][0] = transform.xy(); bp_texdef.coords[1][1] = transform.yy(); bp_texdef.coords[1][2] = transform.ty(); //globalOutputStream() << bp_texdef.coords[0][0] << " " << bp_texdef.coords[0][1] << " " << bp_texdef.coords[0][2] << "\n"; } inline void Texdef_fromTransform( TextureProjection& projection, float width, float height, const Matrix4& transform ){ ASSERT_MESSAGE( ( transform[0] != 0 || transform[4] != 0 ) && ( transform[1] != 0 || transform[5] != 0 ), "invalid texture matrix" ); if ( g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_BRUSHPRIMITIVES ) { BPTexdef_fromTransform( projection.m_brushprimit_texdef, transform ); } else { Texdef_fromTransform( projection.m_texdef, width, height, transform ); } } inline void Texdef_normalise( texdef_t& texdef, float width, float height ){ // it may be useful to also normalise the rotation here, if this function is used elsewhere. texdef.shift[0] = float_mod( texdef.shift[0], width ); texdef.shift[1] = float_mod( texdef.shift[1], height ); //globalOutputStream() << "normalise: " << texdef.shift[0] << " " << texdef.shift[1] << " " << texdef.scale[0] << " " << texdef.scale[1] << " " << texdef.rotate << "\n"; } /// this is supposed to work with brushprimit_texdef_t.removeScale()'d inline void BPTexdef_normalise( brushprimit_texdef_t& bp_texdef, float width, float height ){ bp_texdef.coords[0][2] = float_mod( bp_texdef.coords[0][2], width ); bp_texdef.coords[1][2] = float_mod( bp_texdef.coords[1][2], height ); } /// \brief Normalise \p projection for a given texture \p width and \p height. /// /// All texture-projection translation (shift) values are congruent modulo the dimensions of the texture. /// This function normalises shift values to the smallest positive congruent values. void Texdef_normalise( TextureProjection& projection, float width, float height ){ if ( g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_BRUSHPRIMITIVES ) { BPTexdef_normalise( projection.m_brushprimit_texdef, width, height ); } else { Texdef_normalise( projection.m_texdef, width, height ); } } inline void DebugAxisBase( const Vector3& normal ){ Vector3 x, y; ComputeAxisBase( normal, x, y ); globalOutputStream() << "BP debug: " << x << y << normal << "\n"; } void Texdef_basisForNormal( const TextureProjection& projection, const Vector3& normal, Matrix4& basis ){ if ( g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_BRUSHPRIMITIVES ) { basis = g_matrix4_identity; ComputeAxisBase( normal, vector4_to_vector3( basis.x() ), vector4_to_vector3( basis.y() ) ); vector4_to_vector3( basis.z() ) = normal; matrix4_transpose( basis ); //DebugAxisBase( normal ); } else if ( g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_VALVE ) { basis = g_matrix4_identity; vector4_to_vector3( basis.x() ) = projection.m_basis_s; vector4_to_vector3( basis.y() ) = vector3_negated( projection.m_basis_t ); vector4_to_vector3( basis.z() ) = vector3_normalised( vector3_cross( vector4_to_vector3( basis.x() ), vector4_to_vector3( basis.y() ) ) ); // matrix4_multiply_by_matrix4( basis, matrix4_rotation_for_z_degrees( -projection.m_texdef.rotate ) ); //globalOutputStream() << "debug: " << projection.m_basis_s << projection.m_basis_t << normal << "\n"; matrix4_transpose( basis ); } else { Normal_GetTransform( normal, basis ); } } void Texdef_Construct_local2tex( const TextureProjection& projection, std::size_t width, std::size_t height, const Vector3& normal, Matrix4& local2tex ){ Texdef_toTransform( projection, (float)width, (float)height, local2tex ); { Matrix4 xyz2st; Texdef_basisForNormal( projection, normal, xyz2st ); matrix4_multiply_by_matrix4( local2tex, xyz2st ); } } void Texdef_EmitTextureCoordinates( const TextureProjection& projection, std::size_t width, std::size_t height, Winding& w, const Vector3& normal, const Matrix4& localToWorld ){ if ( w.numpoints < 3 ) { return; } //globalOutputStream() << "normal: " << normal << "\n"; Matrix4 local2tex; Texdef_toTransform( projection, (float)width, (float)height, local2tex ); //globalOutputStream() << "texdef: " << static_cast(local2tex.x()) << static_cast(local2tex.y()) << "\n"; #if 0 { TextureProjection tmp; Texdef_fromTransform( tmp, (float)width, (float)height, local2tex ); Matrix4 tmpTransform; Texdef_toTransform( tmp, (float)width, (float)height, tmpTransform ); ASSERT_MESSAGE( matrix4_equal_epsilon( local2tex, tmpTransform, 0.0001f ), "bleh" ); } #endif { Matrix4 xyz2st; // we don't care if it's not normalised... Texdef_basisForNormal( projection, matrix4_transformed_direction( localToWorld, normal ), xyz2st ); //globalOutputStream() << "basis: " << static_cast(xyz2st.x()) << static_cast(xyz2st.y()) << static_cast(xyz2st.z()) << "\n"; matrix4_multiply_by_matrix4( local2tex, xyz2st ); } const Vector3 tangent( vector3_normalised( vector4_to_vector3( matrix4_transposed( local2tex ).x() ) ) ); const Vector3 bitangent( vector3_normalised( vector4_to_vector3( matrix4_transposed( local2tex ).y() ) ) ); matrix4_multiply_by_matrix4( local2tex, localToWorld ); for ( WindingVertex& v : w ) { v.texcoord = matrix4_transformed_point( local2tex, v.vertex ).vec2(); v.tangent = tangent; v.bitangent = bitangent; } } /*! \brief Provides the axis-base of the texture ST space for this normal, as they had been transformed to world XYZ space. */ void TextureAxisFromNormal( const Vector3& normal, Vector3& s, Vector3& t ){ switch ( projectionaxis_for_normal( normal ) ) { case eProjectionAxisZ: s[0] = 1; s[1] = 0; s[2] = 0; t[0] = 0; t[1] = -1; t[2] = 0; break; case eProjectionAxisY: s[0] = 1; s[1] = 0; s[2] = 0; t[0] = 0; t[1] = 0; t[2] = -1; break; case eProjectionAxisX: s[0] = 0; s[1] = 1; s[2] = 0; t[0] = 0; t[1] = 0; t[2] = -1; break; } } void Texdef_Assign( texdef_t& td, const texdef_t& other ){ td = other; } void Texdef_Assign( texdef_t& td, const float* hShift, const float* vShift, const float* hScale, const float* vScale, const float* rotation ){ if( hShift ){ td.shift[0] = *hShift; } if( vShift ){ td.shift[1] = *vShift; } if( hScale ){ if( fabs( *hScale ) > 1e-5 ){ td.scale[0] = *hScale; } else{ td.scale[0] = -td.scale[0]; } } if( vScale ){ if( fabs( *vScale ) > 1e-5 ){ td.scale[1] = *vScale; } else{ td.scale[1] = -td.scale[1]; } } if( rotation ){ td.rotate = *rotation; //td.rotate = static_cast( float_to_integer( td.rotate * 100.f ) % 36000 ) / 100.f; td.rotate = fmod( td.rotate, 360.f ); } } void Texdef_Shift( texdef_t& td, float s, float t ){ td.shift[0] += s; td.shift[1] += t; } void Texdef_Scale( texdef_t& td, float s, float t ){ if( fabs( td.scale[0] + s ) > 1e-5 ){ td.scale[0] += s; } else{ td.scale[0] = -td.scale[0]; } if( fabs( td.scale[1] + t ) > 1e-5 ){ td.scale[1] += t; } else{ td.scale[1] = -td.scale[1]; } } void Texdef_Rotate( texdef_t& td, float angle ){ td.rotate += angle; td.rotate = fmod( td.rotate, 360.f ); } #if 0 // NOTE: added these from Ritual's Q3Radiant void ClearBounds( Vector3& mins, Vector3& maxs ){ mins[0] = mins[1] = mins[2] = 99999; maxs[0] = maxs[1] = maxs[2] = -99999; } void AddPointToBounds( const Vector3& v, Vector3& mins, Vector3& maxs ){ int i; float val; for ( i = 0; i < 3; i++ ) { val = v[i]; if ( val < mins[i] ) { mins[i] = val; } if ( val > maxs[i] ) { maxs[i] = val; } } } #endif #if 0 template inline BasicVector3 vector3_inverse( const BasicVector3& self ){ return BasicVector3( Element( 1.0 / self.x() ), Element( 1.0 / self.y() ), Element( 1.0 / self.z() ) ); } #endif #if 0 // compute a determinant using Sarrus rule //++timo "inline" this with a macro // NOTE : the three vectors are understood as columns of the matrix inline float SarrusDet( const Vector3& a, const Vector3& b, const Vector3& c ){ return a[0] * b[1] * c[2] + b[0] * c[1] * a[2] + c[0] * a[1] * b[2] - c[0] * b[1] * a[2] - a[1] * b[0] * c[2] - a[0] * b[2] * c[1]; } // in many case we know three points A,B,C in two axis base B1 and B2 // and we want the matrix M so that A(B1) = T * A(B2) // NOTE: 2D homogeneous space stuff // NOTE: we don't do any check to see if there's a solution or we have a particular case .. need to make sure before calling // NOTE: the third coord of the A,B,C point is ignored // NOTE: see the commented out section to fill M and D //++timo TODO: update the other members to use this when possible void MatrixForPoints( Vector3 M[3], Vector3 D[2], brushprimit_texdef_t *T ){ // Vector3 M[3]; // columns of the matrix .. easier that way (the indexing is not standard! it's column-line .. later computations are easier that way) float det; // Vector3 D[2]; M[2][0] = 1.0f; M[2][1] = 1.0f; M[2][2] = 1.0f; #if 0 // fill the data vectors M[0][0] = A2[0]; M[0][1] = B2[0]; M[0][2] = C2[0]; M[1][0] = A2[1]; M[1][1] = B2[1]; M[1][2] = C2[1]; M[2][0] = 1.0f; M[2][1] = 1.0f; M[2][2] = 1.0f; D[0][0] = A1[0]; D[0][1] = B1[0]; D[0][2] = C1[0]; D[1][0] = A1[1]; D[1][1] = B1[1]; D[1][2] = C1[1]; #endif // solve det = SarrusDet( M[0], M[1], M[2] ); T->coords[0][0] = SarrusDet( D[0], M[1], M[2] ) / det; T->coords[0][1] = SarrusDet( M[0], D[0], M[2] ) / det; T->coords[0][2] = SarrusDet( M[0], M[1], D[0] ) / det; T->coords[1][0] = SarrusDet( D[1], M[1], M[2] ) / det; T->coords[1][1] = SarrusDet( M[0], D[1], M[2] ) / det; T->coords[1][2] = SarrusDet( M[0], M[1], D[1] ) / det; } #endif #if 0 #ifdef _DEBUG //#define DBG_BP #endif // texdef conversion void FaceToBrushPrimitFace( face_t *f ){ Vector3 texX,texY; Vector3 proj; // ST of (0,0) (1,0) (0,1) float ST[3][5]; // [ point index ] [ xyz ST ] //++timo not used as long as brushprimit_texdef and texdef are static /* f->brushprimit_texdef.contents=f->texdef.contents; f->brushprimit_texdef.flags=f->texdef.flags; f->brushprimit_texdef.value=f->texdef.value; strcpy(f->brushprimit_texdef.name,f->texdef.name); */ #ifdef DBG_BP if ( f->plane.normal[0] == 0.0f && f->plane.normal[1] == 0.0f && f->plane.normal[2] == 0.0f ) { globalWarningStream() << "Warning : f->plane.normal is (0,0,0) in FaceToBrushPrimitFace\n"; } // check d_texture if ( !f->d_texture ) { globalWarningStream() << "Warning : f.d_texture is 0 in FaceToBrushPrimitFace\n"; return; } #endif // compute axis base ComputeAxisBase( f->plane.normal,texX,texY ); // compute projection vector VectorCopy( f->plane.normal,proj ); VectorScale( proj,f->plane.dist,proj ); // (0,0) in plane axis base is (0,0,0) in world coordinates + projection on the affine plane // (1,0) in plane axis base is texX in world coordinates + projection on the affine plane // (0,1) in plane axis base is texY in world coordinates + projection on the affine plane // use old texture code to compute the ST coords of these points VectorCopy( proj,ST[0] ); EmitTextureCoordinates( ST[0], f->pShader->getTexture(), f ); VectorCopy( texX,ST[1] ); VectorAdd( ST[1],proj,ST[1] ); EmitTextureCoordinates( ST[1], f->pShader->getTexture(), f ); VectorCopy( texY,ST[2] ); VectorAdd( ST[2],proj,ST[2] ); EmitTextureCoordinates( ST[2], f->pShader->getTexture(), f ); // compute texture matrix f->brushprimit_texdef.coords[0][2] = ST[0][3]; f->brushprimit_texdef.coords[1][2] = ST[0][4]; f->brushprimit_texdef.coords[0][0] = ST[1][3] - f->brushprimit_texdef.coords[0][2]; f->brushprimit_texdef.coords[1][0] = ST[1][4] - f->brushprimit_texdef.coords[1][2]; f->brushprimit_texdef.coords[0][1] = ST[2][3] - f->brushprimit_texdef.coords[0][2]; f->brushprimit_texdef.coords[1][1] = ST[2][4] - f->brushprimit_texdef.coords[1][2]; } // compute texture coordinates for the winding points void EmitBrushPrimitTextureCoordinates( face_t * f, Winding * w ){ Vector3 texX,texY; float x,y; // compute axis base ComputeAxisBase( f->plane.normal,texX,texY ); // in case the texcoords matrix is empty, build a default one // same behaviour as if scale[0]==0 && scale[1]==0 in old code if ( f->brushprimit_texdef.coords[0][0] == 0 && f->brushprimit_texdef.coords[1][0] == 0 && f->brushprimit_texdef.coords[0][1] == 0 && f->brushprimit_texdef.coords[1][1] == 0 ) { f->brushprimit_texdef.coords[0][0] = 1.0f; f->brushprimit_texdef.coords[1][1] = 1.0f; ConvertTexMatWithQTexture( &f->brushprimit_texdef, 0, &f->brushprimit_texdef, f->pShader->getTexture() ); } int i; for ( i = 0; i < w.numpoints; i++ ) { x = vector3_dot( w.point_at( i ),texX ); y = vector3_dot( w.point_at( i ),texY ); #ifdef DBG_BP if ( g_bp_globals.bNeedConvert ) { // check we compute the same ST as the traditional texture computation used before float S = f->brushprimit_texdef.coords[0][0] * x + f->brushprimit_texdef.coords[0][1] * y + f->brushprimit_texdef.coords[0][2]; float T = f->brushprimit_texdef.coords[1][0] * x + f->brushprimit_texdef.coords[1][1] * y + f->brushprimit_texdef.coords[1][2]; if ( fabs( S - w.point_at( i )[3] ) > 1e-2 || fabs( T - w.point_at( i )[4] ) > 1e-2 ) { if ( fabs( S - w.point_at( i )[3] ) > 1e-4 || fabs( T - w.point_at( i )[4] ) > 1e-4 ) { globalWarningStream() << "Warning : precision loss in brush -> brush primitive texture computation\n"; } else{ globalWarningStream() << "Warning : brush -> brush primitive texture computation bug detected\n"; } } } #endif w.point_at( i )[3] = f->brushprimit_texdef.coords[0][0] * x + f->brushprimit_texdef.coords[0][1] * y + f->brushprimit_texdef.coords[0][2]; w.point_at( i )[4] = f->brushprimit_texdef.coords[1][0] * x + f->brushprimit_texdef.coords[1][1] * y + f->brushprimit_texdef.coords[1][2]; } } #endif #if 0 typedef float texmat_t[2][3]; void TexMat_Scale( texmat_t texmat, float s, float t ){ texmat[0][0] *= s; texmat[0][1] *= s; texmat[0][2] *= s; texmat[1][0] *= t; texmat[1][1] *= t; texmat[1][2] *= t; } void TexMat_Assign( texmat_t texmat, const texmat_t other ){ texmat[0][0] = other[0][0]; texmat[0][1] = other[0][1]; texmat[0][2] = other[0][2]; texmat[1][0] = other[1][0]; texmat[1][1] = other[1][1]; texmat[1][2] = other[1][2]; } void ConvertTexMatWithDimensions( const texmat_t texmat1, std::size_t w1, std::size_t h1, texmat_t texmat2, std::size_t w2, std::size_t h2 ){ TexMat_Assign( texmat2, texmat1 ); TexMat_Scale( texmat2, static_cast( w1 ) / static_cast( w2 ), static_cast( h1 ) / static_cast( h2 ) ); } // convert a texture matrix between two qtexture_t // if 0 for qtexture_t, basic 2x2 texture is assumed ( straight mapping between s/t coordinates and geometric coordinates ) void ConvertTexMatWithQTexture( const float texMat1[2][3], const qtexture_t *qtex1, float texMat2[2][3], const qtexture_t *qtex2 ){ ConvertTexMatWithDimensions( texMat1, ( qtex1 ) ? qtex1->width : 2, ( qtex1 ) ? qtex1->height : 2, texMat2, ( qtex2 ) ? qtex2->width : 2, ( qtex2 ) ? qtex2->height : 2 ); } void ConvertTexMatWithQTexture( const brushprimit_texdef_t *texMat1, const qtexture_t *qtex1, brushprimit_texdef_t *texMat2, const qtexture_t *qtex2 ){ ConvertTexMatWithQTexture( texMat1->coords, qtex1, texMat2->coords, qtex2 ); } #endif // compute a fake shift scale rot representation from the texture matrix // these shift scale rot values are to be understood in the local axis base // Note: this code looks similar to Texdef_fromTransform, but the algorithm is slightly different. void TexMatToFakeTexCoords( const brushprimit_texdef_t& bp_texdef, texdef_t& texdef ){ #if 0 texdef.scale[0] = static_cast( 1.0 / vector2_length( Vector2( bp_texdef.coords[0][0], bp_texdef.coords[1][0] ) ) ); texdef.scale[1] = static_cast( 1.0 / vector2_length( Vector2( bp_texdef.coords[0][1], bp_texdef.coords[1][1] ) ) ); texdef.rotate = -static_cast( radians_to_degrees( arctangent_yx( bp_texdef.coords[1][0], bp_texdef.coords[0][0] ) ) ); texdef.shift[0] = -bp_texdef.coords[0][2]; texdef.shift[1] = bp_texdef.coords[1][2]; // determine whether or not an axis is flipped using a 2d cross-product double cross = vector2_cross( Vector2( bp_texdef.coords[0][0], bp_texdef.coords[0][1] ), Vector2( bp_texdef.coords[1][0], bp_texdef.coords[1][1] ) ); if ( cross < 0 ) { // This is a bit of a compromise when using BPs--since we don't know *which* axis was flipped, // we pick one (rather arbitrarily) using the following convention: If the X-axis is between // 0 and 180, we assume it's the Y-axis that flipped, otherwise we assume it's the X-axis and // subtract out 180 degrees to compensate. if ( texdef.rotate >= 180.0f ) { texdef.rotate -= 180.0f; texdef.scale[0] = -texdef.scale[0]; } else { texdef.scale[1] = -texdef.scale[1]; } } #else texdef.scale[0] = static_cast( 1.0 / vector2_length( Vector2( bp_texdef.coords[0][0], bp_texdef.coords[0][1] ) ) ); texdef.scale[1] = static_cast( 1.0 / vector2_length( Vector2( bp_texdef.coords[1][0], bp_texdef.coords[1][1] ) ) ); if( bp_texdef.coords[0][0] < 0 ){ texdef.scale[0] = -texdef.scale[0]; } if( bp_texdef.coords[1][1] < 0 ){ texdef.scale[1] = -texdef.scale[1]; } #if 1 texdef.rotate = static_cast( radians_to_degrees( acos( vector2_normalised( Vector2( bp_texdef.coords[0][0], bp_texdef.coords[0][1] ) )[0] ) ) ); if( bp_texdef.coords[0][1] > 0 ){ texdef.rotate = -texdef.rotate; } #else texdef.rotate = static_cast( radians_to_degrees( arctangent_yx( bp_texdef.coords[0][1], bp_texdef.coords[0][0] ) ) ); #endif texdef.shift[0] = -bp_texdef.coords[0][2]; texdef.shift[1] = bp_texdef.coords[1][2]; #endif } // compute back the texture matrix from fake shift scale rot void FakeTexCoordsToTexMat( const texdef_t& texdef, brushprimit_texdef_t& bp_texdef ){ double r = degrees_to_radians( -texdef.rotate ); double c = cos( r ); double s = sin( r ); double x = 1.0f / texdef.scale[0]; double y = 1.0f / texdef.scale[1]; bp_texdef.coords[0][0] = static_cast( x * c ); bp_texdef.coords[1][0] = static_cast( x * s ); bp_texdef.coords[0][1] = static_cast( y * -s ); bp_texdef.coords[1][1] = static_cast( y * c ); bp_texdef.coords[0][2] = -texdef.shift[0]; bp_texdef.coords[1][2] = texdef.shift[1]; // globalOutputStream() << "[ " << bp_texdef.coords[0][0] << " " << bp_texdef.coords[0][1] << " ][ " << bp_texdef.coords[1][0] << " " << bp_texdef.coords[1][1] << " ]\n"; } #if 0 // texture locking (brush primit) // used for texture locking // will move the texture according to a geometric vector void ShiftTextureGeometric_BrushPrimit( face_t *f, Vector3& delta ){ Vector3 texS,texT; float tx,ty; Vector3 M[3]; // columns of the matrix .. easier that way float det; Vector3 D[2]; // compute plane axis base ( doesn't change with translation ) ComputeAxisBase( f->plane.normal, texS, texT ); // compute translation vector in plane axis base tx = vector3_dot( delta, texS ); ty = vector3_dot( delta, texT ); // fill the data vectors M[0][0] = tx; M[0][1] = 1.0f + tx; M[0][2] = tx; M[1][0] = ty; M[1][1] = ty; M[1][2] = 1.0f + ty; M[2][0] = 1.0f; M[2][1] = 1.0f; M[2][2] = 1.0f; D[0][0] = f->brushprimit_texdef.coords[0][2]; D[0][1] = f->brushprimit_texdef.coords[0][0] + f->brushprimit_texdef.coords[0][2]; D[0][2] = f->brushprimit_texdef.coords[0][1] + f->brushprimit_texdef.coords[0][2]; D[1][0] = f->brushprimit_texdef.coords[1][2]; D[1][1] = f->brushprimit_texdef.coords[1][0] + f->brushprimit_texdef.coords[1][2]; D[1][2] = f->brushprimit_texdef.coords[1][1] + f->brushprimit_texdef.coords[1][2]; // solve det = SarrusDet( M[0], M[1], M[2] ); f->brushprimit_texdef.coords[0][0] = SarrusDet( D[0], M[1], M[2] ) / det; f->brushprimit_texdef.coords[0][1] = SarrusDet( M[0], D[0], M[2] ) / det; f->brushprimit_texdef.coords[0][2] = SarrusDet( M[0], M[1], D[0] ) / det; f->brushprimit_texdef.coords[1][0] = SarrusDet( D[1], M[1], M[2] ) / det; f->brushprimit_texdef.coords[1][1] = SarrusDet( M[0], D[1], M[2] ) / det; f->brushprimit_texdef.coords[1][2] = SarrusDet( M[0], M[1], D[1] ) / det; } // shift a texture (texture adjustments) along it's current texture axes // x and y are geometric values, which we must compute as ST increments // this depends on the texture size and the pixel/texel ratio void ShiftTextureRelative_BrushPrimit( face_t *f, float x, float y ){ float s,t; // as a ratio against texture size // the scale of the texture is not relevant here (we work directly on a transformation from the base vectors) s = ( x * 2.0 ) / (float)f->pShader->getTexture().width; t = ( y * 2.0 ) / (float)f->pShader->getTexture().height; f->brushprimit_texdef.coords[0][2] -= s; f->brushprimit_texdef.coords[1][2] -= t; } #endif #if 0 // TTimo: FIXME: I don't like that, it feels broken // (and it's likely that it's not used anymore) // best fitted 2D vector is x.X+y.Y void ComputeBest2DVector( Vector3& v, Vector3& X, Vector3& Y, int &x, int &y ){ double sx,sy; sx = vector3_dot( v, X ); sy = vector3_dot( v, Y ); if ( fabs( sy ) > fabs( sx ) ) { x = 0; if ( sy > 0.0 ) { y = 1; } else{ y = -1; } } else { y = 0; if ( sx > 0.0 ) { x = 1; } else{ x = -1; } } } #endif #if 0 // texdef conversion void BrushPrimitFaceToFace( face_t *face ){ // we have parsed brush primitives and need conversion back to standard format // NOTE: converting back is a quick hack, there's some information lost and we can't do anything about it // FIXME: if we normalize the texture matrix to a standard 2x2 size, we end up with wrong scaling // I tried various tweaks, no luck .. seems shifting is lost brushprimit_texdef_t aux; ConvertTexMatWithQTexture( &face->brushprimit_texdef, face->pShader->getTexture(), &aux, 0 ); TexMatToFakeTexCoords( aux.coords, face->texdef.shift, &face->texdef.rotate, face->texdef.scale ); face->texdef.scale[0] /= 2.0; face->texdef.scale[1] /= 2.0; } #endif #if 0 // texture locking (brush primit) // TEXTURE LOCKING ----------------------------------------------------------------------------------------------------- // (Relevant to the editor only?) // internally used for texture locking on rotation and flipping // the general algorithm is the same for both lockings, it's only the geometric transformation part that changes // so I wanted to keep it in a single function // if there are more linear transformations that need the locking, going to a C++ or code pointer solution would be best // (but right now I want to keep brush_primit.cpp strictly C) bool txlock_bRotation; // rotation locking params int txl_nAxis; float txl_fDeg; Vector3 txl_vOrigin; // flip locking params Vector3 txl_matrix[3]; Vector3 txl_origin; void TextureLockTransformation_BrushPrimit( face_t *f ){ Vector3 Orig,texS,texT; // axis base of initial plane // used by transformation algo Vector3 temp; int j; Vector3 vRotate; // rotation vector Vector3 rOrig,rvecS,rvecT; // geometric transformation of (0,0) (1,0) (0,1) { initial plane axis base } Vector3 rNormal,rtexS,rtexT; // axis base for the transformed plane Vector3 lOrig,lvecS,lvecT; // [2] are not used ( but useful for debugging ) Vector3 M[3]; float det; Vector3 D[2]; // compute plane axis base ComputeAxisBase( f->plane.normal, texS, texT ); VectorSet( Orig, 0.0f, 0.0f, 0.0f ); // compute coordinates of (0,0) (1,0) (0,1) ( expressed in initial plane axis base ) after transformation // (0,0) (1,0) (0,1) ( expressed in initial plane axis base ) <-> (0,0,0) texS texT ( expressed world axis base ) // input: Orig, texS, texT (and the global locking params) // output: rOrig, rvecS, rvecT, rNormal if ( txlock_bRotation ) { // rotation vector VectorSet( vRotate, 0.0f, 0.0f, 0.0f ); vRotate[txl_nAxis] = txl_fDeg; VectorRotateOrigin( Orig, vRotate, txl_vOrigin, rOrig ); VectorRotateOrigin( texS, vRotate, txl_vOrigin, rvecS ); VectorRotateOrigin( texT, vRotate, txl_vOrigin, rvecT ); // compute normal of plane after rotation VectorRotate( f->plane.normal, vRotate, rNormal ); } else { for ( j = 0; j < 3; j++ ) rOrig[j] = vector3_dot( vector3_subtracted( Orig, txl_origin ), txl_matrix[j] ) + txl_origin[j]; for ( j = 0; j < 3; j++ ) rvecS[j] = vector3_dot( vector3_subtracted( texS, txl_origin ), txl_matrix[j] ) + txl_origin[j]; for ( j = 0; j < 3; j++ ) rvecT[j] = vector3_dot( vector3_subtracted( texT, txl_origin ), txl_matrix[j] ) + txl_origin[j]; // we also need the axis base of the target plane, apply the transformation matrix to the normal too.. for ( j = 0; j < 3; j++ ) rNormal[j] = vector3_dot( f->plane.normal, txl_matrix[j] ); } // compute rotated plane axis base ComputeAxisBase( rNormal, rtexS, rtexT ); // compute S/T coordinates of the three points in rotated axis base ( in M matrix ) lOrig[0] = vector3_dot( rOrig, rtexS ); lOrig[1] = vector3_dot( rOrig, rtexT ); lvecS[0] = vector3_dot( rvecS, rtexS ); lvecS[1] = vector3_dot( rvecS, rtexT ); lvecT[0] = vector3_dot( rvecT, rtexS ); lvecT[1] = vector3_dot( rvecT, rtexT ); M[0][0] = lOrig[0]; M[1][0] = lOrig[1]; M[2][0] = 1.0f; M[0][1] = lvecS[0]; M[1][1] = lvecS[1]; M[2][1] = 1.0f; M[0][2] = lvecT[0]; M[1][2] = lvecT[1]; M[2][2] = 1.0f; // fill data vector D[0][0] = f->brushprimit_texdef.coords[0][2]; D[0][1] = f->brushprimit_texdef.coords[0][0] + f->brushprimit_texdef.coords[0][2]; D[0][2] = f->brushprimit_texdef.coords[0][1] + f->brushprimit_texdef.coords[0][2]; D[1][0] = f->brushprimit_texdef.coords[1][2]; D[1][1] = f->brushprimit_texdef.coords[1][0] + f->brushprimit_texdef.coords[1][2]; D[1][2] = f->brushprimit_texdef.coords[1][1] + f->brushprimit_texdef.coords[1][2]; // solve det = SarrusDet( M[0], M[1], M[2] ); f->brushprimit_texdef.coords[0][0] = SarrusDet( D[0], M[1], M[2] ) / det; f->brushprimit_texdef.coords[0][1] = SarrusDet( M[0], D[0], M[2] ) / det; f->brushprimit_texdef.coords[0][2] = SarrusDet( M[0], M[1], D[0] ) / det; f->brushprimit_texdef.coords[1][0] = SarrusDet( D[1], M[1], M[2] ) / det; f->brushprimit_texdef.coords[1][1] = SarrusDet( M[0], D[1], M[2] ) / det; f->brushprimit_texdef.coords[1][2] = SarrusDet( M[0], M[1], D[1] ) / det; } // texture locking // called before the points on the face are actually rotated void RotateFaceTexture_BrushPrimit( face_t *f, int nAxis, float fDeg, Vector3& vOrigin ){ // this is a placeholder to call the general texture locking algorithm txlock_bRotation = true; txl_nAxis = nAxis; txl_fDeg = fDeg; VectorCopy( vOrigin, txl_vOrigin ); TextureLockTransformation_BrushPrimit( f ); } // compute the new brush primit texture matrix for a transformation matrix and a flip order flag (change plane orientation) // this matches the select_matrix algo used in select.cpp // this needs to be called on the face BEFORE any geometric transformation // it will compute the texture matrix that will represent the same texture on the face after the geometric transformation is done void ApplyMatrix_BrushPrimit( face_t *f, Vector3 matrix[3], Vector3& origin ){ // this is a placeholder to call the general texture locking algorithm txlock_bRotation = false; VectorCopy( matrix[0], txl_matrix[0] ); VectorCopy( matrix[1], txl_matrix[1] ); VectorCopy( matrix[2], txl_matrix[2] ); VectorCopy( origin, txl_origin ); TextureLockTransformation_BrushPrimit( f ); } #endif #if 0 // low level functions .. put in mathlib? #define BPMatCopy( a,b ) {b[0][0] = a[0][0]; b[0][1] = a[0][1]; b[0][2] = a[0][2]; b[1][0] = a[1][0]; b[1][1] = a[1][1]; b[1][2] = a[1][2]; } // apply a scale transformation to the BP matrix #define BPMatScale( m,sS,sT ) {m[0][0] *= sS; m[1][0] *= sS; m[0][1] *= sT; m[1][1] *= sT; } // apply a translation transformation to a BP matrix #define BPMatTranslate( m,s,t ) {m[0][2] += m[0][0] * s + m[0][1] * t; m[1][2] += m[1][0] * s + m[1][1] * t; } // 2D homogeneous matrix product C = A*B void BPMatMul( float A[2][3], float B[2][3], float C[2][3] ); // apply a rotation (degrees) void BPMatRotate( float A[2][3], float theta ); // don't do C==A! void BPMatMul( float A[2][3], float B[2][3], float C[2][3] ){ C[0][0] = A[0][0] * B[0][0] + A[0][1] * B[1][0]; C[1][0] = A[1][0] * B[0][0] + A[1][1] * B[1][0]; C[0][1] = A[0][0] * B[0][1] + A[0][1] * B[1][1]; C[1][1] = A[1][0] * B[0][1] + A[1][1] * B[1][1]; C[0][2] = A[0][0] * B[0][2] + A[0][1] * B[1][2] + A[0][2]; C[1][2] = A[1][0] * B[0][2] + A[1][1] * B[1][2] + A[1][2]; } void BPMatDump( float A[2][3] ){ globalOutputStream() << "" << A[0][0] << " " << A[0][1] << " " << A[0][2] << "\n" << A[1][0] << " " << A[1][2] << " " << A[1][2] << "\n0 0 1\n"; } void BPMatRotate( float A[2][3], float theta ){ float m[2][3]; float aux[2][3]; memset( &m, 0, sizeof( float ) * 6 ); m[0][0] = static_cast( cos( degrees_to_radians( theta ) ) ); m[0][1] = static_cast( -sin( degrees_to_radians( theta ) ) ); m[1][0] = -m[0][1]; m[1][1] = m[0][0]; BPMatMul( A, m, aux ); BPMatCopy( aux,A ); } #endif #if 0 // camera-relative texture shift // get the relative axes of the current texturing void BrushPrimit_GetRelativeAxes( face_t *f, Vector3& vecS, Vector3& vecT ){ float vS[2],vT[2]; // first we compute them as expressed in plane axis base // BP matrix has coordinates of plane axis base expressed in geometric axis base // so we use the line vectors vS[0] = f->brushprimit_texdef.coords[0][0]; vS[1] = f->brushprimit_texdef.coords[0][1]; vT[0] = f->brushprimit_texdef.coords[1][0]; vT[1] = f->brushprimit_texdef.coords[1][1]; // now compute those vectors in geometric space Vector3 texS, texT; // axis base of the plane (geometric) ComputeAxisBase( f->plane.normal, texS, texT ); // vecS[] = vS[0].texS[] + vS[1].texT[] // vecT[] = vT[0].texS[] + vT[1].texT[] vecS[0] = vS[0] * texS[0] + vS[1] * texT[0]; vecS[1] = vS[0] * texS[1] + vS[1] * texT[1]; vecS[2] = vS[0] * texS[2] + vS[1] * texT[2]; vecT[0] = vT[0] * texS[0] + vT[1] * texT[0]; vecT[1] = vT[0] * texS[1] + vT[1] * texT[1]; vecT[2] = vT[0] * texS[2] + vT[1] * texT[2]; } // brush primitive texture adjustments, use the camera view to map adjustments // ShiftTextureRelative_BrushPrimit ( s , t ) will shift relative to the texture void ShiftTextureRelative_Camera( face_t *f, int x, int y ){ Vector3 vecS, vecT; float XY[2]; // the values we are going to send for translation float sgn[2]; // +1 or -1 int axis[2]; CamWnd* pCam; // get the two relative texture axes for the current texturing BrushPrimit_GetRelativeAxes( f, vecS, vecT ); // center point of the face, project it on the camera space Vector3 C; VectorClear( C ); int i; for ( i = 0; i < f->face_winding->numpoints; i++ ) { VectorAdd( C,f->face_winding->point_at( i ),C ); } VectorScale( C,1.0 / f->face_winding->numpoints,C ); pCam = g_pParentWnd->GetCamWnd(); pCam->MatchViewAxes( C, vecS, axis[0], sgn[0] ); pCam->MatchViewAxes( C, vecT, axis[1], sgn[1] ); // this happens when the two directions can't be mapped on two different directions on the screen // then the move will occur against a single axis // (i.e. the user is not positioned well enough to send understandable shift commands) // NOTE: in most cases this warning is not very relevant because the user would use one of the two axes // for which the solution is easy (the other one being unknown) // so this warning could be removed if ( axis[0] == axis[1] ) { globalWarningStream() << "Warning: degenerate in ShiftTextureRelative_Camera\n"; } // compute the X Y geometric increments // those geometric increments will be applied along the texture axes (the ones we computed above) XY[0] = 0; XY[1] = 0; if ( x != 0 ) { // moving right/left XY[axis[0]] += sgn[0] * x; } if ( y != 0 ) { XY[axis[1]] += sgn[1] * y; } // we worked out a move along vecS vecT, and we now it's geometric amplitude // apply it ShiftTextureRelative_BrushPrimit( f, XY[0], XY[1] ); } #endif #include "math/quaternion.h" void Valve220_rotate( TextureProjection& projection, float angle ){ // globalOutputStream() << angle << " angle\n"; // globalOutputStream() << projection.m_texdef.rotate << " projection.m_texdef.rotate\n"; const Matrix4 rotmat = matrix4_rotation_for_axisangle( vector3_cross( projection.m_basis_s, projection.m_basis_t ), degrees_to_radians( -angle ) ); matrix4_transform_direction( rotmat, projection.m_basis_s ); matrix4_transform_direction( rotmat, projection.m_basis_t ); vector3_normalise( projection.m_basis_s ); vector3_normalise( projection.m_basis_t ); // globalOutputStream() << projection.m_basis_s << " projection.m_basis_s\n"; // globalOutputStream() << projection.m_basis_t << " projection.m_basis_t\n"; } void BPTexdef_Assign( brushprimit_texdef_t& bp_td, const brushprimit_texdef_t& bp_other ){ bp_td = bp_other; } void BPTexdef_Shift( brushprimit_texdef_t& bp_td, float s, float t ){ // shift a texture (texture adjustments) along it's current texture axes // x and y are geometric values, which we must compute as ST increments // this depends on the texture size and the pixel/texel ratio // as a ratio against texture size // the scale of the texture is not relevant here (we work directly on a transformation from the base vectors) bp_td.coords[0][2] -= s; bp_td.coords[1][2] += t; } void BPTexdef_Scale( brushprimit_texdef_t& bp_td, float s, float t ){ #if 0 // apply same scale as the spinner button of the surface inspector texdef_t texdef; // compute fake shift scale rot TexMatToFakeTexCoords( bp_td, texdef ); // update texdef.scale[0] += s; texdef.scale[1] += t; // compute new normalized texture matrix FakeTexCoordsToTexMat( texdef, bp_td ); #else texdef_t texdef; TexMatToFakeTexCoords( bp_td, texdef ); float scaleS = -1.f; float scaleT = -1.f; if( fabs( texdef.scale[0] + s ) > 1e-5 ){ scaleS = texdef.scale[0] / ( texdef.scale[0] + s ); } if( fabs( texdef.scale[1] + t ) > 1e-5 ){ scaleT = texdef.scale[1] / ( texdef.scale[1] + t ); } bp_td.coords[0][0] *= scaleS; bp_td.coords[0][1] *= scaleS; bp_td.coords[1][0] *= scaleT; bp_td.coords[1][1] *= scaleT; #endif } void BPTexdef_Rotate( brushprimit_texdef_t& bp_td, float angle ){ #if 0 // apply same scale as the spinner button of the surface inspector texdef_t texdef; // compute fake shift scale rot TexMatToFakeTexCoords( bp_td, texdef ); // update texdef.rotate += angle; // compute new normalized texture matrix FakeTexCoordsToTexMat( texdef, bp_td ); #else const float x = bp_td.coords[0][0]; const float y = bp_td.coords[0][1]; const float x1 = bp_td.coords[1][0]; const float y1 = bp_td.coords[1][1]; const float s = sin( degrees_to_radians( -angle ) ); const float c = cos( degrees_to_radians( -angle ) ); bp_td.coords[0][0] = x * c - y * s; bp_td.coords[0][1] = x * s + y * c; bp_td.coords[1][0] = x1 * c - y1 * s; bp_td.coords[1][1] = x1 * s + y1 * c; #endif } void BPTexdef_Assign( brushprimit_texdef_t& bp_td, const float* hShift, const float* vShift, const float* hScale, const float* vScale, const float* rotation ){ texdef_t texdef; TexMatToFakeTexCoords( bp_td, texdef ); if( hShift ){ bp_td.coords[0][2] = -*hShift; } if( vShift ){ bp_td.coords[1][2] = *vShift; } if( hScale ){ float scaleS = -1.f; if( fabs( *hScale ) > 1e-5 ){ scaleS = texdef.scale[0] / *hScale; } bp_td.coords[0][0] *= scaleS; bp_td.coords[0][1] *= scaleS; } if( vScale ){ float scaleT = -1.f; if( fabs( *vScale ) > 1e-5 ){ scaleT = texdef.scale[1] / *vScale; } bp_td.coords[1][0] *= scaleT; bp_td.coords[1][1] *= scaleT; } if( rotation ){ BPTexdef_Rotate( bp_td, *rotation - texdef.rotate ); } } #if 0 void BPTexdef_Construct( brushprimit_texdef_t& bp_td, std::size_t width, std::size_t height ){ bp_td.coords[0][0] = 1.0f; bp_td.coords[1][1] = 1.0f; ConvertTexMatWithDimensions( bp_td.coords, 2, 2, bp_td.coords, width, height ); } #endif void Texdef_Assign( TextureProjection& projection, const TextureProjection& other, bool setBasis /*= true*/ ){ if ( g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_BRUSHPRIMITIVES ) { BPTexdef_Assign( projection.m_brushprimit_texdef, other.m_brushprimit_texdef ); } else { Texdef_Assign( projection.m_texdef, other.m_texdef ); if ( g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_VALVE && setBasis ) { projection.m_basis_s = other.m_basis_s; projection.m_basis_t = other.m_basis_t; } } } void Texdef_Assign( TextureProjection& projection, const float* hShift, const float* vShift, const float* hScale, const float* vScale, const float* rotation ){ if ( g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_BRUSHPRIMITIVES ) { BPTexdef_Assign( projection.m_brushprimit_texdef, hShift, vShift, hScale, vScale, rotation ); } else { if ( rotation && g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_VALVE ) { Valve220_rotate( projection, *rotation - projection.m_texdef.rotate ); } Texdef_Assign( projection.m_texdef, hShift, vShift, hScale, vScale, rotation ); } } void Texdef_Shift( TextureProjection& projection, float s, float t ){ if ( g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_BRUSHPRIMITIVES ) { BPTexdef_Shift( projection.m_brushprimit_texdef, s, t ); } else { Texdef_Shift( projection.m_texdef, s, t ); } } void Texdef_Scale( TextureProjection& projection, float s, float t ){ if ( g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_BRUSHPRIMITIVES ) { BPTexdef_Scale( projection.m_brushprimit_texdef, s, t ); } else { Texdef_Scale( projection.m_texdef, s, t ); } } void Texdef_Rotate( TextureProjection& projection, float angle ){ if ( g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_BRUSHPRIMITIVES ) { BPTexdef_Rotate( projection.m_brushprimit_texdef, angle ); } else { if ( g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_VALVE ) { Valve220_rotate( projection, angle ); } Texdef_Rotate( projection.m_texdef, angle ); } } void Texdef_FitTexture( TextureProjection& projection, std::size_t width, std::size_t height, const Vector3& normal, const Winding& w, float s_repeat, float t_repeat, bool only_dimension ){ if ( w.numpoints < 3 ) { return; } Matrix4 st2tex; Texdef_toTransform( projection, (float)width, (float)height, st2tex ); // the current texture transform Matrix4 local2tex = st2tex; { Matrix4 xyz2st; Texdef_basisForNormal( projection, normal, xyz2st ); matrix4_multiply_by_matrix4( local2tex, xyz2st ); } // the bounds of the current texture transform AABB bounds; for ( Winding::const_iterator i = w.begin(); i != w.end(); ++i ) { Vector3 texcoord = matrix4_transformed_point( local2tex, ( *i ).vertex ); aabb_extend_by_point_safe( bounds, texcoord ); } bounds.origin.z() = 0; bounds.extents.z() = 1; // the bounds of a perfectly fitted texture transform AABB perfect; if( t_repeat == 0 && s_repeat == 0 ){ //bad user's input t_repeat = s_repeat = 1; perfect.origin = Vector3( s_repeat * 0.5, t_repeat * 0.5, 0 ); perfect.extents = Vector3( s_repeat * 0.5, t_repeat * 0.5, 1 ); } if( t_repeat == 0 ){ if( only_dimension ){ //fit width, keep height perfect.origin = Vector3( s_repeat * 0.5, bounds.origin.y(), 0 ); perfect.extents = Vector3( s_repeat * 0.5, bounds.extents.y(), 1 ); } else{ //fit width perfect.origin = Vector3( s_repeat * 0.5, s_repeat * 0.5 * bounds.extents.y() / bounds.extents.x(), 0 ); perfect.extents = Vector3( s_repeat * 0.5, s_repeat * 0.5 * bounds.extents.y() / bounds.extents.x(), 1 ); } } else if( s_repeat == 0 ){ if( only_dimension ){ //fit height, keep width perfect.origin = Vector3( bounds.origin.x(), t_repeat * 0.5, 0 ); perfect.extents = Vector3( bounds.extents.x(), t_repeat * 0.5, 1 ); } else{ //fit height perfect.origin = Vector3( t_repeat * 0.5 * bounds.extents.x() / bounds.extents.y(), t_repeat * 0.5, 0 ); perfect.extents = Vector3( t_repeat * 0.5 * bounds.extents.x() / bounds.extents.y(), t_repeat * 0.5, 1 ); } } else{ perfect.origin = Vector3( s_repeat * 0.5, t_repeat * 0.5, 0 ); perfect.extents = Vector3( s_repeat * 0.5, t_repeat * 0.5, 1 ); } // the difference between the current texture transform and the perfectly fitted transform Matrix4 matrix( matrix4_translation_for_vec3( bounds.origin - perfect.origin ) ); matrix4_pivoted_scale_by_vec3( matrix, bounds.extents / perfect.extents, perfect.origin ); matrix4_affine_invert( matrix ); // apply the difference to the current texture transform matrix4_premultiply_by_matrix4( st2tex, matrix ); Texdef_fromTransform( projection, (float)width, (float)height, st2tex ); //Texdef_normalise( projection, (float)width, (float)height ); if ( g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_BRUSHPRIMITIVES ) BPTexdef_normalise( projection.m_brushprimit_texdef, 1.f, 1.f ); /* scaleApplied is! */ else Texdef_normalise( projection.m_texdef, (float)width, (float)height ); } float Texdef_getDefaultTextureScale(){ return g_texdef_default_scale; } void TexDef_Construct_Default( TextureProjection& projection ){ projection.m_texdef.scale[0] = Texdef_getDefaultTextureScale(); projection.m_texdef.scale[1] = Texdef_getDefaultTextureScale(); if ( g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_BRUSHPRIMITIVES ) { FakeTexCoordsToTexMat( projection.m_texdef, projection.m_brushprimit_texdef ); } } void ShiftScaleRotate_fromFace( texdef_t& shiftScaleRotate, const TextureProjection& projection ){ if ( g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_BRUSHPRIMITIVES ) { TexMatToFakeTexCoords( projection.m_brushprimit_texdef, shiftScaleRotate ); } else { shiftScaleRotate = projection.m_texdef; } } void ShiftScaleRotate_toFace( const texdef_t& shiftScaleRotate, TextureProjection& projection ){ if ( g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_BRUSHPRIMITIVES ) { // compute texture matrix // the matrix returned must be understood as a qtexture_t with width=2 height=2 FakeTexCoordsToTexMat( shiftScaleRotate, projection.m_brushprimit_texdef ); } else { projection.m_texdef = shiftScaleRotate; } } inline void printAP( const TextureProjection& projection ){ globalOutputStream() << "AP: scale( " << projection.m_texdef.scale[0] << " " << projection.m_texdef.scale[1] << " ) shift( " << projection.m_texdef.shift[0] << " " << projection.m_texdef.shift[1] << " ) rotate: " << projection.m_texdef.rotate << "\n"; } inline void printBP( const TextureProjection& projection ){ globalOutputStream() << "BP: ( " << projection.m_brushprimit_texdef.coords[0][0] << " " << projection.m_brushprimit_texdef.coords[0][1] << " " << projection.m_brushprimit_texdef.coords[0][2] << " ) ( " << projection.m_brushprimit_texdef.coords[1][0] << " " << projection.m_brushprimit_texdef.coords[1][1] << " " << projection.m_brushprimit_texdef.coords[1][2] << " )\n"; } inline void print220( const TextureProjection& projection ){ globalOutputStream() << "220: projection.m_basis_s: " << projection.m_basis_s << " projection.m_basis_t: " << projection.m_basis_t << "\n"; printAP( projection ); } #if 0 inline void print_vector3( const Vector3& v ){ globalOutputStream() << "( " << v.x() << " " << v.y() << " " << v.z() << " )\n"; } inline void print_3x3( const Matrix4& m ){ globalOutputStream() << "( " << m.xx() << " " << m.xy() << " " << m.xz() << " ) " << "( " << m.yx() << " " << m.yy() << " " << m.yz() << " ) " << "( " << m.zx() << " " << m.zy() << " " << m.zz() << " )\n"; } inline Matrix4 matrix4_rotation_for_vector3( const Vector3& x, const Vector3& y, const Vector3& z ){ return Matrix4( x.x(), x.y(), x.z(), 0, y.x(), y.y(), y.z(), 0, z.x(), z.y(), z.z(), 0, 0, 0, 0, 1 ); } inline Matrix4 matrix4_swap_axes( const Vector3& from, const Vector3& to ){ if ( from.x() != 0 && to.y() != 0 ) { return matrix4_rotation_for_vector3( to, from, g_vector3_axis_z ); } if ( from.x() != 0 && to.z() != 0 ) { return matrix4_rotation_for_vector3( to, g_vector3_axis_y, from ); } if ( from.y() != 0 && to.z() != 0 ) { return matrix4_rotation_for_vector3( g_vector3_axis_x, to, from ); } if ( from.y() != 0 && to.x() != 0 ) { return matrix4_rotation_for_vector3( from, to, g_vector3_axis_z ); } if ( from.z() != 0 && to.x() != 0 ) { return matrix4_rotation_for_vector3( from, g_vector3_axis_y, to ); } if ( from.z() != 0 && to.y() != 0 ) { return matrix4_rotation_for_vector3( g_vector3_axis_x, from, to ); } ERROR_MESSAGE( "unhandled axis swap case" ); return g_matrix4_identity; } inline Matrix4 matrix4_reflection_for_plane( const Plane3& plane ){ return Matrix4( static_cast( 1 - ( 2 * plane.a * plane.a ) ), static_cast( -2 * plane.a * plane.b ), static_cast( -2 * plane.a * plane.c ), 0, static_cast( -2 * plane.b * plane.a ), static_cast( 1 - ( 2 * plane.b * plane.b ) ), static_cast( -2 * plane.b * plane.c ), 0, static_cast( -2 * plane.c * plane.a ), static_cast( -2 * plane.c * plane.b ), static_cast( 1 - ( 2 * plane.c * plane.c ) ), 0, static_cast( -2 * plane.d * plane.a ), static_cast( -2 * plane.d * plane.b ), static_cast( -2 * plane.d * plane.c ), 1 ); } inline Matrix4 matrix4_reflection_for_plane45( const Plane3& plane, const Vector3& from, const Vector3& to ){ Vector3 first = from; Vector3 second = to; if ( ( vector3_dot( from, plane.normal() ) > 0 ) == ( vector3_dot( to, plane.normal() ) > 0 ) ) { first = vector3_negated( first ); second = vector3_negated( second ); } #if 0 globalOutputStream() << "normal: "; print_vector3( plane.normal() ); globalOutputStream() << "from: "; print_vector3( first ); globalOutputStream() << "to: "; print_vector3( second ); #endif Matrix4 swap = matrix4_swap_axes( first, second ); //Matrix4 tmp = matrix4_reflection_for_plane( plane ); swap.tx() = -static_cast( -2 * plane.a * plane.d ); swap.ty() = -static_cast( -2 * plane.b * plane.d ); swap.tz() = -static_cast( -2 * plane.c * plane.d ); return swap; } void Texdef_transformLocked_original( TextureProjection& projection, std::size_t width, std::size_t height, const Plane3& plane, const Matrix4& identity2transformed, const Vector3 centroid ){ // globalOutputStream() << "\t\t----------------------\n"; // printAP( projection ); // printBP( projection ); // globalOutputStream() << "width:" << width << " height" << height << "\n"; //globalOutputStream() << "identity2transformed: " << identity2transformed << "\n"; //globalOutputStream() << "plane.normal(): " << plane.normal() << "\n"; #if 0 const Vector3 normalTransformed( matrix4_transformed_direction( identity2transformed, plane.normal() ) ); #else //preserves scale in BP while scaling, but not shift //fixes QNAN const Matrix4 maa( matrix4_for_normal_transform( identity2transformed ) ); const Vector3 normalTransformed( vector3_normalised( matrix4_transformed_direction( maa, plane.normal() ) ) ); #endif //globalOutputStream() << "normalTransformed: " << normalTransformed << "\n"; // identity: identity space // transformed: transformation // stIdentity: base st projection space before transformation // stTransformed: base st projection space after transformation // stOriginal: original texdef space // stTransformed2stOriginal = stTransformed -> transformed -> identity -> stIdentity -> stOriginal Matrix4 identity2stIdentity; Texdef_basisForNormal( projection, plane.normal(), identity2stIdentity ); //globalOutputStream() << "identity2stIdentity: " << identity2stIdentity << "\n"; if ( g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_VALVE ) { matrix4_transform_direction( maa, projection.m_basis_s ); matrix4_transform_direction( maa, projection.m_basis_t ); } Matrix4 transformed2stTransformed; Texdef_basisForNormal( projection, normalTransformed, transformed2stTransformed ); // globalOutputStream() << "transformed2stTransformed: " << transformed2stTransformed << "\n"; Matrix4 stTransformed2identity( matrix4_affine_inverse( matrix4_multiplied_by_matrix4( transformed2stTransformed, identity2transformed ) ) ); // globalOutputStream() << "stTransformed2identity: " << stTransformed2identity << "\n"; Vector3 originalProjectionAxis( vector4_to_vector3( matrix4_affine_inverse( identity2stIdentity ).z() ) ); Vector3 transformedProjectionAxis( vector4_to_vector3( stTransformed2identity.z() ) ); Matrix4 stIdentity2stOriginal; Texdef_toTransform( projection, (float)width, (float)height, stIdentity2stOriginal ); // globalOutputStream() << "stIdentity2stOriginal: " << stIdentity2stOriginal << "\n"; Matrix4 identity2stOriginal( matrix4_multiplied_by_matrix4( stIdentity2stOriginal, identity2stIdentity ) ); // globalOutputStream() << "identity2stOriginal: " << identity2stOriginal << "\n"; //globalOutputStream() << "originalProj: " << originalProjectionAxis << "\n"; //globalOutputStream() << "transformedProj: " << transformedProjectionAxis << "\n"; double dot = vector3_dot( originalProjectionAxis, transformedProjectionAxis ); //globalOutputStream() << "dot: " << dot << "\n"; if ( dot == 0 ) { // The projection axis chosen for the transformed normal is at 90 degrees // to the transformed projection axis chosen for the original normal. // This happens when the projection axis is ambiguous - e.g. for the plane // 'X == Y' the projection axis could be either X or Y. //globalOutputStream() << "flipped\n"; #if 0 globalOutputStream() << "projection off by 90\n"; globalOutputStream() << "normal: "; print_vector3( plane.normal() ); globalOutputStream() << "original projection: "; print_vector3( originalProjectionAxis ); globalOutputStream() << "transformed projection: "; print_vector3( transformedProjectionAxis ); #endif Matrix4 identityCorrected = matrix4_reflection_for_plane45( plane, originalProjectionAxis, transformedProjectionAxis ); identity2stOriginal = matrix4_multiplied_by_matrix4( identity2stOriginal, identityCorrected ); } else if( dot != dot ){ //catch QNAN: happens on scaling cuboid on Z and sometimes on rotating (in bp mode) //and in making seamless to self or parallel return; } Matrix4 stTransformed2stOriginal = matrix4_multiplied_by_matrix4( identity2stOriginal, stTransformed2identity ); // globalOutputStream() << "stTransformed2stOriginal: " << stTransformed2stOriginal << "\n"; Texdef_fromTransform( projection, (float)width, (float)height, stTransformed2stOriginal ); // printAP( projection ); // printBP( projection ); Texdef_normalise( projection, (float)width, (float)height ); // globalOutputStream() << "norm "; printAP( projection ); // globalOutputStream() << "norm "; printBP( projection ); } #endif double Det3x3( double a00, double a01, double a02, double a10, double a11, double a12, double a20, double a21, double a22 ){ return a00 * ( a11 * a22 - a12 * a21 ) - a01 * ( a10 * a22 - a12 * a20 ) + a02 * ( a10 * a21 - a11 * a20 ); } void BP_from_ST( brushprimit_texdef_t& bp, const DoubleVector3 points[3], const DoubleVector3 st[3], const DoubleVector3& normal, const bool normalize = true ){ double xyI[2], xyJ[2], xyK[2]; double stI[2], stJ[2], stK[2]; double D, D0, D1, D2; DoubleVector3 texX, texY; ComputeAxisBase( normal, texX, texY ); xyI[0] = vector3_dot( points[0], texX ); xyI[1] = vector3_dot( points[0], texY ); xyJ[0] = vector3_dot( points[1], texX ); xyJ[1] = vector3_dot( points[1], texY ); xyK[0] = vector3_dot( points[2], texX ); xyK[1] = vector3_dot( points[2], texY ); stI[0] = st[0][0]; stI[1] = st[0][1]; stJ[0] = st[1][0]; stJ[1] = st[1][1]; stK[0] = st[2][0]; stK[1] = st[2][1]; // - solve linear equations: // - (x, y) := xyz . (texX, texY) // - st[i] = texMat[i][0]*x + texMat[i][1]*y + texMat[i][2] // (for three vertices) D = Det3x3( xyI[0], xyI[1], 1, xyJ[0], xyJ[1], 1, xyK[0], xyK[1], 1 ); if ( D != 0 ) { for ( std::size_t i = 0; i < 2; ++i ) { D0 = Det3x3( stI[i], xyI[1], 1, stJ[i], xyJ[1], 1, stK[i], xyK[1], 1 ); D1 = Det3x3( xyI[0], stI[i], 1, xyJ[0], stJ[i], 1, xyK[0], stK[i], 1 ); D2 = Det3x3( xyI[0], xyI[1], stI[i], xyJ[0], xyJ[1], stJ[i], xyK[0], xyK[1], stK[i] ); bp.coords[i][0] = D0 / D; bp.coords[i][1] = D1 / D; bp.coords[i][2] = normalize? fmod( D2 / D, 1.0 ) : ( D2 / D ); } // globalOutputStream() << "BP out: ( " << bp.coords[0][0] << " " << bp.coords[0][1] << " " << bp.coords[0][2] << " ) ( " << bp.coords[1][0] << " " << bp.coords[1][1] << " " << bp.coords[1][2] << " )\n"; } } const Vector3 BaseAxes[] = { Vector3( 0.0, 0.0, 1.0), Vector3( 1.0, 0.0, 0.0), Vector3( 0.0, -1.0, 0.0), Vector3( 0.0, 0.0, -1.0), Vector3( 1.0, 0.0, 0.0), Vector3( 0.0, -1.0, 0.0), Vector3( 1.0, 0.0, 0.0), Vector3( 0.0, 1.0, 0.0), Vector3( 0.0, 0.0, -1.0), Vector3(-1.0, 0.0, 0.0), Vector3( 0.0, 1.0, 0.0), Vector3( 0.0, 0.0, -1.0), Vector3( 0.0, 1.0, 0.0), Vector3( 1.0, 0.0, 0.0), Vector3( 0.0, 0.0, -1.0), Vector3( 0.0, -1.0, 0.0), Vector3( 1.0, 0.0, 0.0), Vector3( 0.0, 0.0, -1.0), }; std::size_t planeNormalIndex( const Vector3& normal ) { #if 0 std::size_t bestIndex = 0; float bestDot = 0.f; for( std::size_t i = 0; i < 6; ++i ) { const float dot = vector3_dot( normal, BaseAxes[i * 3] ); if( dot > bestDot ) { // no need to use -altaxis for qbsp, but -oldaxis is necessary bestDot = dot; bestIndex = i; } } return bestIndex; #else switch ( projectionaxis_for_normal( normal ) ) { case eProjectionAxisZ: return normal.z() > 0 ? 0 : 1; break; case eProjectionAxisX: return normal.x() > 0 ? 2 : 3; break; default: //case eProjectionAxisY: return normal.y() > 0 ? 4 : 5; break; } #endif } void AP_from_axes( const Vector3& axisX, const Vector3& axisY, const DoubleVector3& normal, std::size_t width, std::size_t height, const Vector3& invariant, const Vector2& invariantTexCoords, texdef_t& texdef ){ // obtain the texture plane norm and the base texture axes const std::size_t index = planeNormalIndex( normal ); Vector3 xAxis = BaseAxes[index * 3 + 1]; Vector3 yAxis = BaseAxes[index * 3 + 2]; Vector3 zAxis = BaseAxes[( index / 2 ) * 6]; const Plane3 texturePlane( zAxis, 0 ); // project the transformed texture axes onto the new texture projection plane const Vector3 projectedXAxis = plane3_project_point( texturePlane, axisX ); const Vector3 projectedYAxis = plane3_project_point( texturePlane, axisY ); const Vector3 normalizedXAxis = vector3_normalised( projectedXAxis ); const Vector3 normalizedYAxis = vector3_normalised( projectedYAxis ); // determine the rotation angle from the dot product of the new base axes and the transformed, projected and normalized texture axes float cosX = vector3_dot( xAxis, normalizedXAxis ); float cosY = vector3_dot( yAxis, normalizedYAxis ); float radX = std::acos( cosX ); if( vector3_dot( vector3_cross( xAxis, normalizedXAxis ), zAxis ) < 0.0 ) radX *= -1.0f; float radY = std::acos( cosY ); if( vector3_dot( vector3_cross( yAxis, normalizedYAxis ), zAxis ) < 0.0 ) radY *= -1.0f; // choosing between the X and Y axis rotations float rad = width >= height ? radX : radY; // for some reason, when the texture plane normal is the Y axis, we must rotation clockwise if( ( index / 2 ) * 6 == 12 ) rad *= -1.0f; // doSetRotation( newNormal, newRotation, newRotation ); const Matrix4 rotmat = matrix4_rotation_for_axisangle( vector3_cross( yAxis, xAxis ), rad ); matrix4_transform_direction( rotmat, xAxis ); matrix4_transform_direction( rotmat, yAxis ); // finally compute the scaling factors Vector2 scale( vector3_length( projectedXAxis ), vector3_length( projectedYAxis ) ); // the sign of the scaling factors depends on the angle between the new texture axis and the projected transformed axis if( vector3_dot( xAxis, normalizedXAxis ) < 0 ) scale[0] *= -1.0f; if( vector3_dot( yAxis, normalizedYAxis ) < 0 ) scale[1] *= -1.0f; // determine the new texture coordinates of the transformed center of the face, sans offsets const Vector2 newInvariantTexCoords( vector3_dot( xAxis / scale[0], invariant ), vector3_dot( yAxis / scale[1], invariant ) ); // globalOutputStream() << "newInvariantTexCoords: " << newInvariantTexCoords[0] << " " << newInvariantTexCoords[1] << "\n"; // since the center should be invariant, the offsets are determined by the difference of the current and // the original texture coordinates of the center texdef.shift[0] = invariantTexCoords[0] - newInvariantTexCoords[0]; texdef.shift[1] = invariantTexCoords[1] - newInvariantTexCoords[1]; texdef.scale[0] = scale[0]; texdef.scale[1] = scale[1]; texdef.rotate = radians_to_degrees( rad ); Texdef_normalise( texdef, (float)width, (float)height ); } void Texdef_transformLocked( TextureProjection& projection, std::size_t width, std::size_t height, const Plane3& plane, const Matrix4& identity2transformed, const Vector3& invariant ){ if( identity2transformed == g_matrix4_identity ){ //globalOutputStream() << "identity2transformed == g_matrix4_identity\n"; return; //TODO FIXME !!! this (and whole pipeline?) is called with g_matrix4_identity after every transform //now only on freezeTransform, it seems } if ( g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_BRUSHPRIMITIVES ) { // globalOutputStream() << "identity2transformed: " << identity2transformed << "\n"; // globalOutputStream() << "in "; printBP( projection ); DoubleVector3 texX, texY; ComputeAxisBase( plane.normal(), texX, texY ); const DoubleVector3 anchor = plane.normal() * plane.dist(); DoubleVector3 points[3] = { anchor, anchor + texX, anchor + texY }; DoubleVector3 st[3]; Matrix4 local2tex; Texdef_Construct_local2tex( projection, width, height, plane.normal(), local2tex ); for ( std::size_t i = 0; i < 3; ++i ){ st[i] = matrix4_transformed_point( local2tex, points[i] ); matrix4_transform_point( identity2transformed, points[i] ); } #if 0 const DoubleVector3 normalTransformed( matrix4_transformed_normal( identity2transformed, plane.normal() ) ); #else /* this is also handling scale = 0 case */ DoubleVector3 normalTransformed( plane3_for_points( points ).normal() ); if( matrix4_handedness( identity2transformed ) == MATRIX4_LEFTHANDED ) vector3_negate( normalTransformed ); #endif BP_from_ST( projection.m_brushprimit_texdef, points, st, normalTransformed ); } else if( g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_QUAKE ) { // globalOutputStream() << "\t\t***: " << invariant << "\n"; // globalOutputStream() << "identity2transformed: " << identity2transformed << "\n"; // printAP( projection ); if( projection.m_texdef.scale[0] == 0.0f || projection.m_texdef.scale[1] == 0.0f ) { return; } #if 0//not ok, if scaling const Vector3 offset = matrix4_transformed_point( identity2transformed, Vector3( 0, 0, 0 ) ); Vector3 newNormal = matrix4_transformed_point( identity2transformed, plane.normal() ) - offset; #elif 0 const Vector3 newNormal( matrix4_transformed_normal( identity2transformed, plane.normal() ) ); #elif 1 /* this is also handling scale = 0 case */ DoubleVector3 texX, texY; ComputeAxisBase( plane.normal(), texX, texY ); const DoubleVector3 anchor = plane.normal() * plane.dist(); DoubleVector3 points[3] = { anchor, anchor + texX, anchor + texY }; for ( std::size_t i = 0; i < 3; ++i ) matrix4_transform_point( identity2transformed, points[i] ); Vector3 newNormal( plane3_for_points( points ).normal() ); if( matrix4_handedness( identity2transformed ) == MATRIX4_LEFTHANDED ) vector3_negate( newNormal ); #endif #if 0 // fix some rounding errors - if the old and new texture axes are almost the same, use the old axis if( vector3_equal_epsilon( newNormal, plane.normal(), 0.01f ) ){ newNormal = plane.normal(); } #endif // calculate the current texture coordinates of the origin const std::size_t index = planeNormalIndex( plane.normal() ); Vector3 xAxis = BaseAxes[index * 3 + 1]; Vector3 yAxis = BaseAxes[index * 3 + 2]; Vector3 zAxis = BaseAxes[( index / 2 ) * 6]; // globalOutputStream() << xAxis << " " << yAxis << " " << zAxis << "\n"; Matrix4 rotmat = matrix4_rotation_for_axisangle( vector3_cross( yAxis, xAxis ), degrees_to_radians( projection.m_texdef.rotate ) ); matrix4_transform_direction( rotmat, xAxis ); matrix4_transform_direction( rotmat, yAxis ); const Vector2 invariantTexCoords( vector3_dot( xAxis / projection.m_texdef.scale[0], invariant ) + projection.m_texdef.shift[0], vector3_dot( yAxis / projection.m_texdef.scale[1], invariant ) + projection.m_texdef.shift[1] ); // globalOutputStream() << "invariantTexCoords: " << invariantTexCoords[0] << " " << invariantTexCoords[1] << "\n"; // project the texture axes onto the boundary plane along the texture Z axis const Vector3 boundaryOffset = plane3_project_point( plane, Vector3( 0, 0, 0 ), zAxis ); const Vector3 xAxisOnBoundary = plane3_project_point( plane, xAxis * projection.m_texdef.scale[0], zAxis ) - boundaryOffset; const Vector3 yAxisOnBoundary = plane3_project_point( plane, yAxis * projection.m_texdef.scale[1], zAxis ) - boundaryOffset; // transform the projected texture axes and compensate the translational component const Vector3 transformedXAxis = matrix4_transformed_direction( identity2transformed, xAxisOnBoundary ); const Vector3 transformedYAxis = matrix4_transformed_direction( identity2transformed, yAxisOnBoundary ); AP_from_axes( transformedXAxis, transformedYAxis, newNormal, width, height, matrix4_transformed_point( identity2transformed, invariant ), invariantTexCoords, projection.m_texdef ); // globalOutputStream() << "new "; printAP( projection ); } else{ //TEXDEFTYPEID_VALVE // print220( projection ); // globalOutputStream() << "identity2transformed: " << identity2transformed << "\n"; /* hack: is often broken with niggative scale */ if( projection.m_texdef.scale[0] < 0 ){ projection.m_texdef.scale[0] *= -1.f; projection.m_basis_s *= -1.f; } if( projection.m_texdef.scale[1] < 0 ){ projection.m_texdef.scale[1] *= -1.f; projection.m_basis_t *= -1.f; } //globalOutputStream() << "plane.normal(): " << plane.normal() << "\n"; const Matrix4 maa( matrix4_for_normal_transform( identity2transformed ) ); const Vector3 normalTransformed( vector3_normalised( matrix4_transformed_direction( maa, plane.normal() ) ) ); //globalOutputStream() << "normalTransformed: " << normalTransformed << "\n"; // identity: identity space // transformed: transformation // stIdentity: base st projection space before transformation // stTransformed: base st projection space after transformation // stOriginal: original texdef space // stTransformed2stOriginal = stTransformed -> transformed -> identity -> stIdentity -> stOriginal Matrix4 identity2stIdentity; Texdef_basisForNormal( projection, plane.normal(), identity2stIdentity ); matrix4_transform_direction( maa, projection.m_basis_s ); matrix4_transform_direction( maa, projection.m_basis_t ); Matrix4 transformed2stTransformed; Texdef_basisForNormal( projection, normalTransformed, transformed2stTransformed ); Matrix4 stTransformed2identity( matrix4_affine_inverse( matrix4_multiplied_by_matrix4( transformed2stTransformed, identity2transformed ) ) ); //QNAN here, if some scale = 0 Matrix4 stIdentity2stOriginal; Texdef_toTransform( projection, (float)width, (float)height, stIdentity2stOriginal ); Matrix4 identity2stOriginal( matrix4_multiplied_by_matrix4( stIdentity2stOriginal, identity2stIdentity ) ); Matrix4 stTransformed2stOriginal = matrix4_multiplied_by_matrix4( identity2stOriginal, stTransformed2identity ); if( stTransformed2stOriginal[0] == stTransformed2stOriginal[0] ){ /* catch QNAN: happens when projecting along plane */ Texdef_fromTransform( projection, (float)width, (float)height, stTransformed2stOriginal ); Texdef_normalise( projection, (float)width, (float)height ); projection.m_texdef.scale[0] /= vector3_length( projection.m_basis_s ); projection.m_texdef.scale[1] /= vector3_length( projection.m_basis_t ); } vector3_normalise( projection.m_basis_s ); vector3_normalise( projection.m_basis_t ); } } void Texdef_transform( TextureProjection& projection, std::size_t width, std::size_t height, const Plane3& plane, const Matrix4& identity2transformed, const Vector3& invariant ){ if( identity2transformed == g_matrix4_identity ){ //globalOutputStream() << "identity2transformed == g_matrix4_identity\n"; return; //TODO FIXME !!! this (and whole pipeline?) is called with g_matrix4_identity after every transform //now only on freezeTransform, it seems } if ( g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_BRUSHPRIMITIVES || g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_VALVE ) { Texdef_transformLocked( projection, width, height, plane, identity2transformed, invariant ); } else if( g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_QUAKE ) { // globalOutputStream() << "\t\t***: " << invariant << "\n"; // globalOutputStream() << "identity2transformed: " << identity2transformed << "\n"; // printAP( projection ); if( projection.m_texdef.scale[0] == 0.0f || projection.m_texdef.scale[1] == 0.0f ) { return; } // calculate the current texture coordinates of the origin const std::size_t index = planeNormalIndex( plane.normal() ); Vector3 xAxis = BaseAxes[index * 3 + 1]; Vector3 yAxis = BaseAxes[index * 3 + 2]; Vector3 zAxis = BaseAxes[( index / 2 ) * 6]; // globalOutputStream() << xAxis << " " << yAxis << " " << zAxis << "\n"; Matrix4 rotmat = matrix4_rotation_for_axisangle( vector3_cross( yAxis, xAxis ), degrees_to_radians( projection.m_texdef.rotate ) ); matrix4_transform_direction( rotmat, xAxis ); matrix4_transform_direction( rotmat, yAxis ); const Vector2 invariantTexCoords( vector3_dot( xAxis / projection.m_texdef.scale[0], invariant ) + projection.m_texdef.shift[0], vector3_dot( yAxis / projection.m_texdef.scale[1], invariant ) + projection.m_texdef.shift[1] ); // globalOutputStream() << "invariantTexCoords: " << invariantTexCoords[0] << " " << invariantTexCoords[1] << "\n"; // project the texture axes onto the boundary plane along the texture Z axis const Vector3 boundaryOffset = plane3_project_point( plane, Vector3( 0, 0, 0 ), zAxis ); const Vector3 xAxisOnBoundary = plane3_project_point( plane, xAxis * projection.m_texdef.scale[0], zAxis ) - boundaryOffset; const Vector3 yAxisOnBoundary = plane3_project_point( plane, yAxis * projection.m_texdef.scale[1], zAxis ) - boundaryOffset; // transform the projected texture axes and compensate the translational component const Vector3 transformedXAxis = matrix4_transformed_direction( identity2transformed, xAxisOnBoundary ); const Vector3 transformedYAxis = matrix4_transformed_direction( identity2transformed, yAxisOnBoundary ); AP_from_axes( transformedXAxis, transformedYAxis, plane.normal(), width, height, matrix4_transformed_point( identity2transformed, invariant ), invariantTexCoords, projection.m_texdef ); } } #if 0 void Q3_to_matrix( const texdef_t& texdef, float width, float height, const Vector3& normal, Matrix4& matrix ){ Normal_GetTransform( normal, matrix ); Matrix4 transform; Texdef_toTransform( texdef, width, height, transform ); matrix4_multiply_by_matrix4( matrix, transform ); } void BP_from_matrix( brushprimit_texdef_t& bp_texdef, const Vector3& normal, const Matrix4& transform ){ Matrix4 basis; basis = g_matrix4_identity; ComputeAxisBase( normal, vector4_to_vector3( basis.x() ), vector4_to_vector3( basis.y() ) ); vector4_to_vector3( basis.z() ) = normal; matrix4_transpose( basis ); matrix4_affine_invert( basis ); Matrix4 basis2texture = matrix4_multiplied_by_matrix4( basis, transform ); BPTexdef_fromTransform( bp_texdef, basis2texture ); } void Q3_to_BP( const texdef_t& texdef, float width, float height, const Vector3& normal, brushprimit_texdef_t& bp_texdef ){ Matrix4 matrix; Q3_to_matrix( texdef, width, height, normal, matrix ); BP_from_matrix( bp_texdef, normal, matrix ); } #endif /// for arbitrary texture projections void Texdef_Construct_local2tex4projection( const texdef_t& texdef, std::size_t width, std::size_t height, const Vector3& normal, const Vector3* direction, Matrix4& local2tex ){ Texdef_toTransform( texdef, (float)width, (float)height, local2tex ); { if( direction ){ //arbitrary Matrix4 basis = g_matrix4_identity; ComputeAxisBase( *direction, vector4_to_vector3( basis.x() ), vector4_to_vector3( basis.y() ) ); vector4_to_vector3( basis.z() ) = *direction; matrix4_transpose( basis ); matrix4_multiply_by_matrix4( local2tex, basis ); } else{ //AP Matrix4 xyz2st; Normal_GetTransform( normal, xyz2st ); //Texdef_basisForNormal for AP matrix4_multiply_by_matrix4( local2tex, xyz2st ); } } } inline void BPTexdef_fromST011( TextureProjection& projection, const Plane3& plane, const Matrix4& local2tex ){ DoubleVector3 texX, texY; ComputeAxisBase( plane.normal(), texX, texY ); // (0,0) in plane axis base is (0,0,0) in world coordinates + projection on the affine plane // (1,0) in plane axis base is texX in world coordinates + projection on the affine plane // (0,1) in plane axis base is texY in world coordinates + projection on the affine plane // use old texture code to compute the ST coords of these points // ST of (0,0) (1,0) (0,1) const DoubleVector3 anchor = plane.normal() * plane.dist(); const DoubleVector3 points[3] = { anchor, anchor + texX, anchor + texY }; DoubleVector3 st[3]; for ( std::size_t i = 0; i < 3; ++i ){ st[i] = matrix4_transformed_point( local2tex, points[i] ); //globalOutputStream() << st[i] << "\n"; } // compute texture matrix projection.m_brushprimit_texdef.coords[0][2] = float_mod( st[0][0], 1.0 ); projection.m_brushprimit_texdef.coords[1][2] = float_mod( st[0][1], 1.0 ); projection.m_brushprimit_texdef.coords[0][0] = st[1][0] - st[0][0]; projection.m_brushprimit_texdef.coords[1][0] = st[1][1] - st[0][1]; projection.m_brushprimit_texdef.coords[0][1] = st[2][0] - st[0][0]; projection.m_brushprimit_texdef.coords[1][1] = st[2][1] - st[0][1]; } void Texdef_ProjectTexture( TextureProjection& projection, std::size_t width, std::size_t height, const Plane3& plane, const texdef_t& texdef, const Vector3* direction ){ if ( g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_BRUSHPRIMITIVES ) { //texdef_t texdef; //Q3_to_BP( texdef, (float)width, (float)height, normal, projection.m_brushprimit_texdef ); Matrix4 local2tex; Texdef_Construct_local2tex4projection( texdef, width, height, plane.normal(), direction, local2tex ); BPTexdef_fromST011( projection, plane, local2tex ); } else if ( g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_VALVE ) { Texdef_Assign( projection.m_texdef, texdef ); if( direction ){ //arbitrary ComputeAxisBase( *direction, projection.m_basis_s, projection.m_basis_t ); } else{ //AP Matrix4 basis; Normal_GetTransform( plane.normal(), basis ); projection.m_basis_s = Vector3( basis.xx(), basis.yx(), basis.zx() ); projection.m_basis_t = Vector3( -basis.xy(), -basis.yy(), -basis.zy() ); } Valve220_rotate( projection, texdef.rotate ); } } void Texdef_ProjectTexture( TextureProjection& projection, std::size_t width, std::size_t height, const Plane3& plane, TextureProjection other_proj, const Vector3& other_normal ){ if ( g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_BRUSHPRIMITIVES ) { other_proj.m_brushprimit_texdef.addScale( width, height ); Matrix4 local2tex; Texdef_Construct_local2tex( other_proj, width, height, other_normal, local2tex ); BPTexdef_fromST011( projection, plane, local2tex ); } else { Texdef_Assign( projection.m_texdef, other_proj.m_texdef ); if ( g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_VALVE ) { projection.m_basis_s = other_proj.m_basis_s; projection.m_basis_t = other_proj.m_basis_t; } } } inline bool BP_degenerate( const brushprimit_texdef_t& bp ){ return vector2_cross( Vector2( bp.coords[0][0], bp.coords[0][1] ), Vector2( bp.coords[1][0], bp.coords[1][1] ) ) == 0 || bp.coords[0][0] != bp.coords[0][0]; } /// g_bp_globals.m_texdefTypeId must be == TEXDEFTYPEID_BRUSHPRIMITIVES during this void AP_from_BP( TextureProjection& projection, const Plane3& plane, std::size_t width, std::size_t height ) { /* catch degenerate BP basis, go default if so */ if( BP_degenerate( projection.m_brushprimit_texdef ) ){ projection.m_texdef.scale[0] = Texdef_getDefaultTextureScale(); projection.m_texdef.scale[1] = Texdef_getDefaultTextureScale(); return; } const Vector3 invariant( static_cast( plane.normal() * plane.dist() ) ); Matrix4 local2tex; Texdef_Construct_local2tex( projection, width, height, plane.normal(), local2tex ); const Vector3 st = matrix4_transformed_point( local2tex, invariant ); const Vector2 invariantTexCoords( st[0] * width, st[1] * height ); // globalOutputStream() << "local2tex: " << local2tex << "\n"; // globalOutputStream() << "invariantTexCoords: " << invariantTexCoords[0] << " " << invariantTexCoords[1] << "\n"; const Matrix4 tex2local = matrix4_affine_inverse( local2tex ); AP_from_axes( vector4_to_vector3( tex2local.x() ) / width, vector4_to_vector3( tex2local.y() ) / height, plane.normal(), width, height, invariant, invariantTexCoords, projection.m_texdef ); } void Valve220_from_BP( TextureProjection& projection, const Plane3& plane, std::size_t width, std::size_t height ) { // printBP( projection ); #if 0 projection.m_texdef.scale[0] = 1.0 / ( vector2_length( Vector2( projection.m_brushprimit_texdef.coords[0][0], projection.m_brushprimit_texdef.coords[0][1] ) ) * (double)width ); projection.m_texdef.scale[1] = 1.0 / ( vector2_length( Vector2( projection.m_brushprimit_texdef.coords[1][0], projection.m_brushprimit_texdef.coords[1][1] ) ) * (double)height ); projection.m_texdef.shift[0] = projection.m_brushprimit_texdef.coords[0][2] * (float)width; projection.m_texdef.shift[1] = projection.m_brushprimit_texdef.coords[1][2] * (float)height; projection.m_texdef.rotate = static_cast( -radians_to_degrees( arctangent_yx( projection.m_brushprimit_texdef.coords[0][1], projection.m_brushprimit_texdef.coords[0][0] ) ) ); if( projection.m_brushprimit_texdef.coords[0][0] * projection.m_brushprimit_texdef.coords[1][1] < 0 ) projection.m_texdef.rotate = -projection.m_texdef.rotate; DoubleVector3 texX, texY; ComputeAxisBase( plane.normal(), texX, texY ); projection.m_basis_s = vector3_normalised( texX * static_cast( projection.m_brushprimit_texdef.coords[0][0] ) + texY * static_cast( projection.m_brushprimit_texdef.coords[0][1] ) ); projection.m_basis_t = vector3_normalised( texX * static_cast( projection.m_brushprimit_texdef.coords[1][0] ) + texY * static_cast( projection.m_brushprimit_texdef.coords[1][1] ) ); #else /* more reliable values this way */ DoubleVector3 texX, texY; ComputeAxisBase( plane.normal(), texX, texY ); /* catch degenerate BP basis, go default if so */ if( BP_degenerate( projection.m_brushprimit_texdef ) ){ projection.m_basis_s = texX; projection.m_basis_t = texY; projection.m_texdef.scale[0] = Texdef_getDefaultTextureScale(); projection.m_texdef.scale[1] = Texdef_getDefaultTextureScale(); return; } projection.m_basis_s = vector3_normalised( texX * static_cast( projection.m_brushprimit_texdef.coords[0][0] ) + texY * static_cast( projection.m_brushprimit_texdef.coords[0][1] ) ); projection.m_basis_t = vector3_normalised( texX * static_cast( projection.m_brushprimit_texdef.coords[1][0] ) + texY * static_cast( projection.m_brushprimit_texdef.coords[1][1] ) ); projection.m_brushprimit_texdef.removeScale( width, height ); TexMatToFakeTexCoords( projection.m_brushprimit_texdef, projection.m_texdef ); projection.m_texdef.shift[0] *= -1.f; if( projection.m_brushprimit_texdef.coords[0][0] < 0 ) projection.m_basis_s *= -1.f; if( projection.m_brushprimit_texdef.coords[1][1] < 0 ) projection.m_basis_t *= -1.f; projection.m_brushprimit_texdef.addScale( width, height ); #endif // print220( projection ); } /// g_bp_globals.m_texdefTypeId == 'in' during this void Texdef_Convert( TexdefTypeId in, TexdefTypeId out, const Plane3& plane, TextureProjection& projection, std::size_t width, std::size_t height ) { switch( out ) { case TEXDEFTYPEID_QUAKE: { if( in == TEXDEFTYPEID_VALVE ){ Matrix4 local2tex; Texdef_Construct_local2tex( projection, width, height, plane.normal(), local2tex ); BPTexdef_fromST011( projection, plane, local2tex ); const TexdefTypeId tmp = g_bp_globals.m_texdefTypeId; g_bp_globals.m_texdefTypeId = TEXDEFTYPEID_BRUSHPRIMITIVES; AP_from_BP( projection, plane, width, height ); g_bp_globals.m_texdefTypeId = tmp; } else if( in == TEXDEFTYPEID_BRUSHPRIMITIVES ){ AP_from_BP( projection, plane, width, height ); } } break; case TEXDEFTYPEID_BRUSHPRIMITIVES: { Matrix4 local2tex; Texdef_Construct_local2tex( projection, width, height, plane.normal(), local2tex ); BPTexdef_fromST011( projection, plane, local2tex ); } break; case TEXDEFTYPEID_VALVE: if( in == TEXDEFTYPEID_QUAKE ) { Matrix4 basis; Normal_GetTransform( plane.normal(), basis ); projection.m_basis_s = Vector3( basis.xx(), basis.yx(), basis.zx() ); projection.m_basis_t = Vector3( -basis.xy(), -basis.yy(), -basis.zy() ); Valve220_rotate( projection, projection.m_texdef.rotate ); } else if( in == TEXDEFTYPEID_BRUSHPRIMITIVES ){ Valve220_from_BP( projection, plane, width, height ); } break; default: break; } } void Texdef_from_ST( TextureProjection& projection, const DoubleVector3 points[3], const DoubleVector3 st[3], std::size_t width, std::size_t height ){ const Plane3 plane( plane3_for_points( points ) ); brushprimit_texdef_t bp; BP_from_ST( bp, points, st, plane.normal() ); if( BP_degenerate( bp ) ) return; else projection.m_brushprimit_texdef = bp; if( g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_QUAKE ){ const TexdefTypeId tmp = g_bp_globals.m_texdefTypeId; g_bp_globals.m_texdefTypeId = TEXDEFTYPEID_BRUSHPRIMITIVES; AP_from_BP( projection, plane, width, height ); g_bp_globals.m_texdefTypeId = tmp; } else if( g_bp_globals.m_texdefTypeId == TEXDEFTYPEID_VALVE ){ Valve220_from_BP( projection, plane, width, height ); } } void Texdef_Construct_local2tex_from_ST( const DoubleVector3 points[3], const DoubleVector3 st[3], Matrix4& local2tex ){ const Plane3 plane( plane3_for_points( points ) ); brushprimit_texdef_t bp; BP_from_ST( bp, points, st, plane.normal(), false ); BPTexdef_toTransform( bp, local2tex ); { // Texdef_basisForNormal Matrix4 basis = g_matrix4_identity; ComputeAxisBase( plane.normal(), vector4_to_vector3( basis.x() ), vector4_to_vector3( basis.y() ) ); vector4_to_vector3( basis.z() ) = plane.normal(); matrix4_transpose( basis ); matrix4_multiply_by_matrix4( local2tex, basis ); } } #if 0 void Texdef_getTexAxes( const TextureProjection& projection, const Plane3& plane, std::size_t width, std::size_t height, Matrix4& local2tex, Matrix4& tex2local, Matrix4& basis ){ Texdef_Construct_local2tex( projection, width, height, plane.normal(), local2tex ); basis = matrix4_affine_inverse( local2tex ); //natural texture basis in world space TextureProjection proj( projection ); if( g_bp_globals.m_texdefTypeId != TEXDEFTYPEID_BRUSHPRIMITIVES ){ BPTexdef_fromST011( proj, plane, local2tex ); } // rest is equal to inverse( BP local2tex ), but hopefully has more precision BPTexdef_toTransform( proj.m_brushprimit_texdef, local2tex ); tex2local = matrix4_affine_inverse( local2tex ); //Texdef_basisForNormal( proj, plane.normal(), xyz2st ); minus inverse of orthogonal basis via transpose Matrix4 xyz2st = g_matrix4_identity; ComputeAxisBase( plane.normal(), vector4_to_vector3( xyz2st.x() ), vector4_to_vector3( xyz2st.y() ) ); vector4_to_vector3( xyz2st.z() ) = plane.normal(); // natural texture basis, aligned to the plane matrix4_premultiply_by_matrix4( tex2local, xyz2st ); // ( A B )-1 = B-1 A-1 // return BP local2tex to have STs range according to tex2local matrix4_multiply_by_matrix4( local2tex, matrix4_transposed( xyz2st ) ); } #endif