/* ------------------------------------------------------------------------------- Copyright (C) 1999-2007 id Software, Inc. and contributors. For a list of contributors, see the accompanying CONTRIBUTORS file. This file is part of GtkRadiant. GtkRadiant is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. GtkRadiant is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GtkRadiant; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA ---------------------------------------------------------------------------------- This code has been altered significantly from its original form, to support several games based on the Quake III Arena engine, in the form of "Q3Map2." ------------------------------------------------------------------------------- */ /* dependencies */ #include "q3map2.h" /* PicoPrintFunc() callback for picomodel.lib */ void PicoPrintFunc( int level, const char *str ){ if ( str == NULL ) { return; } switch ( level ) { case PICO_NORMAL: Sys_Printf( "%s\n", str ); break; case PICO_VERBOSE: Sys_FPrintf( SYS_VRB, "%s\n", str ); break; case PICO_WARNING: Sys_Warning( "%s\n", str ); break; case PICO_ERROR: Sys_FPrintf( SYS_WRN, "ERROR: %s\n", str ); /* let it be a warning, since radiant stops monitoring on error message flag */ break; case PICO_FATAL: Error( "ERROR: %s\n", str ); break; } } /* PicoLoadFileFunc() callback for picomodel.lib */ void PicoLoadFileFunc( const char *name, byte **buffer, int *bufSize ){ *bufSize = vfsLoadFile( name, (void**) buffer, 0 ); } /* FindModel() - ydnar finds an existing picoModel and returns a pointer to the picoModel_t struct or NULL if not found */ picoModel_t *FindModel( const char *name, int frame ){ int i; /* init */ if ( numPicoModels <= 0 ) { memset( picoModels, 0, sizeof( picoModels ) ); } /* dummy check */ if ( strEmptyOrNull( name ) ) { return NULL; } /* search list */ for ( i = 0; i < MAX_MODELS; i++ ) { if ( picoModels[ i ] != NULL && strEqual( PicoGetModelName( picoModels[ i ] ), name ) && PicoGetModelFrameNum( picoModels[ i ] ) == frame ) { return picoModels[ i ]; } } /* no matching picoModel found */ return NULL; } /* LoadModel() - ydnar loads a picoModel and returns a pointer to the picoModel_t struct or NULL if not found */ picoModel_t *LoadModel( const char *name, int frame ){ int i; picoModel_t *model, **pm; /* init */ if ( numPicoModels <= 0 ) { memset( picoModels, 0, sizeof( picoModels ) ); } /* dummy check */ if ( strEmptyOrNull( name ) ) { return NULL; } /* try to find existing picoModel */ model = FindModel( name, frame ); if ( model != NULL ) { return model; } /* none found, so find first non-null picoModel */ pm = NULL; for ( i = 0; i < MAX_MODELS; i++ ) { if ( picoModels[ i ] == NULL ) { pm = &picoModels[ i ]; break; } } /* too many picoModels? */ if ( pm == NULL ) { Error( "MAX_MODELS (%d) exceeded, there are too many model files referenced by the map.", MAX_MODELS ); } /* attempt to parse model */ *pm = PicoLoadModel( name, frame ); /* if loading failed, make a bogus model to silence the rest of the warnings */ if ( *pm == NULL ) { /* allocate a new model */ *pm = PicoNewModel(); if ( *pm == NULL ) { return NULL; } /* set data */ PicoSetModelName( *pm, name ); PicoSetModelFrameNum( *pm, frame ); } /* debug code */ #if 0 { int numSurfaces, numVertexes; picoSurface_t *ps; Sys_Printf( "Model %s\n", name ); numSurfaces = PicoGetModelNumSurfaces( *pm ); for ( i = 0; i < numSurfaces; i++ ) { ps = PicoGetModelSurface( *pm, i ); numVertexes = PicoGetSurfaceNumVertexes( ps ); Sys_Printf( "Surface %d has %d vertexes\n", i, numVertexes ); } } #endif /* set count */ if ( *pm != NULL ) { numPicoModels++; } /* return the picoModel */ return *pm; } /* InsertModel() - ydnar adds a picomodel into the bsp */ void InsertModel( const char *name, int skin, int frame, m4x4_t transform, const std::list *remaps, shaderInfo_t *celShader, int eNum, int castShadows, int recvShadows, int spawnFlags, float lightmapScale, int lightmapSampleSize, float shadeAngle, float clipDepth ){ int i, j, s, k, numSurfaces; m4x4_t identity, nTransform; picoModel_t *model; picoSurface_t *surface; shaderInfo_t *si; mapDrawSurface_t *ds; bspDrawVert_t *dv; const char *picoShaderName; picoVec_t *xyz, *normal, *st; byte *color; picoIndex_t *indexes; char *skinfilecontent; int skinfilesize; char *skinfileptr, *skinfilenextptr; //int ok=0, notok=0; int spf = ( spawnFlags & 8088 ); float limDepth=0; if ( clipDepth < 0 ){ limDepth = -clipDepth; clipDepth = 2.0; } /* get model */ model = LoadModel( name, frame ); if ( model == NULL ) { return; } /* load skin file */ auto skinfilename = StringOutputStream(99)( PathExtensionless( name ), '_', skin, ".skin" ); skinfilesize = vfsLoadFile( skinfilename.c_str(), (void**) &skinfilecontent, 0 ); if ( skinfilesize < 0 && skin != 0 ) { /* fallback to skin 0 if invalid */ skinfilename( PathExtensionless( name ), "_0.skin" ); skinfilesize = vfsLoadFile( skinfilename.c_str(), (void**) &skinfilecontent, 0 ); if ( skinfilesize >= 0 ) { Sys_Printf( "Skin %d of %s does not exist, using 0 instead\n", skin, name ); } } std::list skins; if ( skinfilesize >= 0 ) { Sys_Printf( "Using skin %d of %s\n", skin, name ); for ( skinfileptr = skinfilecontent; !strEmpty( skinfileptr ); skinfileptr = skinfilenextptr ) { // for fscanf char format[64]; skinfilenextptr = strchr( skinfileptr, '\r' ); if ( skinfilenextptr != NULL ) { strClear( skinfilenextptr++ ); } else { skinfilenextptr = strchr( skinfileptr, '\n' ); if ( skinfilenextptr != NULL ) { strClear( skinfilenextptr++ ); } else{ skinfilenextptr = skinfileptr + strlen( skinfileptr ); } } /* create new item */ remap_t skin; sprintf( format, "replace %%%ds %%%ds", (int)sizeof( skin.from ) - 1, (int)sizeof( skin.to ) - 1 ); if ( sscanf( skinfileptr, format, skin.from, skin.to ) == 2 ) { skins.push_back( skin ); continue; } sprintf( format, " %%%d[^, ] ,%%%ds", (int)sizeof( skin.from ) - 1, (int)sizeof( skin.to ) - 1 ); if ( sscanf( skinfileptr, format, skin.from, skin.to ) == 2 ) { skins.push_back( skin ); continue; } /* invalid input line -> discard skin struct */ Sys_Printf( "Discarding skin directive in %s: %s\n", skinfilename, skinfileptr ); } free( skinfilecontent ); } /* handle null matrix */ if ( transform == NULL ) { m4x4_identity( identity ); transform = identity; } /* hack: Stable-1_2 and trunk have differing row/column major matrix order this transpose is necessary with Stable-1_2 uncomment the following line with old m4x4_t (non 1.3/spog_branch) code */ //% m4x4_transpose( transform ); /* create transform matrix for normals */ memcpy( nTransform, transform, sizeof( m4x4_t ) ); if ( m4x4_invert( nTransform ) ) { Sys_FPrintf( SYS_WRN | SYS_VRBflag, "WARNING: Can't invert model transform matrix, using transpose instead\n" ); } m4x4_transpose( nTransform ); /* fix bogus lightmap scale */ if ( lightmapScale <= 0.0f ) { lightmapScale = 1.0f; } /* fix bogus shade angle */ if ( shadeAngle <= 0.0f ) { shadeAngle = 0.0f; } /* each surface on the model will become a new map drawsurface */ numSurfaces = PicoGetModelNumSurfaces( model ); //% Sys_FPrintf( SYS_VRB, "Model %s has %d surfaces\n", name, numSurfaces ); for ( s = 0; s < numSurfaces; s++ ) { /* get surface */ surface = PicoGetModelSurface( model, s ); if ( surface == NULL ) { continue; } /* only handle triangle surfaces initially (fixme: support patches) */ if ( PicoGetSurfaceType( surface ) != PICO_TRIANGLES ) { continue; } /* get shader name */ if ( !( picoShaderName = PicoGetShaderName( PicoGetSurfaceShader( surface ) ) ) ) { picoShaderName = ""; } /* handle .skin file */ if ( !skins.empty() ) { picoShaderName = NULL; for( const auto& skin : skins ) { if ( striEqual( surface->name, skin.from ) ) { Sys_FPrintf( SYS_VRB, "Skin file: mapping %s to %s\n", surface->name, skin.to ); picoShaderName = skin.to; break; } } if ( picoShaderName == NULL ) { Sys_FPrintf( SYS_VRB, "Skin file: not mapping %s\n", surface->name ); continue; } } /* handle shader remapping */ if( remaps != NULL ){ const char* to = NULL; size_t fromlen = 0; for( const auto& rm : *remaps ) { if ( strEqual( rm.from, "*" ) && fromlen == 0 ) { // only globbing, if no respective match to = rm.to; } else if( striEqualSuffix( picoShaderName, rm.from ) && strlen( rm.from ) > fromlen ){ // longer match has priority to = rm.to; fromlen = strlen( rm.from ); } } if( to != NULL ){ Sys_FPrintf( SYS_VRB, ( fromlen == 0? "Globbing '%s' to '%s'\n" : "Remapping '%s' to '%s'\n" ), picoShaderName, to ); picoShaderName = to; } } /* shader renaming for sof2 */ if ( renameModelShaders ) { auto shaderName = String64()( PathExtensionless( picoShaderName ) ); if ( spawnFlags & 1 ) { shaderName << "_RMG_BSP"; } else{ shaderName << "_BSP"; } si = ShaderInfoForShader( shaderName ); } else{ si = ShaderInfoForShader( picoShaderName ); } /* allocate a surface (ydnar: gs mods) */ ds = AllocDrawSurface( ESurfaceType::Triangles ); ds->entityNum = eNum; ds->castShadows = castShadows; ds->recvShadows = recvShadows; /* set shader */ ds->shaderInfo = si; /* force to meta? */ if ( ( si != NULL && si->forceMeta ) || ( spawnFlags & 4 ) ) { /* 3rd bit */ ds->type = ESurfaceType::ForcedMeta; } /* fix the surface's normals (jal: conditioned by shader info) */ if ( !( spawnFlags & 64 ) && ( shadeAngle == 0.0f || ds->type != ESurfaceType::ForcedMeta ) ) { PicoFixSurfaceNormals( surface ); } /* set sample size */ if ( lightmapSampleSize > 0.0f ) { ds->sampleSize = lightmapSampleSize; } /* set lightmap scale */ if ( lightmapScale > 0.0f ) { ds->lightmapScale = lightmapScale; } /* set shading angle */ if ( shadeAngle > 0.0f ) { ds->shadeAngleDegrees = shadeAngle; } /* set particulars */ ds->numVerts = PicoGetSurfaceNumVertexes( surface ); ds->verts = safe_calloc( ds->numVerts * sizeof( ds->verts[ 0 ] ) ); ds->numIndexes = PicoGetSurfaceNumIndexes( surface ); ds->indexes = safe_calloc( ds->numIndexes * sizeof( ds->indexes[ 0 ] ) ); /* copy vertexes */ for ( i = 0; i < ds->numVerts; i++ ) { /* get vertex */ dv = &ds->verts[ i ]; /* xyz and normal */ xyz = PicoGetSurfaceXYZ( surface, i ); VectorCopy( xyz, dv->xyz ); m4x4_transform_point( transform, dv->xyz ); normal = PicoGetSurfaceNormal( surface, i ); VectorCopy( normal, dv->normal ); m4x4_transform_normal( nTransform, dv->normal ); VectorNormalize( dv->normal, dv->normal ); /* ydnar: tek-fu celshading support for flat shaded shit */ if ( flat ) { dv->st[ 0 ] = si->stFlat[ 0 ]; dv->st[ 1 ] = si->stFlat[ 1 ]; } /* ydnar: gs mods: added support for explicit shader texcoord generation */ else if ( si->tcGen ) { /* project the texture */ dv->st[ 0 ] = DotProduct( si->vecs[ 0 ], dv->xyz ); dv->st[ 1 ] = DotProduct( si->vecs[ 1 ], dv->xyz ); } /* normal texture coordinates */ else { st = PicoGetSurfaceST( surface, 0, i ); dv->st[ 0 ] = st[ 0 ]; dv->st[ 1 ] = st[ 1 ]; } /* set lightmap/color bits */ color = PicoGetSurfaceColor( surface, 0, i ); for ( j = 0; j < MAX_LIGHTMAPS; j++ ) { dv->lightmap[ j ][ 0 ] = 0.0f; dv->lightmap[ j ][ 1 ] = 0.0f; if ( spawnFlags & 32 ) { // spawnflag 32: model color -> alpha hack dv->color[ j ][ 0 ] = 255.0f; dv->color[ j ][ 1 ] = 255.0f; dv->color[ j ][ 2 ] = 255.0f; dv->color[ j ][ 3 ] = RGBTOGRAY( color ); } else { dv->color[ j ][ 0 ] = color[ 0 ]; dv->color[ j ][ 1 ] = color[ 1 ]; dv->color[ j ][ 2 ] = color[ 2 ]; dv->color[ j ][ 3 ] = color[ 3 ]; } } } /* copy indexes */ indexes = PicoGetSurfaceIndexes( surface, 0 ); for ( i = 0; i < ds->numIndexes; i++ ) ds->indexes[ i ] = indexes[ i ]; /* set cel shader */ ds->celShader = celShader; /* ydnar: giant hack land: generate clipping brushes for model triangles */ if ( ( si->clipModel && !( spf ) ) || //default CLIPMODEL ( ( spawnFlags & 8090 ) == 2 ) || //default CLIPMODEL ( spf == 8 ) || //EXTRUDE_FACE_NORMALS ( spf == 16 ) || //EXTRUDE_TERRAIN ( spf == 128 ) || //EXTRUDE_VERTEX_NORMALS ( spf == 256 ) || //PYRAMIDAL_CLIP ( spf == 512 ) || //EXTRUDE_DOWNWARDS ( spf == 1024 ) || //EXTRUDE_UPWARDS ( spf == 4096 ) || //default CLIPMODEL + AXIAL_BACKPLANE ( spf == 264 ) || //EXTRUDE_FACE_NORMALS+PYRAMIDAL_CLIP (extrude 45) ( spf == 2064 ) || //EXTRUDE_TERRAIN+MAX_EXTRUDE ( spf == 4112 ) || //EXTRUDE_TERRAIN+AXIAL_BACKPLANE ( spf == 384 ) || //EXTRUDE_VERTEX_NORMALS + PYRAMIDAL_CLIP - vertex normals + don't check for sides, sticking outwards ( spf == 4352 ) || //PYRAMIDAL_CLIP+AXIAL_BACKPLANE ( spf == 1536 ) || //EXTRUDE_DOWNWARDS+EXTRUDE_UPWARDS ( spf == 2560 ) || //EXTRUDE_DOWNWARDS+MAX_EXTRUDE ( spf == 4608 ) || //EXTRUDE_DOWNWARDS+AXIAL_BACKPLANE ( spf == 3584 ) || //EXTRUDE_DOWNWARDS+EXTRUDE_UPWARDS+MAX_EXTRUDE ( spf == 5632 ) || //EXTRUDE_DOWNWARDS+EXTRUDE_UPWARDS+AXIAL_BACKPLANE ( spf == 3072 ) || //EXTRUDE_UPWARDS+MAX_EXTRUDE ( spf == 5120 ) ){ //EXTRUDE_UPWARDS+AXIAL_BACKPLANE vec3_t points[ 4 ], cnt, bestNormal, nrm, Vnorm[3], Enorm[3]; vec4_t plane, reverse, p[3]; double normalEpsilon_save; bool snpd; vec3_t min = { 999999, 999999, 999999 }, max = { -999999, -999999, -999999 }; vec3_t avgDirection = { 0, 0, 0 }; int axis; #define nonax_clip_dbg 0 /* temp hack */ if ( !si->clipModel && !( si->compileFlags & C_SOLID ) ) { continue; } //wont snap these in normal way, or will explode normalEpsilon_save = normalEpsilon; //normalEpsilon = 0.000001; //MAX_EXTRUDE or EXTRUDE_TERRAIN if ( ( spawnFlags & 2048 ) || ( spawnFlags & 16 ) ){ for ( i = 0; i < ds->numIndexes; i += 3 ) { for ( j = 0; j < 3; j++ ) { dv = &ds->verts[ ds->indexes[ i + j ] ]; VectorCopy( dv->xyz, points[ j ] ); } if ( PlaneFromPoints( plane, points[ 0 ], points[ 1 ], points[ 2 ] ) ){ if ( spawnFlags & 16 ) VectorAdd( avgDirection, plane, avgDirection ); //calculate average mesh facing direction //get min/max for ( k = 2; k > -1; k-- ){ if ( plane[k] > 0 ){ for ( j = 0; j < 3; j++ ){ if ( points[j][k] < min[k] ) min[k] = points[j][k]; } } else if ( plane[k] < 0 ){ for ( j = 0; j < 3; j++ ){ if ( points[j][k] > max[k] ) max[k] = points[j][k]; } } //if EXTRUDE_DOWNWARDS or EXTRUDE_UPWARDS if ( ( spawnFlags & 512 ) || ( spawnFlags & 1024 ) ){ break; } } } } //unify avg direction if ( spawnFlags & 16 ){ for ( j = 0; j < 3; j++ ){ if ( fabs(avgDirection[j]) > fabs(avgDirection[(j+1)%3]) ){ avgDirection[(j+1)%3] = 0.0; axis = j; } else { avgDirection[j] = 0.0; } } if ( VectorNormalize( avgDirection, avgDirection ) == 0 ){ axis = 2; VectorSet( avgDirection, 0, 0, 1 ); } } } /* walk triangle list */ for ( i = 0; i < ds->numIndexes; i += 3 ) { /* overflow hack */ AUTOEXPAND_BY_REALLOC( mapplanes, ( nummapplanes + 64 ) << 1, allocatedmapplanes, 1024 ); /* make points */ for ( j = 0; j < 3; j++ ) { /* get vertex */ dv = &ds->verts[ ds->indexes[ i + j ] ]; /* copy xyz */ VectorCopy( dv->xyz, points[ j ] ); } /* make plane for triangle */ if ( PlaneFromPoints( plane, points[ 0 ], points[ 1 ], points[ 2 ] ) ) { /* build a brush */ buildBrush = AllocBrush( 48 ); buildBrush->entityNum = mapEntityNum; buildBrush->original = buildBrush; buildBrush->contentShader = si; buildBrush->compileFlags = si->compileFlags; buildBrush->contentFlags = si->contentFlags; buildBrush->detail = true; //snap points before using them for further calculations //precision suffers a lot, when two of normal values are under .00025 (often no collision, knocking up effect in ioq3) //also broken drawsurfs in case of normal brushes snpd = false; for ( j=0; j<3; j++ ) { if ( fabs(plane[j]) < 0.00025 && fabs(plane[(j+1)%3]) < 0.00025 && ( plane[j] != 0.0 || plane[(j+1)%3] != 0.0 ) ){ VectorAdd( points[ 0 ], points[ 1 ], cnt ); VectorAdd( cnt, points[ 2 ], cnt ); VectorScale( cnt, 0.3333333333333f, cnt ); points[0][(j+2)%3]=points[1][(j+2)%3]=points[2][(j+2)%3]=cnt[(j+2)%3]; snpd = true; break; } } //snap pairs of points to prevent bad side planes for ( j=0; j<3; j++ ) { VectorSubtract( points[j], points[(j+1)%3], nrm ); VectorNormalize( nrm, nrm ); for ( k=0; k<3; k++ ) { if ( nrm[k] != 0.0 && fabs(nrm[k]) < 0.00025 ){ //Sys_Printf( "b4(%6.6f %6.6f %6.6f)(%6.6f %6.6f %6.6f)\n", points[j][0], points[j][1], points[j][2], points[(j+1)%3][0], points[(j+1)%3][1], points[(j+1)%3][2] ); points[j][k]=points[(j+1)%3][k] = ( points[j][k] + points[(j+1)%3][k] ) / 2.0; //Sys_Printf( "sn(%6.6f %6.6f %6.6f)(%6.6f %6.6f %6.6f)\n", points[j][0], points[j][1], points[j][2], points[(j+1)%3][0], points[(j+1)%3][1], points[(j+1)%3][2] ); snpd = true; } } } if ( snpd ) { PlaneFromPoints( plane, points[ 0 ], points[ 1 ], points[ 2 ] ); snpd = false; } //vector-is-close-to-be-on-axis check again, happens after previous code sometimes for ( j=0; j<3; j++ ) { if ( fabs(plane[j]) < 0.00025 && fabs(plane[(j+1)%3]) < 0.00025 && ( plane[j] != 0.0 || plane[(j+1)%3] != 0.0 ) ){ VectorAdd( points[ 0 ], points[ 1 ], cnt ); VectorAdd( cnt, points[ 2 ], cnt ); VectorScale( cnt, 0.3333333333333f, cnt ); points[0][(j+2)%3]=points[1][(j+2)%3]=points[2][(j+2)%3]=cnt[(j+2)%3]; PlaneFromPoints( plane, points[ 0 ], points[ 1 ], points[ 2 ] ); break; } } //snap single snappable normal components for ( j=0; j<3; j++ ) { if ( plane[j] != 0.0 && fabs(plane[j]) < 0.00005 ){ plane[j]=0.0; snpd = true; } } //adjust plane dist if ( snpd ) { VectorAdd( points[ 0 ], points[ 1 ], cnt ); VectorAdd( cnt, points[ 2 ], cnt ); VectorScale( cnt, 0.3333333333333f, cnt ); VectorNormalize( plane, plane ); plane[3] = DotProduct( plane, cnt ); //project points to resulting plane to keep intersections precision for ( j=0; j<3; j++ ) { //Sys_Printf( "b4 %i (%6.7f %6.7f %6.7f)\n", j, points[j][0], points[j][1], points[j][2] ); VectorMA( points[j], plane[3] - DotProduct( plane, points[j]), plane, points[j] ); //Sys_Printf( "sn %i (%6.7f %6.7f %6.7f)\n", j, points[j][0], points[j][1], points[j][2] ); } //Sys_Printf( "sn pln (%6.7f %6.7f %6.7f %6.7f)\n", plane[0], plane[1], plane[2], plane[3] ); //PlaneFromPoints( plane, points[ 0 ], points[ 1 ], points[ 2 ] ); //Sys_Printf( "pts pln (%6.7f %6.7f %6.7f %6.7f)\n", plane[0], plane[1], plane[2], plane[3] ); } /* sanity check */ { vec3_t d1, d2, normaL; VectorSubtract( points[1], points[0], d1 ); VectorSubtract( points[2], points[0], d2 ); CrossProduct( d2, d1, normaL ); /* https://en.wikipedia.org/wiki/Cross_product#Geometric_meaning cross( a, b ).length = a.length b.length sin( angle ) */ const double lengthsSquared = ( d1[0] * d1[0] + d1[1] * d1[1] + d1[2] * d1[2] ) * ( d2[0] * d2[0] + d2[1] * d2[1] + d2[2] * d2[2] ); if ( lengthsSquared == 0 || fabs( ( normaL[0] * normaL[0] + normaL[1] * normaL[1] + normaL[2] * normaL[2] ) / lengthsSquared ) < 1e-8 ) { Sys_Warning( "triangle (%6.0f %6.0f %6.0f) (%6.0f %6.0f %6.0f) (%6.0f %6.0f %6.0f) of %s was not autoclipped: points on line\n", points[0][0], points[0][1], points[0][2], points[1][0], points[1][1], points[1][2], points[2][0], points[2][1], points[2][2], name ); continue; } } if ( spf == 4352 ){ //PYRAMIDAL_CLIP+AXIAL_BACKPLANE for ( j=0; j<3; j++ ) { if ( fabs(plane[j]) < 0.05 && fabs(plane[(j+1)%3]) < 0.05 ){ //no way, close to lay on two axises goto default_CLIPMODEL; } } // best axial normal VectorCopy( plane, bestNormal ); for ( j = 0; j < 3; j++ ){ if ( fabs(bestNormal[j]) > fabs(bestNormal[(j+1)%3]) ){ bestNormal[(j+1)%3] = 0.0; axis = j; } else { bestNormal[j] = 0.0; } } VectorNormalize( bestNormal, bestNormal ); float bestdist, currdist, bestangle, currangle, mindist = 999999; for ( j = 0; j < 3; j++ ){//planes bestdist = 999999; bestangle = 1; for ( k = 0; k < 3; k++ ){//axises VectorSubtract( points[ (j+1)%3 ], points[ j ], nrm ); if ( k == axis ){ CrossProduct( bestNormal, nrm, reverse ); } else{ VectorClear( Vnorm[0] ); if ( (k+1)%3 == axis ){ if ( nrm[ (k+2)%3 ] == 0 ) continue; Vnorm[0][ (k+2)%3 ] = nrm[ (k+2)%3 ]; } else{ if ( nrm[ (k+1)%3 ] == 0 ) continue; Vnorm[0][ (k+1)%3 ] = nrm[ (k+1)%3 ]; } CrossProduct( bestNormal, Vnorm[0], Enorm[0] ); CrossProduct( Enorm[0], nrm, reverse ); } VectorNormalize( reverse, reverse ); reverse[3] = DotProduct( points[ j ], reverse ); //check facing, thickness currdist = reverse[3] - DotProduct( reverse, points[ (j+2)%3 ] ); currangle = DotProduct( reverse, plane ); if ( ( ( currdist > 0.1 ) && ( currdist < bestdist ) && ( currangle < 0 ) ) || ( ( currangle >= 0 ) && ( currangle <= bestangle ) ) ){ bestangle = currangle; if ( currangle < 0 ) bestdist = currdist; VectorCopy( reverse, p[j] ); p[j][3] = reverse[3]; } } //if ( bestdist == 999999 && bestangle == 1 ) Sys_Printf("default_CLIPMODEL\n"); if ( bestdist == 999999 && bestangle == 1 ) goto default_CLIPMODEL; if ( bestdist < mindist ) mindist = bestdist; } if ( (limDepth != 0.0) && (mindist > limDepth) ) goto default_CLIPMODEL; #if nonax_clip_dbg for ( j = 0; j < 3; j++ ) { for ( k = 0; k < 3; k++ ) { if ( fabs(p[j][k]) < 0.00025 && p[j][k] != 0.0 ){ Sys_Printf( "nonax nrm %6.17f %6.17f %6.17f\n", p[j][0], p[j][1], p[j][2] ); } } } #endif /* set up brush sides */ buildBrush->numsides = 4; buildBrush->sides[ 0 ].shaderInfo = si; buildBrush->sides[ 0 ].surfaceFlags = si->surfaceFlags; for ( j = 1; j < buildBrush->numsides; j++ ) { if ( debugClip ) { buildBrush->sides[ 0 ].shaderInfo = ShaderInfoForShader( "debugclip2" ); buildBrush->sides[ j ].shaderInfo = ShaderInfoForShader( "debugclip" ); } else { buildBrush->sides[ j ].shaderInfo = NULL; // don't emit these faces as draw surfaces, should make smaller BSPs; hope this works } } VectorCopy( points[0], points[3] ); // for cyclic usage buildBrush->sides[ 0 ].planenum = FindFloatPlane( plane, plane[ 3 ], 3, points ); buildBrush->sides[ 1 ].planenum = FindFloatPlane( p[0], p[0][ 3 ], 2, &points[ 0 ] ); // p[0] contains points[0] and points[1] buildBrush->sides[ 2 ].planenum = FindFloatPlane( p[1], p[1][ 3 ], 2, &points[ 1 ] ); // p[1] contains points[1] and points[2] buildBrush->sides[ 3 ].planenum = FindFloatPlane( p[2], p[2][ 3 ], 2, &points[ 2 ] ); // p[2] contains points[2] and points[0] (copied to points[3] } else if ( ( spf == 16 ) || //EXTRUDE_TERRAIN ( spf == 512 ) || //EXTRUDE_DOWNWARDS ( spf == 1024 ) || //EXTRUDE_UPWARDS ( spf == 4096 ) || //default CLIPMODEL + AXIAL_BACKPLANE ( spf == 2064 ) || //EXTRUDE_TERRAIN+MAX_EXTRUDE ( spf == 4112 ) || //EXTRUDE_TERRAIN+AXIAL_BACKPLANE ( spf == 1536 ) || //EXTRUDE_DOWNWARDS+EXTRUDE_UPWARDS ( spf == 2560 ) || //EXTRUDE_DOWNWARDS+MAX_EXTRUDE ( spf == 4608 ) || //EXTRUDE_DOWNWARDS+AXIAL_BACKPLANE ( spf == 3584 ) || //EXTRUDE_DOWNWARDS+EXTRUDE_UPWARDS+MAX_EXTRUDE ( spf == 5632 ) || //EXTRUDE_DOWNWARDS+EXTRUDE_UPWARDS+AXIAL_BACKPLANE ( spf == 3072 ) || //EXTRUDE_UPWARDS+MAX_EXTRUDE ( spf == 5120 ) ){ //EXTRUDE_UPWARDS+AXIAL_BACKPLANE if ( spawnFlags & 16 ){ //autodirection VectorCopy( avgDirection, bestNormal ); } else{ axis = 2; if ( ( spawnFlags & 1536 ) == 1536 ){ //up+down VectorSet( bestNormal, 0, 0, ( plane[2] >= 0 ? 1 : -1 ) ); } else if ( spawnFlags & 512 ){ //down VectorSet( bestNormal, 0, 0, 1 ); } else if ( spawnFlags & 1024 ){ //up VectorSet( bestNormal, 0, 0, -1 ); } else{ // best axial normal VectorCopy( plane, bestNormal ); for ( j = 0; j < 3; j++ ){ if ( fabs(bestNormal[j]) > fabs(bestNormal[(j+1)%3]) ){ bestNormal[(j+1)%3] = 0.0; axis = j; } else { bestNormal[j] = 0.0; } } VectorNormalize( bestNormal, bestNormal ); } } if ( DotProduct( plane, bestNormal ) < 0.05 ){ goto default_CLIPMODEL; } /* make side planes */ for ( j = 0; j < 3; j++ ) { VectorSubtract( points[(j+1)%3], points[ j ], nrm ); CrossProduct( bestNormal, nrm, p[ j ] ); VectorNormalize( p[ j ], p[ j ] ); p[j][3] = DotProduct( points[j], p[j] ); } /* make back plane */ if ( spawnFlags & 2048 ){ //max extrude VectorScale( bestNormal, -1.0f, reverse ); if ( bestNormal[axis] > 0 ){ reverse[3] = -min[axis] + clipDepth; } else{ reverse[3] = max[axis] + clipDepth; } } else if ( spawnFlags & 4096 ){ //axial backplane VectorScale( bestNormal, -1.0f, reverse ); reverse[3] = points[0][axis]; if ( bestNormal[axis] > 0 ){ for ( j = 1; j < 3; j++ ){ if ( points[j][axis] < reverse[3] ){ reverse[3] = points[j][axis]; } } reverse[3] = -reverse[3] + clipDepth; } else{ for ( j = 1; j < 3; j++ ){ if ( points[j][axis] > reverse[3] ){ reverse[3] = points[j][axis]; } } reverse[3] += clipDepth; } if (limDepth != 0.0){ VectorCopy( points[0], cnt ); if ( bestNormal[axis] > 0 ){ for ( j = 1; j < 3; j++ ){ if ( points[j][axis] > cnt[axis] ){ VectorCopy( points[j], cnt ); } } } else { for ( j = 1; j < 3; j++ ){ if ( points[j][axis] < cnt[axis] ){ VectorCopy( points[j], cnt ); } } } VectorMA( cnt, reverse[3] - DotProduct( reverse, cnt ), reverse, cnt ); if ( ( plane[3] - DotProduct( plane, cnt ) ) > limDepth ){ VectorScale( plane, -1.0f, reverse ); reverse[ 3 ] = -plane[ 3 ]; reverse[3] += clipDepth; } } } else{ //normal backplane VectorScale( plane, -1.0f, reverse ); reverse[ 3 ] = -plane[ 3 ]; reverse[3] += clipDepth; } #if nonax_clip_dbg for ( j = 0; j < 3; j++ ) { for ( k = 0; k < 3; k++ ) { if ( fabs(p[j][k]) < 0.00025 && p[j][k] != 0.0 ){ Sys_Printf( "nonax nrm %6.17f %6.17f %6.17f\n", p[j][0], p[j][1], p[j][2] ); } } } #endif /* set up brush sides */ buildBrush->numsides = 5; buildBrush->sides[ 0 ].shaderInfo = si; buildBrush->sides[ 0 ].surfaceFlags = si->surfaceFlags; for ( j = 1; j < buildBrush->numsides; j++ ) { if ( debugClip ) { buildBrush->sides[ 0 ].shaderInfo = ShaderInfoForShader( "debugclip2" ); buildBrush->sides[ j ].shaderInfo = ShaderInfoForShader( "debugclip" ); } else { buildBrush->sides[ j ].shaderInfo = NULL; // don't emit these faces as draw surfaces, should make smaller BSPs; hope this works } } VectorCopy( points[0], points[3] ); // for cyclic usage buildBrush->sides[ 0 ].planenum = FindFloatPlane( plane, plane[ 3 ], 3, points ); buildBrush->sides[ 1 ].planenum = FindFloatPlane( p[0], p[0][ 3 ], 2, &points[ 0 ] ); // p[0] contains points[0] and points[1] buildBrush->sides[ 2 ].planenum = FindFloatPlane( p[1], p[1][ 3 ], 2, &points[ 1 ] ); // p[1] contains points[1] and points[2] buildBrush->sides[ 3 ].planenum = FindFloatPlane( p[2], p[2][ 3 ], 2, &points[ 2 ] ); // p[2] contains points[2] and points[0] (copied to points[3] buildBrush->sides[ 4 ].planenum = FindFloatPlane( reverse, reverse[ 3 ], 0, NULL ); } else if ( spf == 264 ){ //EXTRUDE_FACE_NORMALS+PYRAMIDAL_CLIP (extrude 45) //45 degrees normals for side planes for ( j = 0; j < 3; j++ ) { VectorSubtract( points[(j+1)%3], points[ j ], nrm ); CrossProduct( plane, nrm, Enorm[ j ] ); VectorNormalize( Enorm[ j ], Enorm[ j ] ); VectorAdd( plane, Enorm[ j ], Enorm[ j ] ); VectorNormalize( Enorm[ j ], Enorm[ j ] ); /* make side planes */ CrossProduct( Enorm[ j ], nrm, p[ j ] ); VectorNormalize( p[ j ], p[ j ] ); p[j][3] = DotProduct( points[j], p[j] ); //snap nearly axial side planes snpd = false; for ( k = 0; k < 3; k++ ) { if ( fabs(p[j][k]) < 0.00025 && p[j][k] != 0.0 ){ p[j][k] = 0.0; snpd = true; } } if ( snpd ){ VectorNormalize( p[j], p[j] ); VectorAdd( points[j], points[(j+1)%3], cnt ); VectorScale( cnt, 0.5f, cnt ); p[j][3] = DotProduct( cnt, p[j] ); } } /* make back plane */ VectorScale( plane, -1.0f, reverse ); reverse[ 3 ] = -plane[ 3 ]; reverse[3] += clipDepth; /* set up brush sides */ buildBrush->numsides = 5; buildBrush->sides[ 0 ].shaderInfo = si; buildBrush->sides[ 0 ].surfaceFlags = si->surfaceFlags; for ( j = 1; j < buildBrush->numsides; j++ ) { if ( debugClip ) { buildBrush->sides[ 0 ].shaderInfo = ShaderInfoForShader( "debugclip2" ); buildBrush->sides[ j ].shaderInfo = ShaderInfoForShader( "debugclip" ); } else { buildBrush->sides[ j ].shaderInfo = NULL; // don't emit these faces as draw surfaces, should make smaller BSPs; hope this works } } VectorCopy( points[0], points[3] ); // for cyclic usage buildBrush->sides[ 0 ].planenum = FindFloatPlane( plane, plane[ 3 ], 3, points ); buildBrush->sides[ 1 ].planenum = FindFloatPlane( p[0], p[0][ 3 ], 2, &points[ 0 ] ); // p[0] contains points[0] and points[1] buildBrush->sides[ 2 ].planenum = FindFloatPlane( p[1], p[1][ 3 ], 2, &points[ 1 ] ); // p[1] contains points[1] and points[2] buildBrush->sides[ 3 ].planenum = FindFloatPlane( p[2], p[2][ 3 ], 2, &points[ 2 ] ); // p[2] contains points[2] and points[0] (copied to points[3] buildBrush->sides[ 4 ].planenum = FindFloatPlane( reverse, reverse[ 3 ], 0, NULL ); } else if ( ( spf == 128 ) || //EXTRUDE_VERTEX_NORMALS ( spf == 384 ) ){ //EXTRUDE_VERTEX_NORMALS + PYRAMIDAL_CLIP - vertex normals + don't check for sides, sticking outwards /* get vertex normals */ for ( j = 0; j < 3; j++ ) { /* get vertex */ dv = &ds->verts[ ds->indexes[ i + j ] ]; /* copy normal */ VectorCopy( dv->normal, Vnorm[ j ] ); } //avg normals for side planes for ( j = 0; j < 3; j++ ) { VectorAdd( Vnorm[ j ], Vnorm[ (j+1)%3 ], Enorm[ j ] ); VectorNormalize( Enorm[ j ], Enorm[ j ] ); //check fuer bad ones VectorSubtract( points[(j+1)%3], points[ j ], cnt ); CrossProduct( plane, cnt, nrm ); VectorNormalize( nrm, nrm ); //check for negative or outside direction if ( DotProduct( Enorm[ j ], plane ) > 0.1 ){ if ( ( DotProduct( Enorm[ j ], nrm ) > -0.2 ) || ( spawnFlags & 256 ) ){ //ok++; continue; } } //notok++; //Sys_Printf( "faulty Enormal %i/%i\n", notok, ok ); //use 45 normal VectorAdd( plane, nrm, Enorm[ j ] ); VectorNormalize( Enorm[ j ], Enorm[ j ] ); } /* make side planes */ for ( j = 0; j < 3; j++ ) { VectorSubtract( points[(j+1)%3], points[ j ], nrm ); CrossProduct( Enorm[ j ], nrm, p[ j ] ); VectorNormalize( p[ j ], p[ j ] ); p[j][3] = DotProduct( points[j], p[j] ); //snap nearly axial side planes snpd = false; for ( k = 0; k < 3; k++ ) { if ( fabs(p[j][k]) < 0.00025 && p[j][k] != 0.0 ){ //Sys_Printf( "init plane %6.8f %6.8f %6.8f %6.8f\n", p[j][0], p[j][1], p[j][2], p[j][3]); p[j][k] = 0.0; snpd = true; } } if ( snpd ){ VectorNormalize( p[j], p[j] ); //Sys_Printf( "nrm plane %6.8f %6.8f %6.8f %6.8f\n", p[j][0], p[j][1], p[j][2], p[j][3]); VectorAdd( points[j], points[(j+1)%3], cnt ); VectorScale( cnt, 0.5f, cnt ); p[j][3] = DotProduct( cnt, p[j] ); //Sys_Printf( "dst plane %6.8f %6.8f %6.8f %6.8f\n", p[j][0], p[j][1], p[j][2], p[j][3]); } } /* make back plane */ VectorScale( plane, -1.0f, reverse ); reverse[ 3 ] = -plane[ 3 ]; reverse[3] += clipDepth; /* set up brush sides */ buildBrush->numsides = 5; buildBrush->sides[ 0 ].shaderInfo = si; buildBrush->sides[ 0 ].surfaceFlags = si->surfaceFlags; for ( j = 1; j < buildBrush->numsides; j++ ) { if ( debugClip ) { buildBrush->sides[ 0 ].shaderInfo = ShaderInfoForShader( "debugclip2" ); buildBrush->sides[ j ].shaderInfo = ShaderInfoForShader( "debugclip" ); } else { buildBrush->sides[ j ].shaderInfo = NULL; // don't emit these faces as draw surfaces, should make smaller BSPs; hope this works } } VectorCopy( points[0], points[3] ); // for cyclic usage buildBrush->sides[ 0 ].planenum = FindFloatPlane( plane, plane[ 3 ], 3, points ); buildBrush->sides[ 1 ].planenum = FindFloatPlane( p[0], p[0][ 3 ], 2, &points[ 0 ] ); // p[0] contains points[0] and points[1] buildBrush->sides[ 2 ].planenum = FindFloatPlane( p[1], p[1][ 3 ], 2, &points[ 1 ] ); // p[1] contains points[1] and points[2] buildBrush->sides[ 3 ].planenum = FindFloatPlane( p[2], p[2][ 3 ], 2, &points[ 2 ] ); // p[2] contains points[2] and points[0] (copied to points[3] buildBrush->sides[ 4 ].planenum = FindFloatPlane( reverse, reverse[ 3 ], 0, NULL ); } else if ( spf == 8 ){ //EXTRUDE_FACE_NORMALS /* make side planes */ for ( j = 0; j < 3; j++ ) { VectorSubtract( points[(j+1)%3], points[ j ], nrm ); CrossProduct( plane, nrm, p[ j ] ); VectorNormalize( p[ j ], p[ j ] ); p[j][3] = DotProduct( points[j], p[j] ); //snap nearly axial side planes snpd = false; for ( k = 0; k < 3; k++ ) { if ( fabs(p[j][k]) < 0.00025 && p[j][k] != 0.0 ){ //Sys_Printf( "init plane %6.8f %6.8f %6.8f %6.8f\n", p[j][0], p[j][1], p[j][2], p[j][3]); p[j][k] = 0.0; snpd = true; } } if ( snpd ){ VectorNormalize( p[j], p[j] ); //Sys_Printf( "nrm plane %6.8f %6.8f %6.8f %6.8f\n", p[j][0], p[j][1], p[j][2], p[j][3]); VectorAdd( points[j], points[(j+1)%3], cnt ); VectorScale( cnt, 0.5f, cnt ); p[j][3] = DotProduct( cnt, p[j] ); //Sys_Printf( "dst plane %6.8f %6.8f %6.8f %6.8f\n", p[j][0], p[j][1], p[j][2], p[j][3]); } } /* make back plane */ VectorScale( plane, -1.0f, reverse ); reverse[ 3 ] = -plane[ 3 ]; reverse[3] += clipDepth; #if nonax_clip_dbg for ( j = 0; j < 3; j++ ) { for ( k = 0; k < 3; k++ ) { if ( fabs(p[j][k]) < 0.00005 && p[j][k] != 0.0 ){ Sys_Printf( "nonax nrm %6.17f %6.17f %6.17f\n", p[j][0], p[j][1], p[j][2] ); Sys_Printf( "frm src nrm %6.17f %6.17f %6.17f\n", plane[0], plane[1], plane[2]); } } } #endif /* set up brush sides */ buildBrush->numsides = 5; buildBrush->sides[ 0 ].shaderInfo = si; buildBrush->sides[ 0 ].surfaceFlags = si->surfaceFlags; for ( j = 1; j < buildBrush->numsides; j++ ) { if ( debugClip ) { buildBrush->sides[ 0 ].shaderInfo = ShaderInfoForShader( "debugclip2" ); buildBrush->sides[ j ].shaderInfo = ShaderInfoForShader( "debugclip" ); } else { buildBrush->sides[ j ].shaderInfo = NULL; // don't emit these faces as draw surfaces, should make smaller BSPs; hope this works } } VectorCopy( points[0], points[3] ); // for cyclic usage buildBrush->sides[ 0 ].planenum = FindFloatPlane( plane, plane[ 3 ], 3, points ); buildBrush->sides[ 1 ].planenum = FindFloatPlane( p[0], p[0][ 3 ], 2, &points[ 0 ] ); // p[0] contains points[0] and points[1] buildBrush->sides[ 2 ].planenum = FindFloatPlane( p[1], p[1][ 3 ], 2, &points[ 1 ] ); // p[1] contains points[1] and points[2] buildBrush->sides[ 3 ].planenum = FindFloatPlane( p[2], p[2][ 3 ], 2, &points[ 2 ] ); // p[2] contains points[2] and points[0] (copied to points[3] buildBrush->sides[ 4 ].planenum = FindFloatPlane( reverse, reverse[ 3 ], 0, NULL ); } else if ( spf == 256 ){ //PYRAMIDAL_CLIP /* calculate center */ VectorAdd( points[ 0 ], points[ 1 ], cnt ); VectorAdd( cnt, points[ 2 ], cnt ); VectorScale( cnt, 0.3333333333333f, cnt ); /* make back pyramid point */ VectorMA( cnt, -clipDepth, plane, cnt ); /* make 3 more planes */ if( PlaneFromPoints( p[0], points[ 2 ], points[ 1 ], cnt ) && PlaneFromPoints( p[1], points[ 1 ], points[ 0 ], cnt ) && PlaneFromPoints( p[2], points[ 0 ], points[ 2 ], cnt ) ) { //check for dangerous planes while( (( p[0][0] != 0.0 || p[0][1] != 0.0 ) && fabs(p[0][0]) < 0.00025 && fabs(p[0][1]) < 0.00025) || (( p[0][0] != 0.0 || p[0][2] != 0.0 ) && fabs(p[0][0]) < 0.00025 && fabs(p[0][2]) < 0.00025) || (( p[0][2] != 0.0 || p[0][1] != 0.0 ) && fabs(p[0][2]) < 0.00025 && fabs(p[0][1]) < 0.00025) || (( p[1][0] != 0.0 || p[1][1] != 0.0 ) && fabs(p[1][0]) < 0.00025 && fabs(p[1][1]) < 0.00025) || (( p[1][0] != 0.0 || p[1][2] != 0.0 ) && fabs(p[1][0]) < 0.00025 && fabs(p[1][2]) < 0.00025) || (( p[1][2] != 0.0 || p[1][1] != 0.0 ) && fabs(p[1][2]) < 0.00025 && fabs(p[1][1]) < 0.00025) || (( p[2][0] != 0.0 || p[2][1] != 0.0 ) && fabs(p[2][0]) < 0.00025 && fabs(p[2][1]) < 0.00025) || (( p[2][0] != 0.0 || p[2][2] != 0.0 ) && fabs(p[2][0]) < 0.00025 && fabs(p[2][2]) < 0.00025) || (( p[2][2] != 0.0 || p[2][1] != 0.0 ) && fabs(p[2][2]) < 0.00025 && fabs(p[2][1]) < 0.00025) ) { VectorMA( cnt, -0.1f, plane, cnt ); // Sys_Printf( "shifting pyramid point\n" ); PlaneFromPoints( p[0], points[ 2 ], points[ 1 ], cnt ); PlaneFromPoints( p[1], points[ 1 ], points[ 0 ], cnt ); PlaneFromPoints( p[2], points[ 0 ], points[ 2 ], cnt ); } #if nonax_clip_dbg for ( j = 0; j < 3; j++ ) { for ( k = 0; k < 3; k++ ) { if ( fabs(p[j][k]) < 0.00005 && p[j][k] != 0.0 ){ Sys_Printf( "nonax nrm %6.17f %6.17f %6.17f\n (%6.8f %6.8f %6.8f)\n (%6.8f %6.8f %6.8f)\n (%6.8f %6.8f %6.8f)\n", p[j][0], p[j][1], p[j][2], points[j][0], points[j][1], points[j][2], points[(j+1)%3][0], points[(j+1)%3][1], points[(j+1)%3][2], cnt[0], cnt[1], cnt[2] ); } } } #endif /* set up brush sides */ buildBrush->numsides = 4; buildBrush->sides[ 0 ].shaderInfo = si; buildBrush->sides[ 0 ].surfaceFlags = si->surfaceFlags; for ( j = 1; j < buildBrush->numsides; j++ ) { if ( debugClip ) { buildBrush->sides[ 0 ].shaderInfo = ShaderInfoForShader( "debugclip2" ); buildBrush->sides[ j ].shaderInfo = ShaderInfoForShader( "debugclip" ); } else { buildBrush->sides[ j ].shaderInfo = NULL; // don't emit these faces as draw surfaces, should make smaller BSPs; hope this works } } VectorCopy( points[0], points[3] ); // for cyclic usage buildBrush->sides[ 0 ].planenum = FindFloatPlane( plane, plane[ 3 ], 3, points ); buildBrush->sides[ 1 ].planenum = FindFloatPlane( p[0], p[0][ 3 ], 2, &points[ 1 ] ); // p[0] contains points[1] and points[2] buildBrush->sides[ 2 ].planenum = FindFloatPlane( p[1], p[1][ 3 ], 2, &points[ 0 ] ); // p[1] contains points[0] and points[1] buildBrush->sides[ 3 ].planenum = FindFloatPlane( p[2], p[2][ 3 ], 2, &points[ 2 ] ); // p[2] contains points[2] and points[0] (copied to points[3] } else { Sys_Warning( "triangle (%6.0f %6.0f %6.0f) (%6.0f %6.0f %6.0f) (%6.0f %6.0f %6.0f) of %s was not autoclipped\n", points[0][0], points[0][1], points[0][2], points[1][0], points[1][1], points[1][2], points[2][0], points[2][1], points[2][2], name ); free( buildBrush ); continue; } } else if ( ( si->clipModel && !( spf ) ) || ( ( spawnFlags & 8090 ) == 2 ) ){ //default CLIPMODEL default_CLIPMODEL: // axial normal VectorCopy( plane, bestNormal ); for ( j = 0; j < 3; j++ ){ if ( fabs(bestNormal[j]) > fabs(bestNormal[(j+1)%3]) ){ bestNormal[(j+1)%3] = 0.0; } else { bestNormal[j] = 0.0; } } VectorNormalize( bestNormal, bestNormal ); /* make side planes */ for ( j = 0; j < 3; j++ ) { VectorSubtract( points[(j+1)%3], points[ j ], nrm ); CrossProduct( bestNormal, nrm, p[ j ] ); VectorNormalize( p[ j ], p[ j ] ); p[j][3] = DotProduct( points[j], p[j] ); } /* make back plane */ VectorScale( plane, -1.0f, reverse ); reverse[ 3 ] = -plane[ 3 ]; reverse[3] += DotProduct( bestNormal, plane ) * clipDepth; #if nonax_clip_dbg for ( j = 0; j < 3; j++ ) { for ( k = 0; k < 3; k++ ) { if ( fabs(p[j][k]) < 0.00025 && p[j][k] != 0.0 ){ Sys_Printf( "nonax nrm %6.17f %6.17f %6.17f\n", p[j][0], p[j][1], p[j][2] ); } } } #endif /* set up brush sides */ buildBrush->numsides = 5; buildBrush->sides[ 0 ].shaderInfo = si; buildBrush->sides[ 0 ].surfaceFlags = si->surfaceFlags; for ( j = 1; j < buildBrush->numsides; j++ ) { if ( debugClip ) { buildBrush->sides[ 0 ].shaderInfo = ShaderInfoForShader( "debugclip2" ); buildBrush->sides[ j ].shaderInfo = ShaderInfoForShader( "debugclip" ); } else { buildBrush->sides[ j ].shaderInfo = NULL; // don't emit these faces as draw surfaces, should make smaller BSPs; hope this works } } VectorCopy( points[0], points[3] ); // for cyclic usage buildBrush->sides[ 0 ].planenum = FindFloatPlane( plane, plane[ 3 ], 3, points ); buildBrush->sides[ 1 ].planenum = FindFloatPlane( p[0], p[0][ 3 ], 2, &points[ 0 ] ); // p[0] contains points[0] and points[1] buildBrush->sides[ 2 ].planenum = FindFloatPlane( p[1], p[1][ 3 ], 2, &points[ 1 ] ); // p[1] contains points[1] and points[2] buildBrush->sides[ 3 ].planenum = FindFloatPlane( p[2], p[2][ 3 ], 2, &points[ 2 ] ); // p[2] contains points[2] and points[0] (copied to points[3] buildBrush->sides[ 4 ].planenum = FindFloatPlane( reverse, reverse[ 3 ], 0, NULL ); } /* add to entity */ if ( CreateBrushWindings( buildBrush ) ) { AddBrushBevels(); //% EmitBrushes( buildBrush, NULL, NULL ); buildBrush->next = entities[ mapEntityNum ].brushes; entities[ mapEntityNum ].brushes = buildBrush; entities[ mapEntityNum ].numBrushes++; } else{ Sys_Warning( "triangle (%6.0f %6.0f %6.0f) (%6.0f %6.0f %6.0f) (%6.0f %6.0f %6.0f) of %s was not autoclipped\n", points[0][0], points[0][1], points[0][2], points[1][0], points[1][1], points[1][2], points[2][0], points[2][1], points[2][2], name ); free( buildBrush ); } } } normalEpsilon = normalEpsilon_save; } else if ( spawnFlags & 8090 ){ Sys_Warning( "nonexistent clipping mode selected\n" ); } } } /* AddTriangleModels() adds misc_model surfaces to the bsp */ void AddTriangleModels( entity_t *eparent ){ /* note it */ Sys_FPrintf( SYS_VRB, "--- AddTriangleModels ---\n" ); /* get current brush entity targetname */ const char *targetName; if ( eparent == &entities[0] ) { targetName = ""; } else{ /* misc_model entities target non-worldspawn brush model entities */ if ( !ENT_READKV( &targetName, eparent, "targetname" ) ) { return; } } /* walk the entity list */ for ( std::size_t i = 1; i < entities.size(); ++i ) { /* get entity */ entity_t *e = &entities[ i ]; /* convert misc_models into raw geometry */ if ( !ent_class_is( e, "misc_model" ) ) { continue; } /* ydnar: added support for md3 models on non-worldspawn models */ if ( !strEqual( ValueForKey( e, "target" ), targetName ) ) { continue; } /* get model name */ const char *model; if ( !ENT_READKV( &model, e, "model" ) ) { Sys_Warning( "entity#%d misc_model without a model key\n", e->mapEntityNum ); continue; } /* get model frame */ const int frame = IntForKey( e, "_frame", "frame" ); int castShadows, recvShadows; if ( eparent == &entities[0] ) { /* worldspawn (and func_groups) default to cast/recv shadows in worldspawn group */ castShadows = WORLDSPAWN_CAST_SHADOWS; recvShadows = WORLDSPAWN_RECV_SHADOWS; } else{ /* other entities don't cast any shadows, but recv worldspawn shadows */ castShadows = ENTITY_CAST_SHADOWS; recvShadows = ENTITY_RECV_SHADOWS; } /* get explicit shadow flags */ GetEntityShadowFlags( e, eparent, &castShadows, &recvShadows ); /* get spawnflags */ const int spawnFlags = IntForKey( e, "spawnflags" ); /* get origin */ vec3_t origin; GetVectorForKey( e, "origin", origin ); VectorSubtract( origin, eparent->origin, origin ); /* offset by parent */ /* get scale */ vec3_t scale = { 1.f, 1.f, 1.f }; if( !ENT_READKV( &scale, e, "modelscale_vec" ) ) if( ENT_READKV( &scale[0], e, "modelscale" ) ) scale[1] = scale[2] = scale[0]; /* get "angle" (yaw) or "angles" (pitch yaw roll), store as (roll pitch yaw) */ const char *value; vec3_t angles = { 0.f, 0.f, 0.f }; if ( !ENT_READKV( &value, e, "angles" ) || 3 != sscanf( value, "%f %f %f", &angles[ 1 ], &angles[ 2 ], &angles[ 0 ] ) ) ENT_READKV( &angles[ 2 ], e, "angle" ); /* set transform matrix (thanks spog) */ m4x4_t transform; m4x4_identity( transform ); m4x4_pivoted_transform_by_vec3( transform, origin, angles, eXYZ, scale, vec3_origin ); /* get shader remappings */ std::list remaps; for ( const auto& ep : e->epairs ) { /* look for keys prefixed with "_remap" */ if ( striEqualPrefix( ep.key.c_str(), "_remap" ) ) { /* create new remapping */ remap_t remap; strcpy( remap.from, ep.value.c_str() ); /* split the string */ char *split = strchr( remap.from, ';' ); if ( split == NULL ) { Sys_Warning( "Shader _remap key found in misc_model without a ; character: '%s'\n", remap.from ); continue; } else if( split == remap.from ){ Sys_Warning( "_remap FROM is empty in '%s'\n", remap.from ); continue; } else if( strEmpty( split + 1 ) ){ Sys_Warning( "_remap TO is empty in '%s'\n", remap.from ); continue; } else if( strlen( split + 1 ) >= sizeof( remap.to ) ){ Sys_Warning( "_remap TO is too long in '%s'\n", remap.from ); continue; } /* store the split */ strClear( split ); strcpy( remap.to, ( split + 1 ) ); remaps.push_back( remap ); /* note it */ //% Sys_FPrintf( SYS_VRB, "Remapping %s to %s\n", remap->from, remap->to ); } } /* ydnar: cel shader support */ shaderInfo_t *celShader; if( ENT_READKV( &value, e, "_celshader" ) || ENT_READKV( &value, &entities[ 0 ], "_celshader" ) ){ celShader = ShaderInfoForShader( String64()( "textures/", value ) ); } else{ celShader = globalCelShader.empty() ? NULL : ShaderInfoForShader( globalCelShader ); } /* jal : entity based _samplesize */ int lightmapSampleSize = IntForKey( e, "_lightmapsamplesize", "_samplesize", "_ss" ); if ( lightmapSampleSize < 0 ) lightmapSampleSize = 0; if ( lightmapSampleSize > 0 ) Sys_Printf( "misc_model has lightmap sample size of %.d\n", lightmapSampleSize ); /* get lightmap scale */ float lightmapScale = FloatForKey( e, "lightmapscale", "_lightmapscale", "_ls" ); if ( lightmapScale < 0.0f ) lightmapScale = 0.0f; else if ( lightmapScale > 0.0f ) Sys_Printf( "misc_model has lightmap scale of %.4f\n", lightmapScale ); /* jal : entity based _shadeangle */ float shadeAngle = FloatForKey( e, "_shadeangle", "_smoothnormals", "_sn", "_sa", "_smooth" ); /* vortex' aliases */ if ( shadeAngle < 0.0f ) shadeAngle = 0.0f; else if ( shadeAngle > 0.0f ) Sys_Printf( "misc_model has shading angle of %.4f\n", shadeAngle ); const int skin = IntForKey( e, "_skin", "skin" ); float clipDepth = clipDepthGlobal; if ( ENT_READKV( &clipDepth, e, "_clipdepth" ) ) Sys_Printf( "misc_model %s has autoclip depth of %.3f\n", model, clipDepth ); /* insert the model */ InsertModel( model, skin, frame, transform, &remaps, celShader, mapEntityNum, castShadows, recvShadows, spawnFlags, lightmapScale, lightmapSampleSize, shadeAngle, clipDepth ); } }