use OpenGLRenderable to draw camera workzone for proper sorting and smoother states management

This commit is contained in:
Garux 2018-09-25 20:50:04 +03:00
parent 2d35f656f9
commit cf885ea4ea
2 changed files with 114 additions and 324 deletions

View File

@ -848,6 +848,106 @@ private:
} }
}; };
#include "grid.h"
class RenderableCamWorkzone : public OpenGLRenderable
{
public:
void render( RenderStateFlags state ) const {
glEnableClientState( GL_EDGE_FLAG_ARRAY );
const AABB bounds = GlobalSelectionSystem().getBoundsSelected();
for( std::size_t i = 0; i < 3; ++i ){
const std::size_t i2 = ( i + 1 ) % 3;
const std::size_t i3 = ( i + 2 ) % 3;
// const Vector3 normal = g_vector3_axes[i];
const float offset = 1024;
std::vector<Vector3> points;
points.reserve( 4 );
points.push_back( bounds.origin + g_vector3_axes[i2] * bounds.extents + g_vector3_axes[i3] * bounds.extents );
if( bounds.extents[i2] != 0 ){
points.push_back( bounds.origin - g_vector3_axes[i2] * bounds.extents + g_vector3_axes[i3] * bounds.extents );
}
if( bounds.extents[i3] != 0 ){
points.push_back( bounds.origin + g_vector3_axes[i2] * bounds.extents - g_vector3_axes[i3] * bounds.extents );
if( bounds.extents[i2] != 0 ){
points.push_back( bounds.origin - g_vector3_axes[i2] * bounds.extents - g_vector3_axes[i3] * bounds.extents );
}
}
const float grid = GetGridSize();
const std::size_t approx_count = ( std::max( 0.f, bounds.extents[i] ) + offset ) * 4 / grid + 8;
Array<Vector3> verticesarr( approx_count );
Array<GLboolean> edgearr( approx_count );
Array<Vector4> colorarr0( approx_count );
Array<Vector4> colorarr1( approx_count );
float coord = float_snapped( bounds.origin[i] - std::max( 0.f, bounds.extents[i] ) - offset, grid );
// const float coord_end = float_snapped( bounds.origin[i] + std::max( 0.f, bounds.extents[i] ) + offset, grid ) + 0.1f;
const bool start0 = float_snapped( coord, grid * 2 ) == coord;
std::size_t count = 0;
for( ; count < approx_count - 4; count += 4 ){
verticesarr[count][i] =
verticesarr[count + 1][i] = coord;
const float alpha = std::min( 1.f, static_cast<float>( ( offset + bounds.extents[i] - fabs( coord - bounds.origin[i] ) ) / offset ) );
colorarr0[count] = colorarr0[count + 1] = Vector4( 1, 0, 0, alpha );
colorarr1[count] = colorarr1[count + 1] = Vector4( 1, 1, 1, alpha );
coord += grid;
verticesarr[count + 2][i] =
verticesarr[count + 3][i] = coord;
const float alpha2 = std::min( 1.f, static_cast<float>( ( offset + bounds.extents[i] - fabs( coord - bounds.origin[i] ) ) / offset ) );
colorarr0[count + 2] = colorarr0[count + 3] = Vector4( 1, 0, 0, alpha2 );
colorarr1[count + 2] = colorarr1[count + 3] = Vector4( 1, 1, 1, alpha2 );
coord += grid;
edgearr[count] =
edgearr[count + 2] = GL_FALSE;
edgearr[count + 1] =
edgearr[count + 3] = GL_TRUE;
}
if( points.size() == 1 ){
points.push_back( points[0] + g_vector3_axes[i2] * 8 );
for( std::size_t k = 0; k < count; k += 4 ){
edgearr[k + 1] = GL_FALSE;
}
}
glVertexPointer( 3, GL_FLOAT, sizeof( Vector3 ), verticesarr.data()->data() );
glEdgeFlagPointer( sizeof( GLboolean ), edgearr.data() );
for( std::vector<Vector3>::const_iterator j = points.begin(); j != points.end(); ++++j ){
const std::vector<Vector3>::const_iterator jj = j + 1;
for( std::size_t k = 0; k < count; k += 4 ){
verticesarr[k][i2] = ( *j )[i2];
verticesarr[k][i3] = ( *j )[i3];
verticesarr[k + 1][i2] = ( *jj )[i2];
verticesarr[k + 1][i3] = ( *jj )[i3];
verticesarr[k + 2][i2] = ( *jj )[i2];
verticesarr[k + 2][i3] = ( *jj )[i3];
verticesarr[k + 3][i2] = ( *j )[i2];
verticesarr[k + 3][i3] = ( *j )[i3];
}
glPolygonOffset( -2, 2 );
glColorPointer( 4, GL_FLOAT, sizeof( Vector4 ), colorarr0.data()->data() );
glDrawArrays( GL_QUADS, start0? 0 : 2, GLsizei( count - ( start0? 4 : 2 ) ) );
glPolygonOffset( 1, -1 );
glColorPointer( 4, GL_FLOAT, sizeof( Vector4 ), colorarr1.data()->data() );
glDrawArrays( GL_QUADS, start0? 2 : 0, GLsizei( count - ( start0? 2 : 4 ) ) );
}
}
glDisableClientState( GL_EDGE_FLAG_ARRAY );
}
void render( Renderer& renderer, Shader* shader ) const {
renderer.SetState( shader, Renderer::eFullMaterials );
renderer.addRenderable( *this, g_matrix4_identity );
}
};
@ -868,6 +968,7 @@ static Shader* m_state_select0;
static Shader* m_state_select1; static Shader* m_state_select1;
static Shader* m_state_wire; static Shader* m_state_wire;
static Shader* m_state_facewire; static Shader* m_state_facewire;
static Shader* m_state_workzone;
FreezePointer m_freezePointer; FreezePointer m_freezePointer;
@ -914,6 +1015,7 @@ void queue_draw(){
void draw(); void draw();
static void captureStates(){ static void captureStates(){
m_state_workzone = GlobalShaderCache().capture( "$CAM_WORKZONE" );
m_state_facewire = GlobalShaderCache().capture( "$CAM_FACEWIRE" ); m_state_facewire = GlobalShaderCache().capture( "$CAM_FACEWIRE" );
m_state_wire = GlobalShaderCache().capture( "$CAM_WIRE" ); m_state_wire = GlobalShaderCache().capture( "$CAM_WIRE" );
m_state_select0 = GlobalShaderCache().capture( "$CAM_OVERLAY" ); m_state_select0 = GlobalShaderCache().capture( "$CAM_OVERLAY" );
@ -924,6 +1026,7 @@ static void releaseStates(){
GlobalShaderCache().release( "$CAM_OVERLAY" ); GlobalShaderCache().release( "$CAM_OVERLAY" );
GlobalShaderCache().release( "$CAM_WIRE" ); GlobalShaderCache().release( "$CAM_WIRE" );
GlobalShaderCache().release( "$CAM_FACEWIRE" ); GlobalShaderCache().release( "$CAM_FACEWIRE" );
GlobalShaderCache().release( "$CAM_WORKZONE" );
} }
camera_t& getCamera(){ camera_t& getCamera(){
@ -957,6 +1060,7 @@ Shader* CamWnd::m_state_select0 = 0;
Shader* CamWnd::m_state_select1 = 0; Shader* CamWnd::m_state_select1 = 0;
Shader* CamWnd::m_state_wire = 0; Shader* CamWnd::m_state_wire = 0;
Shader* CamWnd::m_state_facewire = 0; Shader* CamWnd::m_state_facewire = 0;
Shader* CamWnd::m_state_workzone = 0;
CamWnd* NewCamWnd(){ CamWnd* NewCamWnd(){
return new CamWnd; return new CamWnd;
@ -1845,7 +1949,6 @@ void ShowSize3dToggle(){
} }
} }
#include "grid.h"
void CamWnd::Cam_Draw(){ void CamWnd::Cam_Draw(){
// globalOutputStream() << "Cam_Draw()\n"; // globalOutputStream() << "Cam_Draw()\n";
fbo_get()->start(); fbo_get()->start();
@ -1953,330 +2056,12 @@ void CamWnd::Cam_Draw(){
Scene_Render( renderer, m_view ); Scene_Render( renderer, m_view );
renderer.render( m_Camera.modelview, m_Camera.projection ); RenderableCamWorkzone workzone;
}
/* workzone */
if( g_camwindow_globals_private.m_bShowWorkzone && GlobalSelectionSystem().countSelected() != 0 ){ if( g_camwindow_globals_private.m_bShowWorkzone && GlobalSelectionSystem().countSelected() != 0 ){
#if 0 workzone.render( renderer, m_state_workzone );
glEnable( GL_BLEND );
glBlendFunc( GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA );
glShadeModel( GL_SMOOTH );
glEnable( GL_DEPTH_TEST );
glDepthFunc( GL_LESS );
glDepthMask( GL_TRUE );
glDisableClientState( GL_TEXTURE_COORD_ARRAY );
glDisableClientState( GL_NORMAL_ARRAY );
glDisableClientState( GL_COLOR_ARRAY );
glDisable( GL_TEXTURE_2D );
glDisable( GL_LIGHTING );
glDisable( GL_COLOR_MATERIAL );
glDisable( GL_LINE_STIPPLE );
glLineWidth( 1 );
#if 0
const Vector4 color0( g_camwindow_globals.color_selbrushes3d, 0 );
const Vector4 color1( g_camwindow_globals.color_selbrushes3d, 1 );
#else
const Vector4 color0( 1, 1, 1, 0 );
const Vector4 color1( 1, 1, 1, 1 );
#endif
const AABB bounds = GlobalSelectionSystem().getBoundsSelected();
glBegin( GL_LINES );
for( std::size_t i = 0; i < 3; ++i ){
const std::size_t i2 = ( i + 1 ) % 3;
const std::size_t i3 = ( i + 2 ) % 3;
const Vector3 normal = g_vector3_axes[i];
const float size = 1024;
std::vector<Vector3> points;
points.reserve( 4 );
points.push_back( bounds.origin + g_vector3_axes[i2] * bounds.extents + g_vector3_axes[i3] * bounds.extents );
if( bounds.extents[i2] != 0 ){
points.push_back( bounds.origin - g_vector3_axes[i2] * bounds.extents + g_vector3_axes[i3] * bounds.extents );
}
if( bounds.extents[i3] != 0 ){
points.push_back( bounds.origin + g_vector3_axes[i2] * bounds.extents - g_vector3_axes[i3] * bounds.extents );
if( bounds.extents[i2] != 0 ){
points.push_back( bounds.origin - g_vector3_axes[i2] * bounds.extents - g_vector3_axes[i3] * bounds.extents );
}
}
for( std::vector<Vector3>::const_iterator j = points.begin(); j != points.end(); ++j ){
glColor4fv( vector4_to_array( color0 ) );
glVertex3fv( vector3_to_array( *j + normal * ( bounds.extents[i] + size ) ) );
glColor4fv( vector4_to_array( color1 ) );
glVertex3fv( vector3_to_array( *j + normal * ( bounds.extents[i] ) ) );
glVertex3fv( vector3_to_array( *j + normal * ( bounds.extents[i] ) ) );
glVertex3fv( vector3_to_array( *j - normal * ( bounds.extents[i] ) ) );
glVertex3fv( vector3_to_array( *j - normal * ( bounds.extents[i] ) ) );
glColor4fv( vector4_to_array( color0 ) );
glVertex3fv( vector3_to_array( *j - normal * ( bounds.extents[i] + size ) ) );
}
}
glEnd();
#else
glEnable( GL_BLEND );
glBlendFunc( GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA );
glShadeModel( GL_SMOOTH );
glEnable( GL_DEPTH_TEST );
// glDepthFunc( GL_LESS );
glDepthFunc( GL_LEQUAL );
glDepthMask( GL_TRUE );
glDisableClientState( GL_TEXTURE_COORD_ARRAY );
glDisableClientState( GL_NORMAL_ARRAY );
glEnableClientState( GL_COLOR_ARRAY );
glEnableClientState( GL_EDGE_FLAG_ARRAY );
glEnableClientState( GL_VERTEX_ARRAY );
glDisable( GL_TEXTURE_2D );
glDisable( GL_LIGHTING );
glDisable( GL_COLOR_MATERIAL );
glDisable( GL_LINE_STIPPLE );
glLineWidth( 1 );
glEnable( GL_POLYGON_OFFSET_LINE );
glPolygonMode( GL_FRONT_AND_BACK, GL_LINE );
glDisable( GL_CULL_FACE );
// glMatrixMode( GL_PROJECTION );
// Matrix4 ma( m_Camera.projection );
// ma[10] += 4.8e-5f; /* lengyel */
// glLoadMatrixf( reinterpret_cast<const float*>( &ma ) );
const Vector4 color0( 0, 1, 0, 0 );
const Vector4 color1( 0, 1, 0, 1 );
const AABB bounds = GlobalSelectionSystem().getBoundsSelected();
#if 0
glBegin( GL_LINES );
for( std::size_t i = 0; i < 3; ++i ){
const std::size_t i2 = ( i + 1 ) % 3;
const std::size_t i3 = ( i + 2 ) % 3;
const Vector3 normal = g_vector3_axes[i];
const float size = 1024;
std::vector<Vector3> points;
points.reserve( 4 );
points.push_back( bounds.origin + g_vector3_axes[i2] * bounds.extents + g_vector3_axes[i3] * bounds.extents );
if( bounds.extents[i2] != 0 ){
points.push_back( bounds.origin - g_vector3_axes[i2] * bounds.extents + g_vector3_axes[i3] * bounds.extents );
}
if( bounds.extents[i3] != 0 ){
points.push_back( bounds.origin + g_vector3_axes[i2] * bounds.extents - g_vector3_axes[i3] * bounds.extents );
if( bounds.extents[i2] != 0 ){
points.push_back( bounds.origin - g_vector3_axes[i2] * bounds.extents - g_vector3_axes[i3] * bounds.extents );
}
}
for( std::vector<Vector3>::const_iterator j = points.begin(); j != points.end(); ++j ){
glColor4fv( vector4_to_array( color0 ) );
glVertex3fv( vector3_to_array( *j + normal * ( bounds.extents[i] + size ) ) );
glColor4fv( vector4_to_array( color1 ) );
glVertex3fv( vector3_to_array( *j + normal * ( bounds.extents[i] ) ) );
glVertex3fv( vector3_to_array( *j + normal * ( bounds.extents[i] ) ) );
glVertex3fv( vector3_to_array( *j - normal * ( bounds.extents[i] ) ) );
glVertex3fv( vector3_to_array( *j - normal * ( bounds.extents[i] ) ) );
glColor4fv( vector4_to_array( color0 ) );
glVertex3fv( vector3_to_array( *j - normal * ( bounds.extents[i] + size ) ) );
}
}
glEnd();
#endif
#if 0
glNormal3f( 0, 0, 1 );
glBegin( GL_POLYGON );
glColor4fv( vector4_to_array( color1 ) );
glEdgeFlag( GL_TRUE );
glVertex3fv( vector3_to_array( bounds.origin + bounds.extents * Vector3( 5, 1, 1 ) ) );
glEdgeFlag( GL_FALSE );
glVertex3fv( vector3_to_array( bounds.origin + bounds.extents * Vector3( 10, 1, 1 ) ) );
glEdgeFlag( GL_TRUE );
glVertex3fv( vector3_to_array( bounds.origin + bounds.extents * Vector3( 10, -1, 1 ) ) );
glEdgeFlag( GL_FALSE );
glVertex3fv( vector3_to_array( bounds.origin + bounds.extents * Vector3( 5, -1, 1 ) ) );
glEdgeFlag( GL_TRUE );
glVertex3fv( vector3_to_array( bounds.origin + bounds.extents * Vector3( -1, -1, 1 ) ) );
glEdgeFlag( GL_FALSE );
glVertex3fv( vector3_to_array( bounds.origin + bounds.extents * Vector3( -1, 1, 1 ) ) );
glEdgeFlag( GL_TRUE );
glEnd();
#endif
#if 0
Vector3 verts[4] = { bounds.origin + bounds.extents * Vector3( 5, 1, 1 ),
bounds.origin + bounds.extents * Vector3( 5, -1, 1 ),
bounds.origin + bounds.extents * Vector3( -1, -1, 1 ),
bounds.origin + bounds.extents * Vector3( -1, 1, 1 ) };
Vector4 colours[4] = { color1, color0, color1, color0 };
glVertexPointer( 3, GL_FLOAT, sizeof( Vector3 ), verts[0].data() );
glColorPointer( 4, GL_FLOAT, sizeof( Vector4 ), colours[0].data() );
glDrawArrays( GL_POLYGON, 0, 4 );
#endif // 0
#if 0
for( std::size_t i = 0; i < 3; ++i ){
const std::size_t i2 = ( i + 1 ) % 3;
const std::size_t i3 = ( i + 2 ) % 3;
const Vector3 normal = g_vector3_axes[i];
const float offset = 256;
std::vector<Vector3> points;
points.reserve( 4 );
points.push_back( bounds.origin + g_vector3_axes[i2] * bounds.extents + g_vector3_axes[i3] * bounds.extents );
if( bounds.extents[i2] != 0 ){
points.push_back( bounds.origin - g_vector3_axes[i2] * bounds.extents + g_vector3_axes[i3] * bounds.extents );
}
if( bounds.extents[i3] != 0 ){
points.push_back( bounds.origin + g_vector3_axes[i2] * bounds.extents - g_vector3_axes[i3] * bounds.extents );
if( bounds.extents[i2] != 0 ){
points.push_back( bounds.origin - g_vector3_axes[i2] * bounds.extents - g_vector3_axes[i3] * bounds.extents );
}
} }
const float grid = GetGridSize(); renderer.render( m_Camera.modelview, m_Camera.projection );
const std::size_t approx_count = ( std::max( 0.f, bounds.extents[i] ) + offset ) * 2 / grid + 4;
Array<Vector3> verticesarr( approx_count );
Array<GLboolean> edgearr0( approx_count );
Array<GLboolean> edgearr1( approx_count );
Array<Vector4> colorarr0( approx_count );
Array<Vector4> colorarr1( approx_count );
float coord = float_snapped( bounds.origin[i] - std::max( 0.f, bounds.extents[i] ) - offset, grid );
const float coord_end = float_snapped( bounds.origin[i] + std::max( 0.f, bounds.extents[i] ) + offset, grid ) + 0.1f;
GLboolean flag = float_snapped( coord, grid * 2 ) == coord? GL_TRUE : GL_FALSE;
std::size_t count = 0;
for( ; coord < coord_end; coord += grid ){
verticesarr[count][i] = coord;
colorarr0[count] = Vector4( 1, 0, 0, 1 );
colorarr1[count] = Vector4( 1, 1, 1, 1 );
edgearr0[count] = flag;
flag = !flag;
edgearr1[count] = flag;
++count;
}
edgearr0[count - 1] =
edgearr1[count - 1] =
edgearr0[count] =
edgearr1[count] = GL_FALSE;
++count;
glVertexPointer( 3, GL_FLOAT, sizeof( Vector3 ), verticesarr.data()->data() );
for( std::vector<Vector3>::const_iterator j = points.begin(); j != points.end(); ++j ){
for( std::size_t k = 0; k < count - 1; ++k ){
verticesarr[k][i2] = ( *j )[i2];
verticesarr[k][i3] = ( *j )[i3];
}
verticesarr[count - 1] = verticesarr[count - 2] + g_vector3_axes[i2] * 512 + g_vector3_axes[i3] * 512;
glPolygonOffset( -2, 2 );
glEdgeFlagPointer( sizeof( GLboolean ), edgearr0.data() );
glColorPointer( 4, GL_FLOAT, sizeof( Vector4 ), colorarr0.data()->data() );
glDrawArrays( GL_POLYGON, 0, GLsizei( count ) );
glPolygonOffset( 1, -1 );
glEdgeFlagPointer( sizeof( GLboolean ), edgearr1.data() );
glColorPointer( 4, GL_FLOAT, sizeof( Vector4 ), colorarr1.data()->data() );
glDrawArrays( GL_POLYGON, 0, GLsizei( count ) );
}
}
#endif
#if 1
for( std::size_t i = 0; i < 3; ++i ){
const std::size_t i2 = ( i + 1 ) % 3;
const std::size_t i3 = ( i + 2 ) % 3;
// const Vector3 normal = g_vector3_axes[i];
const float offset = 1024;
std::vector<Vector3> points;
points.reserve( 4 );
points.push_back( bounds.origin + g_vector3_axes[i2] * bounds.extents + g_vector3_axes[i3] * bounds.extents );
if( bounds.extents[i2] != 0 ){
points.push_back( bounds.origin - g_vector3_axes[i2] * bounds.extents + g_vector3_axes[i3] * bounds.extents );
}
if( bounds.extents[i3] != 0 ){
points.push_back( bounds.origin + g_vector3_axes[i2] * bounds.extents - g_vector3_axes[i3] * bounds.extents );
if( bounds.extents[i2] != 0 ){
points.push_back( bounds.origin - g_vector3_axes[i2] * bounds.extents - g_vector3_axes[i3] * bounds.extents );
}
}
const float grid = GetGridSize();
const std::size_t approx_count = ( std::max( 0.f, bounds.extents[i] ) + offset ) * 4 / grid + 8;
Array<Vector3> verticesarr( approx_count );
Array<GLboolean> edgearr( approx_count );
Array<Vector4> colorarr0( approx_count );
Array<Vector4> colorarr1( approx_count );
float coord = float_snapped( bounds.origin[i] - std::max( 0.f, bounds.extents[i] ) - offset, grid );
// const float coord_end = float_snapped( bounds.origin[i] + std::max( 0.f, bounds.extents[i] ) + offset, grid ) + 0.1f;
const bool start0 = float_snapped( coord, grid * 2 ) == coord;
std::size_t count = 0;
for( ; count < approx_count - 4; count += 4 ){
verticesarr[count][i] =
verticesarr[count + 1][i] = coord;
const float alpha = std::min( 1.f, static_cast<float>( ( offset + bounds.extents[i] - fabs( coord - bounds.origin[i] ) ) / offset ) );
colorarr0[count] = colorarr0[count + 1] = Vector4( 1, 0, 0, alpha );
colorarr1[count] = colorarr1[count + 1] = Vector4( 1, 1, 1, alpha );
coord += grid;
verticesarr[count + 2][i] =
verticesarr[count + 3][i] = coord;
const float alpha2 = std::min( 1.f, static_cast<float>( ( offset + bounds.extents[i] - fabs( coord - bounds.origin[i] ) ) / offset ) );
colorarr0[count + 2] = colorarr0[count + 3] = Vector4( 1, 0, 0, alpha2 );
colorarr1[count + 2] = colorarr1[count + 3] = Vector4( 1, 1, 1, alpha2 );
coord += grid;
edgearr[count] =
edgearr[count + 2] = GL_FALSE;
edgearr[count + 1] =
edgearr[count + 3] = GL_TRUE;
}
if( points.size() == 1 ){
points.push_back( points[0] + g_vector3_axes[i2] * 8 );
for( std::size_t k = 0; k < count; k += 4 ){
edgearr[k + 1] = GL_FALSE;
}
}
glVertexPointer( 3, GL_FLOAT, sizeof( Vector3 ), verticesarr.data()->data() );
glEdgeFlagPointer( sizeof( GLboolean ), edgearr.data() );
for( std::vector<Vector3>::const_iterator j = points.begin(); j != points.end(); ++++j ){
const std::vector<Vector3>::const_iterator jj = j + 1;
for( std::size_t k = 0; k < count; k += 4 ){
verticesarr[k][i2] = ( *j )[i2];
verticesarr[k][i3] = ( *j )[i3];
verticesarr[k + 1][i2] = ( *jj )[i2];
verticesarr[k + 1][i3] = ( *jj )[i3];
verticesarr[k + 2][i2] = ( *jj )[i2];
verticesarr[k + 2][i3] = ( *jj )[i3];
verticesarr[k + 3][i2] = ( *j )[i2];
verticesarr[k + 3][i3] = ( *j )[i3];
}
glPolygonOffset( -2, 2 );
glColorPointer( 4, GL_FLOAT, sizeof( Vector4 ), colorarr0.data()->data() );
glDrawArrays( GL_QUADS, start0? 0 : 2, GLsizei( count - ( start0? 4 : 2 ) ) );
glPolygonOffset( 1, -1 );
glColorPointer( 4, GL_FLOAT, sizeof( Vector4 ), colorarr1.data()->data() );
glDrawArrays( GL_QUADS, start0? 2 : 0, GLsizei( count - ( start0? 2 : 4 ) ) );
}
}
#endif
glShadeModel( GL_FLAT );
glDisableClientState( GL_EDGE_FLAG_ARRAY );
glDisable( GL_POLYGON_OFFSET_LINE );
#endif
} }
/* size */ /* size */

View File

@ -2287,6 +2287,11 @@ void OpenGLShader::construct( const char* name ){
hiddenLine.m_depthfunc = GL_GREATER; hiddenLine.m_depthfunc = GL_GREATER;
hiddenLine.m_linestipple_factor = 2; hiddenLine.m_linestipple_factor = 2;
} }
else if ( string_equal( name + 1, "CAM_WORKZONE" ) ) {
state.m_state = RENDER_DEPTHTEST | RENDER_COLOURWRITE | RENDER_DEPTHWRITE | RENDER_BLEND | RENDER_COLOURARRAY | RENDER_OFFSETLINE | RENDER_SMOOTH;
state.m_sort = OpenGLState::eSortOverlayFirst + 3;
state.m_depthfunc = GL_LEQUAL;
}
else if ( string_equal( name + 1, "XY_OVERLAY" ) ) { else if ( string_equal( name + 1, "XY_OVERLAY" ) ) {
state.m_colour[0] = g_xywindow_globals.color_selbrushes[0]; state.m_colour[0] = g_xywindow_globals.color_selbrushes[0];
state.m_colour[1] = g_xywindow_globals.color_selbrushes[1]; state.m_colour[1] = g_xywindow_globals.color_selbrushes[1];