::zerowing-base=422
This commit is contained in:
parent
6ce0c65e77
commit
94cb905da9
|
|
@ -24,6 +24,7 @@ Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|||
|
||||
// mathlib.h
|
||||
#include <math.h>
|
||||
#include <float.h>
|
||||
|
||||
#ifdef __cplusplus
|
||||
|
||||
|
|
@ -40,6 +41,12 @@ typedef vec_t vec3_t[3];
|
|||
typedef vec_t vec5_t[5];
|
||||
typedef vec_t vec4_t[4];
|
||||
|
||||
// Smallest positive value for vec_t such that 1.0 + VEC_SMALLEST_EPSILON_AROUND_ONE != 1.0.
|
||||
// In the case of 32 bit floats (which is almost certainly the case), it's 0.00000011921.
|
||||
// Don't forget that your epsilons should depend on the possible range of values,
|
||||
// because for example adding VEC_SMALLEST_EPSILON_AROUND_ONE to 1024.0 will have no effect.
|
||||
#define VEC_SMALLEST_EPSILON_AROUND_ONE FLT_EPSILON
|
||||
|
||||
#define SIDE_FRONT 0
|
||||
#define SIDE_ON 2
|
||||
#define SIDE_BACK 1
|
||||
|
|
@ -83,6 +90,9 @@ extern const vec3_t g_vec3_axis_z;
|
|||
|
||||
qboolean VectorCompare (const vec3_t v1, const vec3_t v2);
|
||||
|
||||
qboolean VectorIsOnAxis(vec3_t v);
|
||||
qboolean VectorIsOnAxialPlane(vec3_t v);
|
||||
|
||||
vec_t VectorLength(const vec3_t v);
|
||||
|
||||
void VectorMA( const vec3_t va, vec_t scale, const vec3_t vb, vec3_t vc );
|
||||
|
|
@ -419,6 +429,50 @@ vec_t ray_intersect_plane(const ray_t* ray, const vec3_t normal, vec_t dist);
|
|||
int plane_intersect_planes(const vec4_t plane1, const vec4_t plane2, const vec4_t plane3, vec3_t intersection);
|
||||
|
||||
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// Below is double-precision math stuff. This was initially needed by the new
|
||||
// "base winding" code in q3map2 brush processing in order to fix the famous
|
||||
// "disappearing triangles" issue. These definitions can be used wherever extra
|
||||
// precision is needed.
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
typedef double vec_accu_t;
|
||||
typedef vec_accu_t vec3_accu_t[3];
|
||||
|
||||
// Smallest positive value for vec_accu_t such that 1.0 + VEC_ACCU_SMALLEST_EPSILON_AROUND_ONE != 1.0.
|
||||
// In the case of 64 bit doubles (which is almost certainly the case), it's 0.00000000000000022204.
|
||||
// Don't forget that your epsilons should depend on the possible range of values,
|
||||
// because for example adding VEC_ACCU_SMALLEST_EPSILON_AROUND_ONE to 1024.0 will have no effect.
|
||||
#define VEC_ACCU_SMALLEST_EPSILON_AROUND_ONE DBL_EPSILON
|
||||
|
||||
vec_accu_t VectorLengthAccu(const vec3_accu_t v);
|
||||
|
||||
// I have a feeling it may be safer to break these #define functions out into actual functions
|
||||
// in order to avoid accidental loss of precision. For example, say you call
|
||||
// VectorScaleAccu(vec3_t, vec_t, vec3_accu_t). The scale would take place in 32 bit land
|
||||
// and the result would be cast to 64 bit, which would cause total loss of precision when
|
||||
// scaling by a large factor.
|
||||
//#define DotProductAccu(x, y) ((x)[0] * (y)[0] + (x)[1] * (y)[1] + (x)[2] * (y)[2])
|
||||
//#define VectorSubtractAccu(a, b, c) ((c)[0] = (a)[0] - (b)[0], (c)[1] = (a)[1] - (b)[1], (c)[2] = (a)[2] - (b)[2])
|
||||
//#define VectorAddAccu(a, b, c) ((c)[0] = (a)[0] + (b)[0], (c)[1] = (a)[1] + (b)[1], (c)[2] = (a)[2] + (b)[2])
|
||||
//#define VectorCopyAccu(a, b) ((b)[0] = (a)[0], (b)[1] = (a)[1], (b)[2] = (a)[2])
|
||||
//#define VectorScaleAccu(a, b, c) ((c)[0] = (b) * (a)[0], (c)[1] = (b) * (a)[1], (c)[2] = (b) * (a)[2])
|
||||
//#define CrossProductAccu(a, b, c) ((c)[0] = (a)[1] * (b)[2] - (a)[2] * (b)[1], (c)[1] = (a)[2] * (b)[0] - (a)[0] * (b)[2], (c)[2] = (a)[0] * (b)[1] - (a)[1] * (b)[0])
|
||||
//#define Q_rintAccu(in) ((vec_accu_t) floor(in + 0.5))
|
||||
|
||||
vec_accu_t DotProductAccu(const vec3_accu_t a, const vec3_accu_t b);
|
||||
void VectorSubtractAccu(const vec3_accu_t a, const vec3_accu_t b, vec3_accu_t out);
|
||||
void VectorAddAccu(const vec3_accu_t a, const vec3_accu_t b, vec3_accu_t out);
|
||||
void VectorCopyAccu(const vec3_accu_t in, vec3_accu_t out);
|
||||
void VectorScaleAccu(const vec3_accu_t in, vec_accu_t scaleFactor, vec3_accu_t out);
|
||||
void CrossProductAccu(const vec3_accu_t a, const vec3_accu_t b, vec3_accu_t out);
|
||||
vec_accu_t Q_rintAccu(vec_accu_t val);
|
||||
|
||||
void VectorCopyAccuToRegular(const vec3_accu_t in, vec3_t out);
|
||||
void VectorCopyRegularToAccu(const vec3_t in, vec3_accu_t out);
|
||||
vec_accu_t VectorNormalizeAccu(const vec3_accu_t in, vec3_accu_t out);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
|
|
|||
|
|
@ -30,6 +30,54 @@ const vec3_t g_vec3_axis_x = { 1, 0, 0, };
|
|||
const vec3_t g_vec3_axis_y = { 0, 1, 0, };
|
||||
const vec3_t g_vec3_axis_z = { 0, 0, 1, };
|
||||
|
||||
/*
|
||||
================
|
||||
VectorIsOnAxis
|
||||
================
|
||||
*/
|
||||
qboolean VectorIsOnAxis(vec3_t v)
|
||||
{
|
||||
int i, zeroComponentCount;
|
||||
|
||||
zeroComponentCount = 0;
|
||||
for (i = 0; i < 3; i++)
|
||||
{
|
||||
if (v[i] == 0.0)
|
||||
{
|
||||
zeroComponentCount++;
|
||||
}
|
||||
}
|
||||
|
||||
if (zeroComponentCount > 1)
|
||||
{
|
||||
// The zero vector will be on axis.
|
||||
return qtrue;
|
||||
}
|
||||
|
||||
return qfalse;
|
||||
}
|
||||
|
||||
/*
|
||||
================
|
||||
VectorIsOnAxialPlane
|
||||
================
|
||||
*/
|
||||
qboolean VectorIsOnAxialPlane(vec3_t v)
|
||||
{
|
||||
int i;
|
||||
|
||||
for (i = 0; i < 3; i++)
|
||||
{
|
||||
if (v[i] == 0.0)
|
||||
{
|
||||
// The zero vector will be on axial plane.
|
||||
return qtrue;
|
||||
}
|
||||
}
|
||||
|
||||
return qfalse;
|
||||
}
|
||||
|
||||
/*
|
||||
================
|
||||
MakeNormalVectors
|
||||
|
|
@ -119,21 +167,30 @@ void _VectorCopy (vec3_t in, vec3_t out)
|
|||
}
|
||||
|
||||
vec_t VectorNormalize( const vec3_t in, vec3_t out ) {
|
||||
vec_t length, ilength;
|
||||
|
||||
length = (vec_t)sqrt (in[0]*in[0] + in[1]*in[1] + in[2]*in[2]);
|
||||
// The sqrt() function takes double as an input and returns double as an
|
||||
// output according the the man pages on Debian and on FreeBSD. Therefore,
|
||||
// I don't see a reason why using a double outright (instead of using the
|
||||
// vec_accu_t alias for example) could possibly be frowned upon.
|
||||
|
||||
double x, y, z, length;
|
||||
|
||||
x = (double) in[0];
|
||||
y = (double) in[1];
|
||||
z = (double) in[2];
|
||||
|
||||
length = sqrt((x * x) + (y * y) + (z * z));
|
||||
if (length == 0)
|
||||
{
|
||||
VectorClear (out);
|
||||
return 0;
|
||||
}
|
||||
|
||||
ilength = 1.0f/length;
|
||||
out[0] = in[0]*ilength;
|
||||
out[1] = in[1]*ilength;
|
||||
out[2] = in[2]*ilength;
|
||||
out[0] = (vec_t) (x / length);
|
||||
out[1] = (vec_t) (y / length);
|
||||
out[2] = (vec_t) (z / length);
|
||||
|
||||
return length;
|
||||
return (vec_t) length;
|
||||
}
|
||||
|
||||
vec_t ColorNormalize( const vec3_t in, vec3_t out ) {
|
||||
|
|
@ -584,3 +641,153 @@ void RotatePointAroundVector( vec3_t dst, const vec3_t dir, const vec3_t point,
|
|||
dst[i] = rot[i][0] * point[0] + rot[i][1] * point[1] + rot[i][2] * point[2];
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// Below is double-precision math stuff. This was initially needed by the new
|
||||
// "base winding" code in q3map2 brush processing in order to fix the famous
|
||||
// "disappearing triangles" issue. These definitions can be used wherever extra
|
||||
// precision is needed.
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
/*
|
||||
=================
|
||||
VectorLengthAccu
|
||||
=================
|
||||
*/
|
||||
vec_accu_t VectorLengthAccu(const vec3_accu_t v)
|
||||
{
|
||||
return (vec_accu_t) sqrt((v[0] * v[0]) + (v[1] * v[1]) + (v[2] * v[2]));
|
||||
}
|
||||
|
||||
/*
|
||||
=================
|
||||
DotProductAccu
|
||||
=================
|
||||
*/
|
||||
vec_accu_t DotProductAccu(const vec3_accu_t a, const vec3_accu_t b)
|
||||
{
|
||||
return (a[0] * b[0]) + (a[1] * b[1]) + (a[2] * b[2]);
|
||||
}
|
||||
|
||||
/*
|
||||
=================
|
||||
VectorSubtractAccu
|
||||
=================
|
||||
*/
|
||||
void VectorSubtractAccu(const vec3_accu_t a, const vec3_accu_t b, vec3_accu_t out)
|
||||
{
|
||||
out[0] = a[0] - b[0];
|
||||
out[1] = a[1] - b[1];
|
||||
out[2] = a[2] - b[2];
|
||||
}
|
||||
|
||||
/*
|
||||
=================
|
||||
VectorAddAccu
|
||||
=================
|
||||
*/
|
||||
void VectorAddAccu(const vec3_accu_t a, const vec3_accu_t b, vec3_accu_t out)
|
||||
{
|
||||
out[0] = a[0] + b[0];
|
||||
out[1] = a[1] + b[1];
|
||||
out[2] = a[2] + b[2];
|
||||
}
|
||||
|
||||
/*
|
||||
=================
|
||||
VectorCopyAccu
|
||||
=================
|
||||
*/
|
||||
void VectorCopyAccu(const vec3_accu_t in, vec3_accu_t out)
|
||||
{
|
||||
out[0] = in[0];
|
||||
out[1] = in[1];
|
||||
out[2] = in[2];
|
||||
}
|
||||
|
||||
/*
|
||||
=================
|
||||
VectorScaleAccu
|
||||
=================
|
||||
*/
|
||||
void VectorScaleAccu(const vec3_accu_t in, vec_accu_t scaleFactor, vec3_accu_t out)
|
||||
{
|
||||
out[0] = in[0] * scaleFactor;
|
||||
out[1] = in[1] * scaleFactor;
|
||||
out[2] = in[2] * scaleFactor;
|
||||
}
|
||||
|
||||
/*
|
||||
=================
|
||||
CrossProductAccu
|
||||
=================
|
||||
*/
|
||||
void CrossProductAccu(const vec3_accu_t a, const vec3_accu_t b, vec3_accu_t out)
|
||||
{
|
||||
out[0] = (a[1] * b[2]) - (a[2] * b[1]);
|
||||
out[1] = (a[2] * b[0]) - (a[0] * b[2]);
|
||||
out[2] = (a[0] * b[1]) - (a[1] * b[0]);
|
||||
}
|
||||
|
||||
/*
|
||||
=================
|
||||
Q_rintAccu
|
||||
=================
|
||||
*/
|
||||
vec_accu_t Q_rintAccu(vec_accu_t val)
|
||||
{
|
||||
return (vec_accu_t) floor(val + 0.5);
|
||||
}
|
||||
|
||||
/*
|
||||
=================
|
||||
VectorCopyAccuToRegular
|
||||
=================
|
||||
*/
|
||||
void VectorCopyAccuToRegular(const vec3_accu_t in, vec3_t out)
|
||||
{
|
||||
out[0] = (vec_t) in[0];
|
||||
out[1] = (vec_t) in[1];
|
||||
out[2] = (vec_t) in[2];
|
||||
}
|
||||
|
||||
/*
|
||||
=================
|
||||
VectorCopyRegularToAccu
|
||||
=================
|
||||
*/
|
||||
void VectorCopyRegularToAccu(const vec3_t in, vec3_accu_t out)
|
||||
{
|
||||
out[0] = (vec_accu_t) in[0];
|
||||
out[1] = (vec_accu_t) in[1];
|
||||
out[2] = (vec_accu_t) in[2];
|
||||
}
|
||||
|
||||
/*
|
||||
=================
|
||||
VectorNormalizeAccu
|
||||
=================
|
||||
*/
|
||||
vec_accu_t VectorNormalizeAccu(const vec3_accu_t in, vec3_accu_t out)
|
||||
{
|
||||
// The sqrt() function takes double as an input and returns double as an
|
||||
// output according the the man pages on Debian and on FreeBSD. Therefore,
|
||||
// I don't see a reason why using a double outright (instead of using the
|
||||
// vec_accu_t alias for example) could possibly be frowned upon.
|
||||
|
||||
vec_accu_t length;
|
||||
|
||||
length = (vec_accu_t) sqrt((in[0] * in[0]) + (in[1] * in[1]) + (in[2] * in[2]));
|
||||
if (length == 0)
|
||||
{
|
||||
VectorClear(out);
|
||||
return 0;
|
||||
}
|
||||
|
||||
out[0] = in[0] / length;
|
||||
out[1] = in[1] / length;
|
||||
out[2] = in[2] / length;
|
||||
|
||||
return length;
|
||||
}
|
||||
|
|
|
|||
|
|
@ -1,18 +1,17 @@
|
|||
Index: tools/quake3/q3map2/brush.c
|
||||
===================================================================
|
||||
--- tools/quake3/q3map2/brush.c (revision 371)
|
||||
--- tools/quake3/q3map2/brush.c (revision 391)
|
||||
+++ tools/quake3/q3map2/brush.c (working copy)
|
||||
@@ -356,17 +356,29 @@
|
||||
winding_t *w;
|
||||
@@ -421,10 +421,16 @@
|
||||
side_t *side;
|
||||
plane_t *plane;
|
||||
+
|
||||
|
||||
-
|
||||
+ static int brushord = -1;
|
||||
+ brushord++;
|
||||
+
|
||||
+ Sys_Printf("In CreateBrushWindings() for brush %i\n", brushord);
|
||||
|
||||
-
|
||||
+
|
||||
/* walk the list of brush sides */
|
||||
for( i = 0; i < brush->numsides; i++ )
|
||||
{
|
||||
|
|
@ -21,33 +20,46 @@ Index: tools/quake3/q3map2/brush.c
|
|||
/* get side and plane */
|
||||
side = &brush->sides[ i ];
|
||||
plane = &mapplanes[ side->planenum ];
|
||||
|
||||
/* make huge winding */
|
||||
@@ -435,7 +441,13 @@
|
||||
#else
|
||||
w = BaseWindingForPlane( plane->normal, plane->dist );
|
||||
#endif
|
||||
-
|
||||
+
|
||||
+ Sys_Printf(" Before clipping we have:\n");
|
||||
+ int z;
|
||||
+ for (z = 0; z < w->numpoints; z++) {
|
||||
+ Sys_Printf(" (%.8f %.8f %.8f)\n", w->p[z][0], w->p[z][1], w->p[z][2]);
|
||||
+ }
|
||||
|
||||
+
|
||||
/* walk the list of brush sides */
|
||||
for( j = 0; j < brush->numsides && w != NULL; j++ )
|
||||
@@ -379,6 +391,11 @@
|
||||
continue;
|
||||
plane = &mapplanes[ brush->sides[ j ].planenum ^ 1 ];
|
||||
{
|
||||
@@ -451,7 +463,20 @@
|
||||
#else
|
||||
ChopWindingInPlace( &w, plane->normal, plane->dist, 0 ); // CLIP_EPSILON );
|
||||
#endif
|
||||
-
|
||||
+
|
||||
+ Sys_Printf(" After clipping w/ side %i we have:\n", j);
|
||||
+ for (z = 0; z < w->numpoints; z++) {
|
||||
+ Sys_Printf(" (%.8f %.8f %.8f)\n", w->p[z][0], w->p[z][1], w->p[z][2]);
|
||||
+ if (w)
|
||||
+ {
|
||||
+ for (z = 0; z < w->numpoints; z++)
|
||||
+ {
|
||||
+ Sys_Printf(" (%.8f %.8f %.8f)\n", w->p[z][0], w->p[z][1], w->p[z][2]);
|
||||
+ }
|
||||
+ }
|
||||
|
||||
+ else
|
||||
+ {
|
||||
+ Sys_Printf(" winding is NULL\n");
|
||||
+ }
|
||||
+
|
||||
/* ydnar: fix broken windings that would generate trifans */
|
||||
FixWinding( w );
|
||||
#if EXPERIMENTAL_HIGH_PRECISION_MATH_Q3MAP2_FIXES
|
||||
FixWindingAccu(w);
|
||||
Index: tools/quake3/q3map2/map.c
|
||||
===================================================================
|
||||
--- tools/quake3/q3map2/map.c (revision 371)
|
||||
--- tools/quake3/q3map2/map.c (revision 391)
|
||||
+++ tools/quake3/q3map2/map.c (working copy)
|
||||
@@ -803,7 +803,11 @@
|
||||
char shader[ MAX_QPATH ];
|
||||
|
|
@ -74,7 +86,7 @@ Index: tools/quake3/q3map2/map.c
|
|||
if( !GetToken( qtrue ) )
|
||||
break;
|
||||
if( !strcmp( token, "}" ) )
|
||||
@@ -917,6 +924,10 @@
|
||||
@@ -917,7 +924,16 @@
|
||||
}
|
||||
|
||||
/* find the plane number */
|
||||
|
|
@ -83,5 +95,11 @@ Index: tools/quake3/q3map2/map.c
|
|||
+ Sys_Printf(" (%f %f %f)\n", planePoints[1][0], planePoints[1][1], planePoints[1][2]);
|
||||
+ Sys_Printf(" (%f %f %f)\n", planePoints[2][0], planePoints[2][1], planePoints[2][2]);
|
||||
planenum = MapPlaneFromPoints( planePoints );
|
||||
+ Sys_Printf(" normal: (%.10f %.10f %.10f)\n",
|
||||
+ mapplanes[planenum].normal[0],
|
||||
+ mapplanes[planenum].normal[1],
|
||||
+ mapplanes[planenum].normal[2]);
|
||||
+ Sys_Printf(" dist: %.10f\n", mapplanes[planenum].dist);
|
||||
side->planenum = planenum;
|
||||
|
||||
/* bp: get the texture mapping for this texturedef / plane combination */
|
||||
|
|
|
|||
36
regression_tests/q3map2/disappearing_sliver3/NOTES.txt
Normal file
36
regression_tests/q3map2/disappearing_sliver3/NOTES.txt
Normal file
|
|
@ -0,0 +1,36 @@
|
|||
Random notes for Rambetter, don't expect to understand this:
|
||||
============================================================
|
||||
|
||||
Brush 0 is the problem.
|
||||
|
||||
Side 0 is the problem (under surf tri).
|
||||
Side 1 is the +y 4-face.
|
||||
Side 2 is the -x 4-face.
|
||||
Side 3 is the -y 4-face.
|
||||
side 4 is the +z tri.
|
||||
|
||||
(6144, 16122) -> (6784, 16241)
|
||||
x "climb" of side 1 is 6784 - 6144 = 640.
|
||||
y "climb" of side 1 is 16241 - 16122 = 119.
|
||||
|
||||
x/y "climb rate" of side 1 is 640 / 119 = 5.378151261.
|
||||
|
||||
After clipping side 0 against side 1, we get
|
||||
************
|
||||
**** (-262144, -33762.8125) -> (262144, 63722)
|
||||
************
|
||||
The slope of that is (262144 + 262144) / (63722 + 33762.8125) = 5.378150571.
|
||||
|
||||
(-262144, y) -> (6784, 16241)
|
||||
So (6784 + 262144) / (16241 - y) = 640 / 119
|
||||
So y = 16241 - ((119 * (6784 + 262144)) / 640) = -33762.8
|
||||
|
||||
(6144, 16122) -> (262144, y)
|
||||
So (262144 - 6144) / (y - 16122) = 640 / 119
|
||||
So y = 16122 + ((119 * (262144 - 6144)) / 640) = 63722
|
||||
|
||||
After clipping side 0 against side 1 should have
|
||||
************
|
||||
**** (-262144, -33762.8) -> (262144, 63722)
|
||||
************
|
||||
|
||||
|
|
@ -73,8 +73,43 @@ winding_t *AllocWinding (int points)
|
|||
return w;
|
||||
}
|
||||
|
||||
/*
|
||||
=============
|
||||
AllocWindingAccu
|
||||
=============
|
||||
*/
|
||||
winding_accu_t *AllocWindingAccu(int points)
|
||||
{
|
||||
winding_accu_t *w;
|
||||
int s;
|
||||
|
||||
if (points >= MAX_POINTS_ON_WINDING)
|
||||
Error("AllocWindingAccu failed: MAX_POINTS_ON_WINDING exceeded");
|
||||
|
||||
if (numthreads == 1)
|
||||
{
|
||||
// At the time of this writing, these statistics were not used in any way.
|
||||
c_winding_allocs++;
|
||||
c_winding_points += points;
|
||||
c_active_windings++;
|
||||
if (c_active_windings > c_peak_windings)
|
||||
c_peak_windings = c_active_windings;
|
||||
}
|
||||
s = sizeof(vec_accu_t) * 3 * points + sizeof(int);
|
||||
w = safe_malloc(s);
|
||||
memset(w, 0, s);
|
||||
return w;
|
||||
}
|
||||
|
||||
/*
|
||||
=============
|
||||
FreeWinding
|
||||
=============
|
||||
*/
|
||||
void FreeWinding (winding_t *w)
|
||||
{
|
||||
if (!w) Error("FreeWinding: winding is NULL");
|
||||
|
||||
if (*(unsigned *)w == 0xdeaddead)
|
||||
Error ("FreeWinding: freed a freed winding");
|
||||
*(unsigned *)w = 0xdeaddead;
|
||||
|
|
@ -84,6 +119,24 @@ void FreeWinding (winding_t *w)
|
|||
free (w);
|
||||
}
|
||||
|
||||
/*
|
||||
=============
|
||||
FreeWindingAccu
|
||||
=============
|
||||
*/
|
||||
void FreeWindingAccu(winding_accu_t *w)
|
||||
{
|
||||
if (!w) Error("FreeWindingAccu: winding is NULL");
|
||||
|
||||
if (*((unsigned *) w) == 0xdeaddead)
|
||||
Error("FreeWindingAccu: freed a freed winding");
|
||||
*((unsigned *) w) = 0xdeaddead;
|
||||
|
||||
if (numthreads == 1)
|
||||
c_active_windings--;
|
||||
free(w);
|
||||
}
|
||||
|
||||
/*
|
||||
============
|
||||
RemoveColinearPoints
|
||||
|
|
@ -201,9 +254,131 @@ void WindingCenter (winding_t *w, vec3_t center)
|
|||
VectorScale (center, scale, center);
|
||||
}
|
||||
|
||||
/*
|
||||
=================
|
||||
BaseWindingForPlaneAccu
|
||||
=================
|
||||
*/
|
||||
winding_accu_t *BaseWindingForPlaneAccu(vec3_t normal, vec_t dist)
|
||||
{
|
||||
// The goal in this function is to replicate the behavior of the original BaseWindingForPlane()
|
||||
// function (see below) but at the same time increasing accuracy substantially.
|
||||
|
||||
// The original code gave a preference for the vup vector to start out as (0, 0, 1), unless the
|
||||
// normal had a dominant Z value, in which case vup started out as (1, 0, 0). After that, vup
|
||||
// was "bent" [along the plane defined by normal and vup] to become perpendicular to normal.
|
||||
// After that the vright vector was computed as the cross product of vup and normal.
|
||||
|
||||
// I'm constructing the winding polygon points in a fashion similar to the method used in the
|
||||
// original function. Orientation is the same. The size of the winding polygon, however, is
|
||||
// variable in this function (depending on the angle of normal), and is larger (by about a factor
|
||||
// of 2) than the winding polygon in the original function.
|
||||
|
||||
int x, i;
|
||||
vec_t max, v;
|
||||
vec3_accu_t vright, vup, org, normalAccu;
|
||||
winding_accu_t *w;
|
||||
|
||||
// One of the components of normal must have a magnitiude greater than this value,
|
||||
// otherwise normal is not a unit vector. This is a little bit of inexpensive
|
||||
// partial error checking we can do.
|
||||
max = 0.56; // 1 / sqrt(1^2 + 1^2 + 1^2) = 0.577350269
|
||||
|
||||
x = -1;
|
||||
for (i = 0; i < 3; i++) {
|
||||
v = (vec_t) fabs(normal[i]);
|
||||
if (v > max) {
|
||||
x = i;
|
||||
max = v;
|
||||
}
|
||||
}
|
||||
if (x == -1) Error("BaseWindingForPlaneAccu: no dominant axis found because normal is too short");
|
||||
|
||||
switch (x) {
|
||||
case 0: // Fall through to next case.
|
||||
case 1:
|
||||
vright[0] = (vec_accu_t) -normal[1];
|
||||
vright[1] = (vec_accu_t) normal[0];
|
||||
vright[2] = 0;
|
||||
break;
|
||||
case 2:
|
||||
vright[0] = 0;
|
||||
vright[1] = (vec_accu_t) -normal[2];
|
||||
vright[2] = (vec_accu_t) normal[1];
|
||||
break;
|
||||
}
|
||||
|
||||
// vright and normal are now perpendicular; you can prove this by taking their
|
||||
// dot product and seeing that it's always exactly 0 (with no error).
|
||||
|
||||
// NOTE: vright is NOT a unit vector at this point. vright will have length
|
||||
// not exceeding 1.0. The minimum length that vright can achieve happens when,
|
||||
// for example, the Z and X components of the normal input vector are equal,
|
||||
// and when normal's Y component is zero. In that case Z and X of the normal
|
||||
// vector are both approximately 0.70711. The resulting vright vector in this
|
||||
// case will have a length of 0.70711.
|
||||
|
||||
// We're relying on the fact that MAX_WORLD_COORD is a power of 2 to keep
|
||||
// our calculation precise and relatively free of floating point error.
|
||||
// [However, the code will still work fine if that's not the case.]
|
||||
VectorScaleAccu(vright, ((vec_accu_t) MAX_WORLD_COORD) * 4.0, vright);
|
||||
|
||||
// At time time of this writing, MAX_WORLD_COORD was 65536 (2^16). Therefore
|
||||
// the length of vright at this point is at least 185364. In comparison, a
|
||||
// corner of the world at location (65536, 65536, 65536) is distance 113512
|
||||
// away from the origin.
|
||||
|
||||
VectorCopyRegularToAccu(normal, normalAccu);
|
||||
CrossProductAccu(normalAccu, vright, vup);
|
||||
|
||||
// vup now has length equal to that of vright.
|
||||
|
||||
VectorScaleAccu(normalAccu, (vec_accu_t) dist, org);
|
||||
|
||||
// org is now a point on the plane defined by normal and dist. Furthermore,
|
||||
// org, vright, and vup are pairwise perpendicular. Now, the 4 vectors
|
||||
// { (+-)vright + (+-)vup } have length that is at least sqrt(185364^2 + 185364^2),
|
||||
// which is about 262144. That length lies outside the world, since the furthest
|
||||
// point in the world has distance 113512 from the origin as mentioned above.
|
||||
// Also, these 4 vectors are perpendicular to the org vector. So adding them
|
||||
// to org will only increase their length. Therefore the 4 points defined below
|
||||
// all lie outside of the world. Furthermore, it can be easily seen that the
|
||||
// edges connecting these 4 points (in the winding_accu_t below) lie completely
|
||||
// outside the world. sqrt(262144^2 + 262144^2)/2 = 185363, which is greater than
|
||||
// 113512.
|
||||
|
||||
w = AllocWindingAccu(4);
|
||||
|
||||
VectorSubtractAccu(org, vright, w->p[0]);
|
||||
VectorAddAccu(w->p[0], vup, w->p[0]);
|
||||
|
||||
VectorAddAccu(org, vright, w->p[1]);
|
||||
VectorAddAccu(w->p[1], vup, w->p[1]);
|
||||
|
||||
VectorAddAccu(org, vright, w->p[2]);
|
||||
VectorSubtractAccu(w->p[2], vup, w->p[2]);
|
||||
|
||||
VectorSubtractAccu(org, vright, w->p[3]);
|
||||
VectorSubtractAccu(w->p[3], vup, w->p[3]);
|
||||
|
||||
w->numpoints = 4;
|
||||
|
||||
return w;
|
||||
}
|
||||
|
||||
/*
|
||||
=================
|
||||
BaseWindingForPlane
|
||||
|
||||
Original BaseWindingForPlane() function that has serious accuracy problems. Here is why.
|
||||
The base winding is computed as a rectangle with very large coordinates. These coordinates
|
||||
are in the range 2^17 or 2^18. "Epsilon" (meaning the distance between two adjacent numbers)
|
||||
at these magnitudes in 32 bit floating point world is about 0.02. So for example, if things
|
||||
go badly (by bad luck), then the whole plane could be shifted by 0.02 units (its distance could
|
||||
be off by that much). Then if we were to compute the winding of this plane and another of
|
||||
the brush's planes met this winding at a very acute angle, that error could multiply to around
|
||||
0.1 or more when computing the final vertex coordinates of the winding. 0.1 is a very large
|
||||
error, and can lead to all sorts of disappearing triangle problems.
|
||||
=================
|
||||
*/
|
||||
winding_t *BaseWindingForPlane (vec3_t normal, vec_t dist)
|
||||
|
|
@ -285,12 +460,57 @@ winding_t *CopyWinding (winding_t *w)
|
|||
size_t size;
|
||||
winding_t *c;
|
||||
|
||||
if (!w) Error("CopyWinding: winding is NULL");
|
||||
|
||||
c = AllocWinding (w->numpoints);
|
||||
size = (size_t)((winding_t *)NULL)->p[w->numpoints];
|
||||
memcpy (c, w, size);
|
||||
return c;
|
||||
}
|
||||
|
||||
/*
|
||||
==================
|
||||
CopyWindingAccuIncreaseSizeAndFreeOld
|
||||
==================
|
||||
*/
|
||||
winding_accu_t *CopyWindingAccuIncreaseSizeAndFreeOld(winding_accu_t *w)
|
||||
{
|
||||
int i;
|
||||
winding_accu_t *c;
|
||||
|
||||
if (!w) Error("CopyWindingAccuIncreaseSizeAndFreeOld: winding is NULL");
|
||||
|
||||
c = AllocWindingAccu(w->numpoints + 1);
|
||||
c->numpoints = w->numpoints;
|
||||
for (i = 0; i < c->numpoints; i++)
|
||||
{
|
||||
VectorCopyAccu(w->p[i], c->p[i]);
|
||||
}
|
||||
FreeWindingAccu(w);
|
||||
return c;
|
||||
}
|
||||
|
||||
/*
|
||||
==================
|
||||
CopyWindingAccuToRegular
|
||||
==================
|
||||
*/
|
||||
winding_t *CopyWindingAccuToRegular(winding_accu_t *w)
|
||||
{
|
||||
int i;
|
||||
winding_t *c;
|
||||
|
||||
if (!w) Error("CopyWindingAccuToRegular: winding is NULL");
|
||||
|
||||
c = AllocWinding(w->numpoints);
|
||||
c->numpoints = w->numpoints;
|
||||
for (i = 0; i < c->numpoints; i++)
|
||||
{
|
||||
VectorCopyAccuToRegular(w->p[i], c->p[i]);
|
||||
}
|
||||
return c;
|
||||
}
|
||||
|
||||
/*
|
||||
==================
|
||||
ReverseWinding
|
||||
|
|
@ -424,6 +644,147 @@ void ClipWindingEpsilon (winding_t *in, vec3_t normal, vec_t dist,
|
|||
}
|
||||
|
||||
|
||||
/*
|
||||
=============
|
||||
ChopWindingInPlaceAccu
|
||||
=============
|
||||
*/
|
||||
void ChopWindingInPlaceAccu(winding_accu_t **inout, vec3_t normal, vec_t dist, vec_t crudeEpsilon)
|
||||
{
|
||||
vec_accu_t fineEpsilon;
|
||||
winding_accu_t *in;
|
||||
int counts[3];
|
||||
int i, j;
|
||||
vec_accu_t dists[MAX_POINTS_ON_WINDING + 1];
|
||||
int sides[MAX_POINTS_ON_WINDING + 1];
|
||||
int maxpts;
|
||||
winding_accu_t *f;
|
||||
vec_accu_t *p1, *p2;
|
||||
vec_accu_t w;
|
||||
vec3_accu_t mid, normalAccu;
|
||||
|
||||
// We require at least a very small epsilon. It's a good idea for several reasons.
|
||||
// First, we will be dividing by a potentially very small distance below. We don't
|
||||
// want that distance to be too small; otherwise, things "blow up" with little accuracy
|
||||
// due to the division. (After a second look, the value w below is in range (0,1), but
|
||||
// graininess problem remains.) Second, Having minimum epsilon also prevents the following
|
||||
// situation. Say for example we have a perfect octagon defined by the input winding.
|
||||
// Say our chopping plane (defined by normal and dist) is essentially the same plane
|
||||
// that the octagon is sitting on. Well, due to rounding errors, it may be that point
|
||||
// 1 of the octagon might be in front, point 2 might be in back, point 3 might be in
|
||||
// front, point 4 might be in back, and so on. So we could end up with a very ugly-
|
||||
// looking chopped winding, and this might be undesirable, and would at least lead to
|
||||
// a possible exhaustion of MAX_POINTS_ON_WINDING. It's better to assume that points
|
||||
// very very close to the plane are on the plane, using an infinitesimal epsilon amount.
|
||||
|
||||
// Now, the original ChopWindingInPlace() function used a vec_t-based winding_t.
|
||||
// So this minimum epsilon is quite similar to casting the higher resolution numbers to
|
||||
// the lower resolution and comparing them in the lower resolution mode. We explicitly
|
||||
// choose the minimum epsilon as something around the vec_t epsilon of one because we
|
||||
// want the resolution of vec_accu_t to have a large resolution around the epsilon.
|
||||
// Some of that leftover resolution even goes away after we scale to points far away.
|
||||
|
||||
// Here is a further discussion regarding the choice of smallestEpsilonAllowed.
|
||||
// In the 32 float world (we can assume vec_t is that), the "epsilon around 1.0" is
|
||||
// 0.00000011921. In the 64 bit float world (we can assume vec_accu_t is that), the
|
||||
// "epsilon around 1.0" is 0.00000000000000022204. (By the way these two epsilons
|
||||
// are defined as VEC_SMALLEST_EPSILON_AROUND_ONE VEC_ACCU_SMALLEST_EPSILON_AROUND_ONE
|
||||
// respectively.) If you divide the first by the second, you get approximately
|
||||
// 536,885,246. Dividing that number by 200,000 (a typical base winding coordinate)
|
||||
// gives 2684. So in other words, if our smallestEpsilonAllowed was chosen as exactly
|
||||
// VEC_SMALLEST_EPSILON_AROUND_ONE, you would be guaranteed at least 2000 "ticks" in
|
||||
// 64-bit land inside of the epsilon for all numbers we're dealing with.
|
||||
|
||||
static const vec_accu_t smallestEpsilonAllowed = ((vec_accu_t) VEC_SMALLEST_EPSILON_AROUND_ONE) * 0.5;
|
||||
if (crudeEpsilon < smallestEpsilonAllowed) fineEpsilon = smallestEpsilonAllowed;
|
||||
else fineEpsilon = (vec_accu_t) crudeEpsilon;
|
||||
|
||||
in = *inout;
|
||||
counts[0] = counts[1] = counts[2] = 0;
|
||||
VectorCopyRegularToAccu(normal, normalAccu);
|
||||
|
||||
for (i = 0; i < in->numpoints; i++)
|
||||
{
|
||||
dists[i] = DotProductAccu(in->p[i], normalAccu) - dist;
|
||||
if (dists[i] > fineEpsilon) sides[i] = SIDE_FRONT;
|
||||
else if (dists[i] < -fineEpsilon) sides[i] = SIDE_BACK;
|
||||
else sides[i] = SIDE_ON;
|
||||
counts[sides[i]]++;
|
||||
}
|
||||
sides[i] = sides[0];
|
||||
dists[i] = dists[0];
|
||||
|
||||
// I'm wondering if whatever code that handles duplicate planes is robust enough
|
||||
// that we never get a case where two nearly equal planes result in 2 NULL windings
|
||||
// due to the 'if' statement below. TODO: Investigate this.
|
||||
if (!counts[SIDE_FRONT]) {
|
||||
FreeWindingAccu(in);
|
||||
*inout = NULL;
|
||||
return;
|
||||
}
|
||||
if (!counts[SIDE_BACK]) {
|
||||
return; // Winding is unmodified.
|
||||
}
|
||||
|
||||
// NOTE: The least number of points that a winding can have at this point is 2.
|
||||
// In that case, one point is SIDE_FRONT and the other is SIDE_BACK.
|
||||
|
||||
maxpts = counts[SIDE_FRONT] + 2; // We dynamically expand if this is too small.
|
||||
f = AllocWindingAccu(maxpts);
|
||||
|
||||
for (i = 0; i < in->numpoints; i++)
|
||||
{
|
||||
p1 = in->p[i];
|
||||
|
||||
if (sides[i] == SIDE_ON || sides[i] == SIDE_FRONT)
|
||||
{
|
||||
if (f->numpoints >= MAX_POINTS_ON_WINDING)
|
||||
Error("ChopWindingInPlaceAccu: MAX_POINTS_ON_WINDING");
|
||||
if (f->numpoints >= maxpts) // This will probably never happen.
|
||||
{
|
||||
Sys_FPrintf(SYS_VRB, "WARNING: estimate on chopped winding size incorrect (no problem)\n");
|
||||
f = CopyWindingAccuIncreaseSizeAndFreeOld(f);
|
||||
maxpts++;
|
||||
}
|
||||
VectorCopyAccu(p1, f->p[f->numpoints]);
|
||||
f->numpoints++;
|
||||
if (sides[i] == SIDE_ON) continue;
|
||||
}
|
||||
if (sides[i + 1] == SIDE_ON || sides[i + 1] == sides[i])
|
||||
{
|
||||
continue;
|
||||
}
|
||||
|
||||
// Generate a split point.
|
||||
p2 = in->p[((i + 1) == in->numpoints) ? 0 : (i + 1)];
|
||||
|
||||
// The divisor's absolute value is greater than the dividend's absolute value.
|
||||
// w is in the range (0,1).
|
||||
w = dists[i] / (dists[i] - dists[i + 1]);
|
||||
|
||||
for (j = 0; j < 3; j++)
|
||||
{
|
||||
// Avoid round-off error when possible. Check axis-aligned normal.
|
||||
if (normal[j] == 1) mid[j] = dist;
|
||||
else if (normal[j] == -1) mid[j] = -dist;
|
||||
else mid[j] = p1[j] + (w * (p2[j] - p1[j]));
|
||||
}
|
||||
if (f->numpoints >= MAX_POINTS_ON_WINDING)
|
||||
Error("ChopWindingInPlaceAccu: MAX_POINTS_ON_WINDING");
|
||||
if (f->numpoints >= maxpts) // This will probably never happen.
|
||||
{
|
||||
Sys_FPrintf(SYS_VRB, "WARNING: estimate on chopped winding size incorrect (no problem)\n");
|
||||
f = CopyWindingAccuIncreaseSizeAndFreeOld(f);
|
||||
maxpts++;
|
||||
}
|
||||
VectorCopyAccu(mid, f->p[f->numpoints]);
|
||||
f->numpoints++;
|
||||
}
|
||||
|
||||
FreeWindingAccu(in);
|
||||
*inout = f;
|
||||
}
|
||||
|
||||
/*
|
||||
=============
|
||||
ChopWindingInPlace
|
||||
|
|
|
|||
|
|
@ -55,3 +55,20 @@ void ChopWindingInPlace (winding_t **w, vec3_t normal, vec_t dist, vec_t epsilon
|
|||
// frees the original if clipped
|
||||
|
||||
void pw(winding_t *w);
|
||||
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////
|
||||
// Below is double-precision stuff. This was initially needed by the base winding code
|
||||
// in q3map2 brush processing.
|
||||
///////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
typedef struct
|
||||
{
|
||||
int numpoints;
|
||||
vec3_accu_t p[4]; // variable sized
|
||||
} winding_accu_t;
|
||||
|
||||
winding_accu_t *BaseWindingForPlaneAccu(vec3_t normal, vec_t dist);
|
||||
void ChopWindingInPlaceAccu(winding_accu_t **w, vec3_t normal, vec_t dist, vec_t epsilon);
|
||||
winding_t *CopyWindingAccuToRegular(winding_accu_t *w);
|
||||
void FreeWindingAccu(winding_accu_t *w);
|
||||
|
|
|
|||
|
|
@ -277,6 +277,50 @@ void SnapWeldVector( vec3_t a, vec3_t b, vec3_t out )
|
|||
}
|
||||
}
|
||||
|
||||
/*
|
||||
==================
|
||||
SnapWeldVectorAccu
|
||||
|
||||
Welds two vectors into a third, taking into account nearest-to-integer
|
||||
instead of averaging.
|
||||
==================
|
||||
*/
|
||||
void SnapWeldVectorAccu(vec3_accu_t a, vec3_accu_t b, vec3_accu_t out)
|
||||
{
|
||||
// I'm just preserving what I think was the intended logic of the original
|
||||
// SnapWeldVector(). I'm not actually sure where this function should even
|
||||
// be used. I'd like to know which kinds of problems this function addresses.
|
||||
|
||||
// TODO: I thought we're snapping all coordinates to nearest 1/8 unit?
|
||||
// So what is natural about snapping to the nearest integer? Maybe we should
|
||||
// be snapping to the nearest 1/8 unit instead?
|
||||
|
||||
int i;
|
||||
vec_accu_t ai, bi, ad, bd;
|
||||
|
||||
if (a == NULL || b == NULL || out == NULL)
|
||||
Error("SnapWeldVectorAccu: NULL argument");
|
||||
|
||||
for (i = 0; i < 3; i++)
|
||||
{
|
||||
ai = Q_rintAccu(a[i]);
|
||||
bi = Q_rintAccu(b[i]);
|
||||
ad = fabs(ai - a[i]);
|
||||
bd = fabs(bi - b[i]);
|
||||
|
||||
if (ad < bd)
|
||||
{
|
||||
if (ad < SNAP_EPSILON) out[i] = ai;
|
||||
else out[i] = a[i];
|
||||
}
|
||||
else
|
||||
{
|
||||
if (bd < SNAP_EPSILON) out[i] = bi;
|
||||
else out[i] = b[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
/*
|
||||
|
|
@ -338,10 +382,71 @@ qboolean FixWinding( winding_t *w )
|
|||
return valid;
|
||||
}
|
||||
|
||||
/*
|
||||
==================
|
||||
FixWindingAccu
|
||||
|
||||
Removes degenerate edges (edges that are too short) from a winding.
|
||||
Returns qtrue if the winding has been altered by this function.
|
||||
Returns qfalse if the winding is untouched by this function.
|
||||
|
||||
It's advised that you check the winding after this function exits to make
|
||||
sure it still has at least 3 points. If that is not the case, the winding
|
||||
cannot be considered valid. The winding may degenerate to one or two points
|
||||
if the some of the winding's points are close together.
|
||||
==================
|
||||
*/
|
||||
qboolean FixWindingAccu(winding_accu_t *w)
|
||||
{
|
||||
int i, j, k;
|
||||
vec3_accu_t vec;
|
||||
vec_accu_t dist;
|
||||
qboolean done, altered;
|
||||
|
||||
if (w == NULL) Error("FixWindingAccu: NULL argument");
|
||||
|
||||
altered = qfalse;
|
||||
|
||||
while (qtrue)
|
||||
{
|
||||
if (w->numpoints < 2) break; // Don't remove the only remaining point.
|
||||
done = qtrue;
|
||||
for (i = 0; i < w->numpoints; i++)
|
||||
{
|
||||
j = (((i + 1) == w->numpoints) ? 0 : (i + 1));
|
||||
|
||||
VectorSubtractAccu(w->p[i], w->p[j], vec);
|
||||
dist = VectorLengthAccu(vec);
|
||||
if (dist < DEGENERATE_EPSILON)
|
||||
{
|
||||
// TODO: I think the "snap weld vector" was written before
|
||||
// some of the math precision fixes, and its purpose was
|
||||
// probably to address math accuracy issues. We can think
|
||||
// about changing the logic here. Maybe once plane distance
|
||||
// gets 64 bits, we can look at it then.
|
||||
SnapWeldVectorAccu(w->p[i], w->p[j], vec);
|
||||
VectorCopyAccu(vec, w->p[i]);
|
||||
for (k = j + 1; k < w->numpoints; k++)
|
||||
{
|
||||
VectorCopyAccu(w->p[k], w->p[k - 1]);
|
||||
}
|
||||
w->numpoints--;
|
||||
altered = qtrue;
|
||||
// The only way to finish off fixing the winding consistently and
|
||||
// accurately is by fixing the winding all over again. For example,
|
||||
// the point at index i and the point at index i-1 could now be
|
||||
// less than the epsilon distance apart. There are too many special
|
||||
// case problems we'd need to handle if we didn't start from the
|
||||
// beginning.
|
||||
done = qfalse;
|
||||
break; // This will cause us to return to the "while" loop.
|
||||
}
|
||||
}
|
||||
if (done) break;
|
||||
}
|
||||
|
||||
return altered;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
|
|
@ -353,7 +458,11 @@ returns false if the brush doesn't enclose a valid volume
|
|||
qboolean CreateBrushWindings( brush_t *brush )
|
||||
{
|
||||
int i, j;
|
||||
#if EXPERIMENTAL_HIGH_PRECISION_MATH_Q3MAP2_FIXES
|
||||
winding_accu_t *w;
|
||||
#else
|
||||
winding_t *w;
|
||||
#endif
|
||||
side_t *side;
|
||||
plane_t *plane;
|
||||
|
||||
|
|
@ -366,7 +475,11 @@ qboolean CreateBrushWindings( brush_t *brush )
|
|||
plane = &mapplanes[ side->planenum ];
|
||||
|
||||
/* make huge winding */
|
||||
#if EXPERIMENTAL_HIGH_PRECISION_MATH_Q3MAP2_FIXES
|
||||
w = BaseWindingForPlaneAccu(plane->normal, plane->dist);
|
||||
#else
|
||||
w = BaseWindingForPlane( plane->normal, plane->dist );
|
||||
#endif
|
||||
|
||||
/* walk the list of brush sides */
|
||||
for( j = 0; j < brush->numsides && w != NULL; j++ )
|
||||
|
|
@ -378,14 +491,39 @@ qboolean CreateBrushWindings( brush_t *brush )
|
|||
if( brush->sides[ j ].bevel )
|
||||
continue;
|
||||
plane = &mapplanes[ brush->sides[ j ].planenum ^ 1 ];
|
||||
#if EXPERIMENTAL_HIGH_PRECISION_MATH_Q3MAP2_FIXES
|
||||
ChopWindingInPlaceAccu(&w, plane->normal, plane->dist, 0);
|
||||
#else
|
||||
ChopWindingInPlace( &w, plane->normal, plane->dist, 0 ); // CLIP_EPSILON );
|
||||
#endif
|
||||
|
||||
/* ydnar: fix broken windings that would generate trifans */
|
||||
#if EXPERIMENTAL_HIGH_PRECISION_MATH_Q3MAP2_FIXES
|
||||
// I think it's better to FixWindingAccu() once after we chop with all planes
|
||||
// so that error isn't multiplied. There is nothing natural about welding
|
||||
// the points unless they are the final endpoints. ChopWindingInPlaceAccu()
|
||||
// is able to handle all kinds of degenerate windings.
|
||||
#else
|
||||
FixWinding( w );
|
||||
#endif
|
||||
}
|
||||
|
||||
/* set side winding */
|
||||
#if EXPERIMENTAL_HIGH_PRECISION_MATH_Q3MAP2_FIXES
|
||||
if (w != NULL)
|
||||
{
|
||||
FixWindingAccu(w);
|
||||
if (w->numpoints < 3)
|
||||
{
|
||||
FreeWindingAccu(w);
|
||||
w = NULL;
|
||||
}
|
||||
}
|
||||
side->winding = (w ? CopyWindingAccuToRegular(w) : NULL);
|
||||
if (w) FreeWindingAccu(w);
|
||||
#else
|
||||
side->winding = w;
|
||||
#endif
|
||||
}
|
||||
|
||||
/* find brush bounds */
|
||||
|
|
@ -506,6 +644,8 @@ void WriteBSPBrushMap( char *name, brush_t *list )
|
|||
fprintf (f, "{\n");
|
||||
for (i=0,s=list->sides ; i<list->numsides ; i++,s++)
|
||||
{
|
||||
// TODO: See if we can use a smaller winding to prevent resolution loss.
|
||||
// Is WriteBSPBrushMap() used only to decompile maps?
|
||||
w = BaseWindingForPlane (mapplanes[s->planenum].normal, mapplanes[s->planenum].dist);
|
||||
|
||||
fprintf (f,"( %i %i %i ) ", (int)w->p[0][0], (int)w->p[0][1], (int)w->p[0][2]);
|
||||
|
|
|
|||
|
|
@ -59,9 +59,6 @@ PlaneEqual()
|
|||
ydnar: replaced with variable epsilon for djbob
|
||||
*/
|
||||
|
||||
#define NORMAL_EPSILON 0.00001
|
||||
#define DIST_EPSILON 0.01
|
||||
|
||||
qboolean PlaneEqual( plane_t *p, vec3_t normal, vec_t dist )
|
||||
{
|
||||
float ne, de;
|
||||
|
|
@ -72,10 +69,14 @@ qboolean PlaneEqual( plane_t *p, vec3_t normal, vec_t dist )
|
|||
de = distanceEpsilon;
|
||||
|
||||
/* compare */
|
||||
if( fabs( p->dist - dist ) <= de &&
|
||||
fabs( p->normal[ 0 ] - normal[ 0 ] ) <= ne &&
|
||||
fabs( p->normal[ 1 ] - normal[ 1 ] ) <= ne &&
|
||||
fabs( p->normal[ 2 ] - normal[ 2 ] ) <= ne )
|
||||
// We check equality of each component since we're using '<', not '<='
|
||||
// (the epsilons may be zero). We want to use '<' intead of '<=' to be
|
||||
// consistent with the true meaning of "epsilon", and also because other
|
||||
// parts of the code uses this inequality.
|
||||
if ((p->dist == dist || fabs(p->dist - dist) < de) &&
|
||||
(p->normal[0] == normal[0] || fabs(p->normal[0] - normal[0]) < ne) &&
|
||||
(p->normal[1] == normal[1] || fabs(p->normal[1] - normal[1]) < ne) &&
|
||||
(p->normal[2] == normal[2] || fabs(p->normal[2] - normal[2]) < ne))
|
||||
return qtrue;
|
||||
|
||||
/* different */
|
||||
|
|
@ -152,12 +153,73 @@ int CreateNewFloatPlane (vec3_t normal, vec_t dist)
|
|||
|
||||
/*
|
||||
SnapNormal()
|
||||
snaps a near-axial normal vector
|
||||
Snaps a near-axial normal vector.
|
||||
Returns qtrue if and only if the normal was adjusted.
|
||||
*/
|
||||
|
||||
void SnapNormal( vec3_t normal )
|
||||
qboolean SnapNormal( vec3_t normal )
|
||||
{
|
||||
#if EXPERIMENTAL_SNAP_NORMAL_FIX
|
||||
int i;
|
||||
qboolean adjusted = qfalse;
|
||||
|
||||
// A change from the original SnapNormal() is that we snap each
|
||||
// component that's close to 0. So for example if a normal is
|
||||
// (0.707, 0.707, 0.0000001), it will get snapped to lie perfectly in the
|
||||
// XY plane (its Z component will be set to 0 and its length will be
|
||||
// normalized). The original SnapNormal() didn't snap such vectors - it
|
||||
// only snapped vectors that were near a perfect axis.
|
||||
|
||||
for (i = 0; i < 3; i++)
|
||||
{
|
||||
if (normal[i] != 0.0 && -normalEpsilon < normal[i] && normal[i] < normalEpsilon)
|
||||
{
|
||||
normal[i] = 0.0;
|
||||
adjusted = qtrue;
|
||||
}
|
||||
}
|
||||
|
||||
if (adjusted)
|
||||
{
|
||||
VectorNormalize(normal, normal);
|
||||
return qtrue;
|
||||
}
|
||||
return qfalse;
|
||||
#else
|
||||
int i;
|
||||
|
||||
// I would suggest that you uncomment the following code and look at the
|
||||
// results:
|
||||
|
||||
/*
|
||||
Sys_Printf("normalEpsilon is %f\n", normalEpsilon);
|
||||
for (i = 0;; i++)
|
||||
{
|
||||
normal[0] = 1.0;
|
||||
normal[1] = 0.0;
|
||||
normal[2] = i * 0.000001;
|
||||
VectorNormalize(normal, normal);
|
||||
if (1.0 - normal[0] >= normalEpsilon) {
|
||||
Sys_Printf("(%f %f %f)\n", normal[0], normal[1], normal[2]);
|
||||
Error("SnapNormal: test completed");
|
||||
}
|
||||
}
|
||||
*/
|
||||
|
||||
// When the normalEpsilon is 0.00001, the loop will break out when normal is
|
||||
// (0.999990 0.000000 0.004469). In other words, this is the vector closest
|
||||
// to axial that will NOT be snapped. Anything closer will be snaped. Now,
|
||||
// 0.004469 is close to 1/225. The length of a circular quarter-arc of radius
|
||||
// 1 is PI/2, or about 1.57. And 0.004469/1.57 is about 0.0028, or about
|
||||
// 1/350. Expressed a different way, 1/350 is also about 0.26/90.
|
||||
// This means is that a normal with an angle that is within 1/4 of a degree
|
||||
// from axial will be "snapped". My belief is that the person who wrote the
|
||||
// code below did not intend it this way. I think the person intended that
|
||||
// the epsilon be measured against the vector components close to 0, not 1.0.
|
||||
// I think the logic should be: if 2 of the normal components are within
|
||||
// epsilon of 0, then the vector can be snapped to be perfectly axial.
|
||||
// We may consider adjusting the epsilon to a larger value when we make this
|
||||
// code fix.
|
||||
|
||||
for( i = 0; i < 3; i++ )
|
||||
{
|
||||
|
|
@ -165,15 +227,17 @@ void SnapNormal( vec3_t normal )
|
|||
{
|
||||
VectorClear( normal );
|
||||
normal[ i ] = 1;
|
||||
break;
|
||||
return qtrue;
|
||||
}
|
||||
if( fabs( normal[ i ] - -1 ) < normalEpsilon )
|
||||
{
|
||||
VectorClear( normal );
|
||||
normal[ i ] = -1;
|
||||
break;
|
||||
return qtrue;
|
||||
}
|
||||
}
|
||||
return qfalse;
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
|
|
@ -192,18 +256,70 @@ void SnapPlane( vec3_t normal, vec_t *dist, vec3_t center )
|
|||
SnapPlane reenabled by namespace because of multiple reports of
|
||||
q3map2-crashes which were triggered by this patch.
|
||||
*/
|
||||
// div0: ensure the point "center" stays on the plane (actually, this
|
||||
// rotates the plane around the point center).
|
||||
// if center lies on the plane, it is guaranteed to stay on the plane by
|
||||
// this fix.
|
||||
vec_t centerDist = DotProduct(normal, center);
|
||||
SnapNormal( normal );
|
||||
*dist += (DotProduct(normal, center) - centerDist);
|
||||
|
||||
// TODO: Rambetter has some serious comments here as well. First off,
|
||||
// in the case where a normal is non-axial, there is nothing special
|
||||
// about integer distances. I would think that snapping a distance might
|
||||
// make sense for axial normals, but I'm not so sure about snapping
|
||||
// non-axial normals. A shift by 0.01 in a plane, multiplied by a clipping
|
||||
// against another plane that is 5 degrees off, and we introduce 0.1 error
|
||||
// easily. A 0.1 error in a vertex is where problems start to happen, such
|
||||
// as disappearing triangles.
|
||||
|
||||
// Second, assuming we have snapped the normal above, let's say that the
|
||||
// plane we just snapped was defined for some points that are actually
|
||||
// quite far away from normal * dist. Well, snapping the normal in this
|
||||
// case means that we've just moved those points by potentially many units!
|
||||
// Therefore, if we are going to snap the normal, we need to know the
|
||||
// points we're snapping for so that the plane snaps with those points in
|
||||
// mind (points remain close to the plane).
|
||||
|
||||
// I would like to know exactly which problems SnapPlane() is trying to
|
||||
// solve so that we can better engineer it (I'm not saying that SnapPlane()
|
||||
// should be removed altogether). Fix all this snapping code at some point!
|
||||
|
||||
if( fabs( *dist - Q_rint( *dist ) ) < distanceEpsilon )
|
||||
*dist = Q_rint( *dist );
|
||||
}
|
||||
|
||||
/*
|
||||
SnapPlaneImproved()
|
||||
snaps a plane to normal/distance epsilons, improved code
|
||||
*/
|
||||
void SnapPlaneImproved(vec3_t normal, vec_t *dist, int numPoints, const vec3_t *points)
|
||||
{
|
||||
int i;
|
||||
vec3_t center;
|
||||
vec_t distNearestInt;
|
||||
|
||||
if (SnapNormal(normal))
|
||||
{
|
||||
if (numPoints > 0)
|
||||
{
|
||||
// Adjust the dist so that the provided points don't drift away.
|
||||
VectorClear(center);
|
||||
for (i = 0; i < numPoints; i++)
|
||||
{
|
||||
VectorAdd(center, points[i], center);
|
||||
}
|
||||
for (i = 0; i < 3; i++) { center[i] = center[i] / numPoints; }
|
||||
*dist = DotProduct(normal, center);
|
||||
}
|
||||
}
|
||||
|
||||
if (VectorIsOnAxis(normal))
|
||||
{
|
||||
// Only snap distance if the normal is an axis. Otherwise there
|
||||
// is nothing "natural" about snapping the distance to an integer.
|
||||
distNearestInt = Q_rint(*dist);
|
||||
if (-distanceEpsilon < *dist - distNearestInt && *dist - distNearestInt < distanceEpsilon)
|
||||
{
|
||||
*dist = distNearestInt;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
/*
|
||||
|
|
@ -221,16 +337,15 @@ int FindFloatPlane( vec3_t innormal, vec_t dist, int numPoints, vec3_t *points )
|
|||
int pidx;
|
||||
plane_t *p;
|
||||
vec_t d;
|
||||
vec3_t centerofweight;
|
||||
vec3_t normal;
|
||||
|
||||
VectorClear(centerofweight);
|
||||
for(i = 0; i < numPoints; ++i)
|
||||
VectorMA(centerofweight, 1.0 / numPoints, points[i], centerofweight);
|
||||
|
||||
/* hash the plane */
|
||||
VectorCopy(innormal, normal);
|
||||
SnapPlane( normal, &dist, centerofweight );
|
||||
#if EXPERIMENTAL_SNAP_PLANE_FIX
|
||||
SnapPlaneImproved(normal, &dist, numPoints, (const vec3_t *) points);
|
||||
#else
|
||||
SnapPlane( normal, &dist );
|
||||
#endif
|
||||
/* hash the plane */
|
||||
hash = (PLANE_HASHES - 1) & (int) fabs( dist );
|
||||
|
||||
/* search the border bins as well */
|
||||
|
|
@ -251,9 +366,15 @@ int FindFloatPlane( vec3_t innormal, vec_t dist, int numPoints, vec3_t *points )
|
|||
/* ydnar: test supplied points against this plane */
|
||||
for( j = 0; j < numPoints; j++ )
|
||||
{
|
||||
// NOTE: When dist approaches 2^16, the resolution of 32 bit floating
|
||||
// point number is greatly decreased. The distanceEpsilon cannot be
|
||||
// very small when world coordinates extend to 2^16. Making the
|
||||
// dot product here in 64 bit land will not really help the situation
|
||||
// because the error will already be carried in dist.
|
||||
d = DotProduct( points[ j ], p->normal ) - p->dist;
|
||||
if( fabs( d ) > distanceEpsilon )
|
||||
break;
|
||||
d = fabs(d);
|
||||
if (d != 0.0 && d >= distanceEpsilon)
|
||||
break; // Point is too far from plane.
|
||||
}
|
||||
|
||||
/* found a matching plane */
|
||||
|
|
@ -273,15 +394,12 @@ int FindFloatPlane( vec3_t innormal, vec_t dist, int numPoints, vec3_t *points )
|
|||
plane_t *p;
|
||||
vec3_t normal;
|
||||
|
||||
|
||||
vec3_t centerofweight;
|
||||
|
||||
VectorClear(centerofweight);
|
||||
for(i = 0; i < numPoints; ++i)
|
||||
VectorMA(centerofweight, 1.0 / numPoints, points[i], centerofweight);
|
||||
|
||||
VectorCopy(innormal, normal);
|
||||
SnapPlane( normal, &dist, centerofweight );
|
||||
#if EXPERIMENTAL_SNAP_PLANE_FIX
|
||||
SnapPlaneImproved(normal, &dist, numPoints, (const vec3_t *) points);
|
||||
#else
|
||||
SnapPlane( normal, &dist );
|
||||
#endif
|
||||
for( i = 0, p = mapplanes; i < nummapplanes; i++, p++ )
|
||||
{
|
||||
if( !PlaneEqual( p, normal, dist ) )
|
||||
|
|
@ -301,6 +419,9 @@ int FindFloatPlane( vec3_t innormal, vec_t dist, int numPoints, vec3_t *points )
|
|||
/* found a matching plane */
|
||||
if( j >= numPoints )
|
||||
return i;
|
||||
// TODO: Note that the non-USE_HASHING code does not compute epsilons
|
||||
// for the provided points. It should do that. I think this code
|
||||
// is unmaintained because nobody sets USE_HASHING to off.
|
||||
}
|
||||
|
||||
return CreateNewFloatPlane( normal, dist );
|
||||
|
|
@ -317,6 +438,28 @@ takes 3 points and finds the plane they lie in
|
|||
|
||||
int MapPlaneFromPoints( vec3_t *p )
|
||||
{
|
||||
#if EXPERIMENTAL_HIGH_PRECISION_MATH_Q3MAP2_FIXES
|
||||
vec3_accu_t paccu[3];
|
||||
vec3_accu_t t1, t2, normalAccu;
|
||||
vec3_t normal;
|
||||
vec_t dist;
|
||||
|
||||
VectorCopyRegularToAccu(p[0], paccu[0]);
|
||||
VectorCopyRegularToAccu(p[1], paccu[1]);
|
||||
VectorCopyRegularToAccu(p[2], paccu[2]);
|
||||
|
||||
VectorSubtractAccu(paccu[0], paccu[1], t1);
|
||||
VectorSubtractAccu(paccu[2], paccu[1], t2);
|
||||
CrossProductAccu(t1, t2, normalAccu);
|
||||
VectorNormalizeAccu(normalAccu, normalAccu);
|
||||
// TODO: A 32 bit float for the plane distance isn't enough resolution
|
||||
// if the plane is 2^16 units away from the origin (the "epsilon" approaches
|
||||
// 0.01 in that case).
|
||||
dist = (vec_t) DotProductAccu(paccu[0], normalAccu);
|
||||
VectorCopyAccuToRegular(normalAccu, normal);
|
||||
|
||||
return FindFloatPlane(normal, dist, 3, p);
|
||||
#else
|
||||
vec3_t t1, t2, normal;
|
||||
vec_t dist;
|
||||
|
||||
|
|
@ -332,6 +475,7 @@ int MapPlaneFromPoints( vec3_t *p )
|
|||
|
||||
/* store the plane */
|
||||
return FindFloatPlane( normal, dist, 3, p );
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
|
|
|
|||
|
|
@ -122,6 +122,12 @@ constants
|
|||
|
||||
------------------------------------------------------------------------------- */
|
||||
|
||||
/* temporary hacks and tests (please keep off in SVN to prevent anyone's legacy map from screwing up) */
|
||||
/* 2011-01-10 TTimo says we should turn these on in SVN, so turning on now */
|
||||
#define EXPERIMENTAL_HIGH_PRECISION_MATH_Q3MAP2_FIXES 1
|
||||
#define EXPERIMENTAL_SNAP_NORMAL_FIX 1
|
||||
#define EXPERIMENTAL_SNAP_PLANE_FIX 1
|
||||
|
||||
/* general */
|
||||
#define MAX_QPATH 64
|
||||
|
||||
|
|
@ -2026,8 +2032,31 @@ Q_EXTERN qboolean debugPortals Q_ASSIGN( qfalse );
|
|||
Q_EXTERN qboolean lightmapTriangleCheck Q_ASSIGN(qfalse);
|
||||
Q_EXTERN qboolean lightmapExtraVisClusterNudge Q_ASSIGN(qfalse);
|
||||
Q_EXTERN qboolean lightmapFill Q_ASSIGN(qfalse);
|
||||
|
||||
#if EXPERIMENTAL_SNAP_NORMAL_FIX
|
||||
// Increasing the normalEpsilon to compensate for new logic in SnapNormal(), where
|
||||
// this epsilon is now used to compare against 0 components instead of the 1 or -1
|
||||
// components. Unfortunately, normalEpsilon is also used in PlaneEqual(). So changing
|
||||
// this will affect anything that calls PlaneEqual() as well (which are, at the time
|
||||
// of this writing, FindFloatPlane() and AddBrushBevels()).
|
||||
Q_EXTERN double normalEpsilon Q_ASSIGN(0.00005);
|
||||
#else
|
||||
Q_EXTERN double normalEpsilon Q_ASSIGN( 0.00001 );
|
||||
#endif
|
||||
|
||||
#if EXPERIMENTAL_HIGH_PRECISION_MATH_Q3MAP2_FIXES
|
||||
// NOTE: This distanceEpsilon is too small if parts of the map are at maximum world
|
||||
// extents (in the range of plus or minus 2^16). The smallest epsilon at values
|
||||
// close to 2^16 is about 0.007, which is greater than distanceEpsilon. Therefore,
|
||||
// maps should be constrained to about 2^15, otherwise slightly undesirable effects
|
||||
// may result. The 0.01 distanceEpsilon used previously is just too coarse in my
|
||||
// opinion. The real fix for this problem is to have 64 bit distances and then make
|
||||
// this epsilon even smaller, or to constrain world coordinates to plus minus 2^15
|
||||
// (or even 2^14).
|
||||
Q_EXTERN double distanceEpsilon Q_ASSIGN(0.005);
|
||||
#else
|
||||
Q_EXTERN double distanceEpsilon Q_ASSIGN( 0.01 );
|
||||
#endif
|
||||
|
||||
|
||||
/* bsp */
|
||||
|
|
|
|||
Loading…
Reference in New Issue
Block a user