/* =========================================================================== Copyright (C) 1999-2005 Id Software, Inc. This file is part of Quake III Arena source code. Quake III Arena source code is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. Quake III Arena source code is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Foobar; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA =========================================================================== */ #include "tr_local.h" /* for a projection shadow: point[x] += light vector * ( z - shadow plane ) point[y] += point[z] = shadow plane 1 0 light[x] / light[z] */ typedef struct { int i2; int facing; } edgeDef_t; #define MAX_EDGE_DEFS 32 static edgeDef_t edgeDefs[SHADER_MAX_VERTEXES][MAX_EDGE_DEFS]; static int numEdgeDefs[SHADER_MAX_VERTEXES]; static int facing[SHADER_MAX_INDEXES/3]; static vec4_t extrudedEdges[SHADER_MAX_VERTEXES * 4]; static int numExtrudedEdges; static void R_AddEdgeDef( int i1, int i2, int facing ) { int c; c = numEdgeDefs[ i1 ]; if ( c == MAX_EDGE_DEFS ) { return; // overflow } edgeDefs[ i1 ][ c ].i2 = i2; edgeDefs[ i1 ][ c ].facing = facing; numEdgeDefs[ i1 ]++; } static void R_ExtrudeShadowEdges( void ) { int i; int c, c2; int j, k; int i2; numExtrudedEdges = 0; // an edge is NOT a silhouette edge if its face doesn't face the light, // or if it has a reverse paired edge that also faces the light. // A well behaved polyhedron would have exactly two faces for each edge, // but lots of models have dangling edges or overfanned edges for ( i = 0 ; i < tess.numVertexes ; i++ ) { c = numEdgeDefs[ i ]; for ( j = 0 ; j < c ; j++ ) { if ( !edgeDefs[ i ][ j ].facing ) { continue; } bool sil_edge = true; i2 = edgeDefs[ i ][ j ].i2; c2 = numEdgeDefs[ i2 ]; for ( k = 0 ; k < c2 ; k++ ) { if ( edgeDefs[ i2 ][ k ].i2 == i && edgeDefs[ i2 ][ k ].facing) { sil_edge = false; break; } } // if it doesn't share the edge with another front facing // triangle, it is a sil edge if ( sil_edge ) { VectorCopy(tess.xyz[ i ], extrudedEdges[numExtrudedEdges * 4 + 0]); VectorCopy(tess.xyz[ i + tess.numVertexes ], extrudedEdges[numExtrudedEdges * 4 + 1]); VectorCopy(tess.xyz[ i2 ], extrudedEdges[numExtrudedEdges * 4 + 2]); VectorCopy(tess.xyz[ i2 + tess.numVertexes ], extrudedEdges[numExtrudedEdges * 4 + 3]); numExtrudedEdges++; } } } } static void R_GL_RenderShadowEdges() { qglBegin( GL_QUADS); for (int i = 0; i < numExtrudedEdges; i++) { qglVertex3fv(extrudedEdges[i*4 + 0]); qglVertex3fv(extrudedEdges[i*4 + 1]); qglVertex3fv(extrudedEdges[i*4 + 3]); qglVertex3fv(extrudedEdges[i*4 + 2]); } qglEnd(); } // VULKAN // DX12 static void R_Vk_Dx_RenderShadowEdges(VkPipeline vk_pipeline, ID3D12PipelineState* dx_pipeline_state) { if (!vk.active && !dx.active) return; int i = 0; while (i < numExtrudedEdges) { int count = numExtrudedEdges - i; if (count > (SHADER_MAX_VERTEXES - 1) / 4) count = (SHADER_MAX_VERTEXES - 1) / 4; Com_Memcpy(tess.xyz, extrudedEdges[i*4], 4 * count * sizeof(vec4_t)); tess.numVertexes = count * 4; for (int k = 0; k < count; k++) { tess.indexes[k * 6 + 0] = k * 4 + 0; tess.indexes[k * 6 + 1] = k * 4 + 2; tess.indexes[k * 6 + 2] = k * 4 + 1; tess.indexes[k * 6 + 3] = k * 4 + 2; tess.indexes[k * 6 + 4] = k * 4 + 3; tess.indexes[k * 6 + 5] = k * 4 + 1; } tess.numIndexes = count * 6; for (int k = 0; k < tess.numVertexes; k++) { VectorSet(tess.svars.colors[k], 50, 50, 50); tess.svars.colors[k][3] = 255; } if (vk.active) { vk_bind_geometry(); vk_shade_geometry(vk_pipeline, false, Vk_Depth_Range::normal); } if (dx.active) { dx_bind_geometry(); dx_shade_geometry(dx_pipeline_state, false, Vk_Depth_Range::normal, true, false); } i += count; } } /* ================= RB_ShadowTessEnd triangleFromEdge[ v1 ][ v2 ] set triangle from edge( v1, v2, tri ) if ( facing[ triangleFromEdge[ v1 ][ v2 ] ] && !facing[ triangleFromEdge[ v2 ][ v1 ] ) { } ================= */ void RB_ShadowTessEnd( void ) { int i; int numTris; vec3_t lightDir; // we can only do this if we have enough space in the vertex buffers if ( tess.numVertexes >= SHADER_MAX_VERTEXES / 2 ) { return; } if ( glConfig.stencilBits < 4 ) { return; } VectorCopy( backEnd.currentEntity->lightDir, lightDir ); // project vertexes away from light direction for ( i = 0 ; i < tess.numVertexes ; i++ ) { VectorMA( tess.xyz[i], -512, lightDir, tess.xyz[i+tess.numVertexes] ); } // decide which triangles face the light Com_Memset( numEdgeDefs, 0, 4 * tess.numVertexes ); numTris = tess.numIndexes / 3; for ( i = 0 ; i < numTris ; i++ ) { int i1, i2, i3; vec3_t d1, d2, normal; float *v1, *v2, *v3; float d; i1 = tess.indexes[ i*3 + 0 ]; i2 = tess.indexes[ i*3 + 1 ]; i3 = tess.indexes[ i*3 + 2 ]; v1 = tess.xyz[ i1 ]; v2 = tess.xyz[ i2 ]; v3 = tess.xyz[ i3 ]; VectorSubtract( v2, v1, d1 ); VectorSubtract( v3, v1, d2 ); CrossProduct( d1, d2, normal ); d = DotProduct( normal, lightDir ); if ( d > 0 ) { facing[ i ] = 1; } else { facing[ i ] = 0; } // create the edges R_AddEdgeDef( i1, i2, facing[ i ] ); R_AddEdgeDef( i2, i3, facing[ i ] ); R_AddEdgeDef( i3, i1, facing[ i ] ); } // draw the silhouette edges GL_Bind( tr.whiteImage ); qglEnable( GL_CULL_FACE ); GL_State( GLS_SRCBLEND_ONE | GLS_DSTBLEND_ZERO ); qglColor3f( 0.2f, 0.2f, 0.2f ); // don't write to the color buffer qglColorMask( GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE ); qglEnable( GL_STENCIL_TEST ); qglStencilFunc( GL_ALWAYS, 1, 255 ); R_ExtrudeShadowEdges(); // mirrors have the culling order reversed if ( backEnd.viewParms.isMirror ) { qglCullFace( GL_FRONT ); qglStencilOp( GL_KEEP, GL_KEEP, GL_INCR ); R_GL_RenderShadowEdges(); qglCullFace( GL_BACK ); qglStencilOp( GL_KEEP, GL_KEEP, GL_DECR ); R_GL_RenderShadowEdges(); // VULKAN // DX12 R_Vk_Dx_RenderShadowEdges(vk.shadow_volume_pipelines[0][1], dx.shadow_volume_pipeline_states[0][1]); R_Vk_Dx_RenderShadowEdges(vk.shadow_volume_pipelines[1][1], dx.shadow_volume_pipeline_states[1][1]); } else { qglCullFace( GL_BACK ); qglStencilOp( GL_KEEP, GL_KEEP, GL_INCR ); R_GL_RenderShadowEdges(); qglCullFace( GL_FRONT ); qglStencilOp( GL_KEEP, GL_KEEP, GL_DECR ); R_GL_RenderShadowEdges(); // VULKAN // DX12 R_Vk_Dx_RenderShadowEdges(vk.shadow_volume_pipelines[0][0], dx.shadow_volume_pipeline_states[0][0]); R_Vk_Dx_RenderShadowEdges(vk.shadow_volume_pipelines[1][0], dx.shadow_volume_pipeline_states[1][0]); } qglDisable(GL_STENCIL_TEST); // reenable writing to the color buffer qglColorMask( GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE ); } /* ================= RB_ShadowFinish Darken everything that is is a shadow volume. We have to delay this until everything has been shadowed, because otherwise shadows from different body parts would overlap and double darken. ================= */ void RB_ShadowFinish( void ) { if ( r_shadows->integer != 2 ) { return; } if ( glConfig.stencilBits < 4 ) { return; } qglEnable( GL_STENCIL_TEST ); qglStencilFunc( GL_NOTEQUAL, 0, 255 ); qglDisable (GL_CLIP_PLANE0); GL_Cull(CT_TWO_SIDED); GL_Bind( tr.whiteImage ); qglPushMatrix(); qglLoadIdentity (); qglColor3f( 0.6f, 0.6f, 0.6f ); GL_State( GLS_DEPTHMASK_TRUE | GLS_SRCBLEND_DST_COLOR | GLS_DSTBLEND_ZERO ); qglBegin( GL_QUADS ); qglVertex3f( -100, 100, -10 ); qglVertex3f( 100, 100, -10 ); qglVertex3f( 100, -100, -10 ); qglVertex3f( -100, -100, -10 ); qglEnd (); qglColor3f(1,1,1); qglDisable( GL_STENCIL_TEST ); qglPopMatrix(); // VULKAN // DX12 if (vk.active || dx.active) { tess.indexes[0] = 0; tess.indexes[1] = 1; tess.indexes[2] = 2; tess.indexes[3] = 0; tess.indexes[4] = 2; tess.indexes[5] = 3; tess.numIndexes = 6; VectorSet(tess.xyz[0], -100, 100, -10); VectorSet(tess.xyz[1], 100, 100, -10); VectorSet(tess.xyz[2], 100, -100, -10); VectorSet(tess.xyz[3], -100, -100, -10); for (int i = 0; i < 4; i++) { VectorSet(tess.svars.colors[i], 153, 153, 153); tess.svars.colors[i][3] = 255; } tess.numVertexes = 4; // set backEnd.or.modelMatrix to identity matrix float tmp[16]; Com_Memcpy(tmp, vk_world.modelview_transform, 64); Com_Memset(vk_world.modelview_transform, 0, 64); vk_world.modelview_transform[0] = 1.0f; vk_world.modelview_transform[5] = 1.0f; vk_world.modelview_transform[10] = 1.0f; vk_world.modelview_transform[15] = 1.0f; if (vk.active) { vk_bind_geometry(); vk_shade_geometry(vk.shadow_finish_pipeline, false, Vk_Depth_Range::normal); } if (dx.active) { dx_bind_geometry(); dx_shade_geometry(dx.shadow_finish_pipeline_state, false, Vk_Depth_Range::normal, true, false); } Com_Memcpy(vk_world.modelview_transform, tmp, 64); tess.numIndexes = 0; tess.numVertexes = 0; } } /* ================= RB_ProjectionShadowDeform ================= */ void RB_ProjectionShadowDeform( void ) { float *xyz; int i; float h; vec3_t ground; vec3_t light; float groundDist; float d; vec3_t lightDir; xyz = ( float * ) tess.xyz; ground[0] = backEnd.or.axis[0][2]; ground[1] = backEnd.or.axis[1][2]; ground[2] = backEnd.or.axis[2][2]; groundDist = backEnd.or.origin[2] - backEnd.currentEntity->e.shadowPlane; VectorCopy( backEnd.currentEntity->lightDir, lightDir ); d = DotProduct( lightDir, ground ); // don't let the shadows get too long or go negative if ( d < 0.5 ) { VectorMA( lightDir, (0.5 - d), ground, lightDir ); d = DotProduct( lightDir, ground ); } d = 1.0 / d; light[0] = lightDir[0] * d; light[1] = lightDir[1] * d; light[2] = lightDir[2] * d; for ( i = 0; i < tess.numVertexes; i++, xyz += 4 ) { h = DotProduct( xyz, ground ) + groundDist; xyz[0] -= light[0] * h; xyz[1] -= light[1] * h; xyz[2] -= light[2] * h; } }